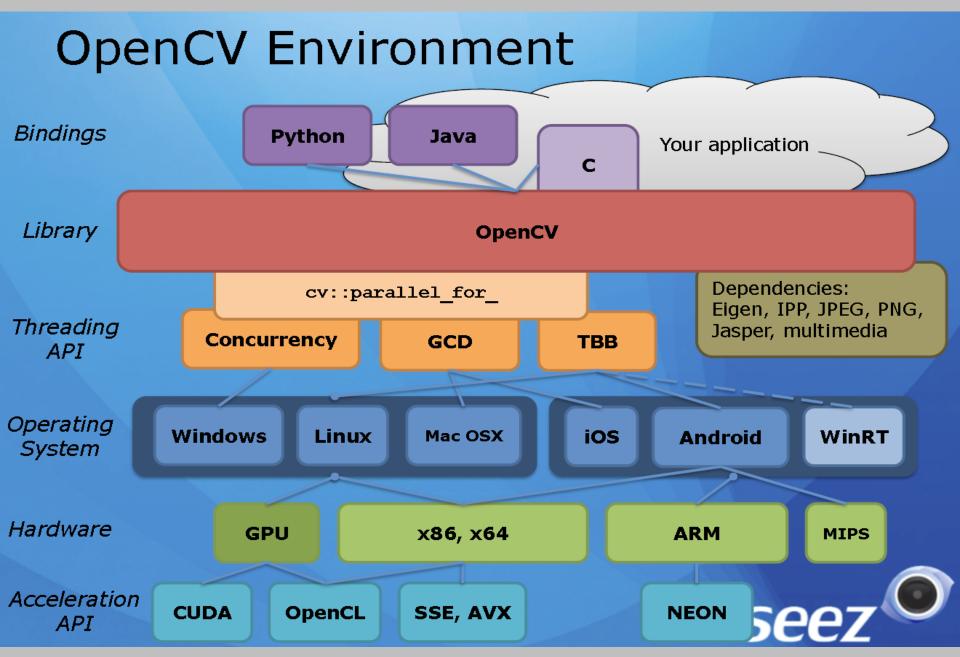
Intro to the OpenCV Library

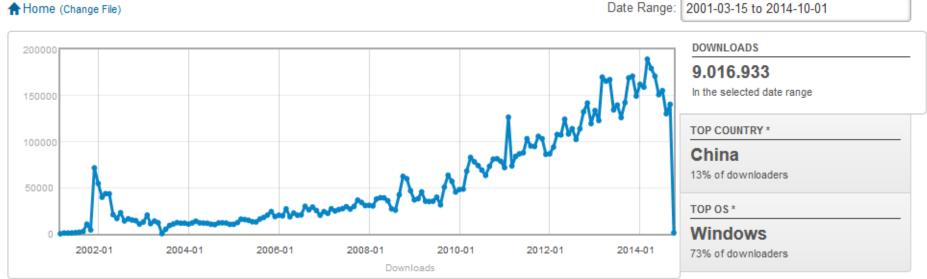
for Computer Vision lectures and Introduction to CV and other CV lab classes

(some slides are cc from 'opencv 3.0' Kirill Kornyakov, Itseez)

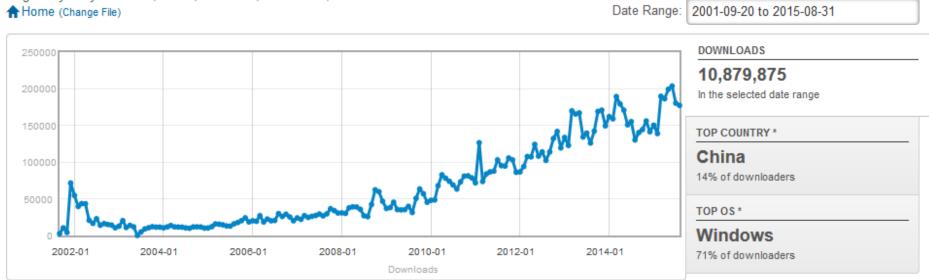

Topics

1.Why
 2.What
 3.Install
 4.Example Project
 5.Your Task
 6.Your Questions

Why OpenCV?


- 1. 2,500+ algorithms and functions
- 2. Cross-platform, portable API
- 3. Real-time performance
- 4. Liberal BSD license
- 5. fast and regular updates

The OpenCV Library


History

Brought to you by: akamaev, alalek, ashishkov, asmorkalov, and 6 others

Intel \rightarrow 2001 open src, 2008: Willow Garage, Itseez, 2010: Nvidia

History

Brought to you by: akamaev, alalek, ashishkov, asmorkalov, and 7 others

Intel \rightarrow 2001 open src, 2008: Willow Garage, Itseez, 2010: Nvidia

What? core module tutorials:

Mat - The Basic Image Container

How to scan images, lookup tables and time measurement with OpenCV

Mask operations on matrices

Adding (blending) two images using OpenCV

OpenCV forever!

Changing the contrast and brightness of an image!

Random generator and text with OpenCV

Discrete Fourier Transform

File Input and Output using XML and YAML files

The OpenCV Library

What? imgproc module tutorials:

Smoothing Images **Eroding and Dilating** More Morphology Transformations Image Pyramids **Basic Thresholding Operations** Making your own linear filters! Adding borders to your images Sobel Derivatives Laplace Operator Canny Edge Detector Hough Line Transform Hough Circle Transform Remapping Affine Transformations

Histogram Equalization Histogram Calculation Histogram Comparison **Back Projection Template Matching** Finding contours in your image Convex Hull **Creating Bounding boxes** and circles for contours Creating Bounding rotated boxes and ellipses for contours Image Moments Point Polygon Test

What? Other modules:

Highgui: Adding a Trackbar to our applications! Video Input with OpenCV and similarity measurement Creating a video with OpenCV

calib3d: Camera calibration

ml:

Introduction to Support Vector Machines Support Vector Machines for non-lin. Separable Data feature2d: Harris corner detector Shi-Tomasi corner detector Creating your own corner detector Detecting corners location in subpixeles **Feature Description** Feature Matching with FLANN Features2D + Homography to find a known object Detection of planar objects

objdetect: Cascade Classifier

```
int main(int argc, char** argv)
{
  Mat img = imread(argv[1], 1);
   imshow("", img);
  waitKey();
   return 0;
                       Jello
World!
}
```

```
int main(int argc, char** argv)
ł
  Mat img, gray;
   img = imread(argv[1], 1);
   imshow("original", img);
   cvtColor(img, gray, COLOR BGR2GRAY);
   GaussianBlur(gray, gray, Size(7, 7),
                1.5);
   Canny(gray, gray, 0, 50);
   imshow("edges", gray);
   waitKey();
   return 0;
```


Threshold:

Mat emptyPixImg = GrayImg < 1;</pre>

Image from (Camera- or) Directory-stream:

VideoCapture cap("TextureImages/Texture_%02d_inpaint.png");
Mat Img;
cap >> Img;

Create a 2D-Gaussian:

pointer work to speed up inner loops:

```
(1)
int** iim = new int*[h];
for (y=0; y<h; y++)</pre>
{ iim[y] = IntegralImg.ptr<int>(y);
int diffy = 2*(iim[y][x+dx] - iim[y][x-dx]) +
                iim[y-dy][x-dx] - iim[y-dy][x+dx] +
                iim[y+dy][x-dx] - iim[y+dy][x+dx];
(2)
float *pCR, *pCRData = (float*) CorrResult.data;
*pCR = pCRData + y*w;
for ( int x = TemplateWidth; x < w-TemplateWidth; x++ )</pre>
  pCR[x] = ssd; // write ssd result to result image
```

How?

- 1. Home: opencv.org
- 2. Documentation: docs.opencv.org
- 3. Q&A forum: answers.opencv.org
- 4. Report issues: code.opencv.org
- 5. Develop: https://github.com/Itseez/opencv

How? Install (linux):

- 1. download:https://github.com/Itseez/ opencv/archive/3.0.0.zip
- run Cmake(gui), check/install add-ons and configure until all problems have gone generate
- 3. make
- 4. sudo make install
- 5. setup your ide
- 6. run example

How? Install (linux):

- 1. download:https://github.com/Itseez/
- run Cmake(gui), check/install add-ons and configure until all problems have gone generate
- 3. make
- 4. sudo make install

now:

- 5. setup your ide
- 6. run example

Our plans

- 1.Set up development environment and make a simple segmentation program.
- 2. You are free to use opency and other example code you find,
- 3. but have to
 - put it all together on your own
 - cite your source in a comment.
- 4.Good C++ coding style and a lot of comments!
- 5.Send your results the day before the next task starts to holger.heidrich, first task within 13 days.
- 6.Send source code and header files (no project files) as well as input (if not given) and result images.
- 7.Your code must compile without errors on Win and Linux systems (i.e. avoid Win-specific code).

Your first task: superpixel & colour reduction

- 1.Install OpenCV with debug libs on your system.
- 2.In a given colour Image, find "superpixel" regions:
 - calculate the magnitude of the colour gradient (x+y direction)
 - put them (together with pixel number) in a priority queue
 - (1) pop lowest gradient pixel
 - 4-connect the current pixel to all neighbours with colour distance lower a given Δ (changeable by slider)
 - remove all connected pixels from the priority queue
 - if priority queue not empty go to (1)
 - colour each region with its mean colour
 - output the resulting image
 - discuss problems and possible refinements of this algorithm

Hint:

Search opencv\samples\cpp*.cpp containing keywords you need (gradient, region, mask ...) see also core module tutorials

Credits:

- no compilation errors,
- solves the task,
- hand in in time
- \rightarrow 1 Point out of min. 8 you need to pass the CV1 exercise course.

The exercise is part of the exam; if you got at least 8 points the questions that regard the exercise will concentrate around what you did, otherwise they will cover the whole set of exercise tasks.)