Computer Vision I -Introduction & Filtering

Carsten Rother

28/10/2015

Admin Stuff

- <u>Language:</u> German/English; Slides: English (all the terminology and books are in English)
- Lecturer: Carsten Rother (Eric Brachmann, Anita Sellent)
- Exercises: Dmitri Schlesinger, Eric Brachmann
- Staff Email: dmytro.shlezinger@tu-dresden.de
- Announcements: on our webpage
- Course Books:
 - Image Processing/Geometry: Computer Vision: Algorithms and Applications by Rick Szeliski; Springer 2011. An earlier version of the book is online: http://szeliski.org/Book/
 - Geometry: Multiple View Geometry; Hartley and Zisserman; Cambridge Press 2004. Second edition. Parts of book are online: <u>http://www.robots.ox.ac.uk/~vgg/hzbook/</u>
 - Also pointers to conference and journal articles

Course Overview (total 14 lectures)

Lecture 1 (23.10): Introduction & Filtering Ex1: Intro to OpenCV

Lecture 2 (30.10): Filtering and Feature detection Ex2: Intro to exercise: Filtering

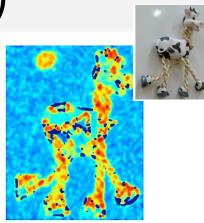
Lecture 3 (6.11): Image Matching and Projective Geometry Ex3: homework

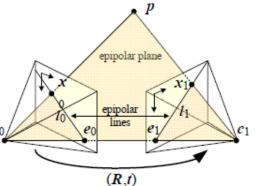
Lecture 4 (13.11): Geometry of One and Two Images Ex4: homework

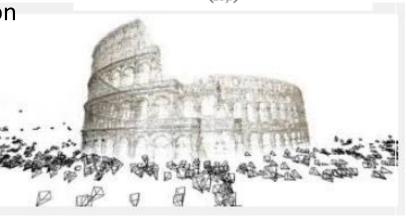
Lecture 5 (20.11): Robust Geometry Estimation Ex5: Intro to exercise: Panoramic Stitching (Geometry)

Lecture 6 (27.11): Multi-View 3D Reconstruction Ex6: homework

Lecture 7 (4.12): Object Pose estimation Ex7: homework







Course Overview (total 14 lectures)

Lecture 8 (11.12): Tracking – Part 1 Ex8: Intro to exercise: Object Pose Estimation

Lecture 9 (18.12): Tracking – Part 2 Ex9: homework

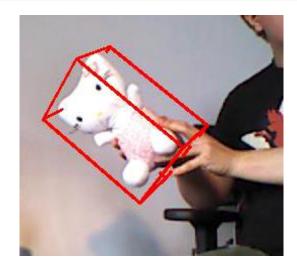
Lecture 10 (8.1): Dense Matching – Optical Flow Ex10: homework

Lecture 11 (15.1): Dense Matching – Stereo Part 1 Ex11: homework

Lecture 12 (22.1): Dense Matching – Stereo Part 2 Ex12: homework

Lecture 13 (29.1): Dense Matching – Scene Flow Ex13: Prepare Poster Session

Lecture 14 (5.2): Poster Session Ex14: homework



time = 1

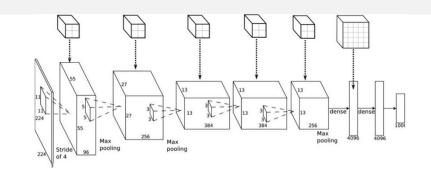
time = 2

Exams and Exercises

- Exam: in Person
- Exercises/homework:
 - There are three blocks
 - In each block you have to do a certain amount of exercises
 - The exercises should to be handed in until end of semester (ideally after each block)
- Exam:
 - Exercises are not mandatory, i.e. you can sit the exam without having done the exercises
 - In the exam I may ask questions about the exact exercise you have done. If you have not done any exercise then this may result in a worse mark

CVLD Lectures

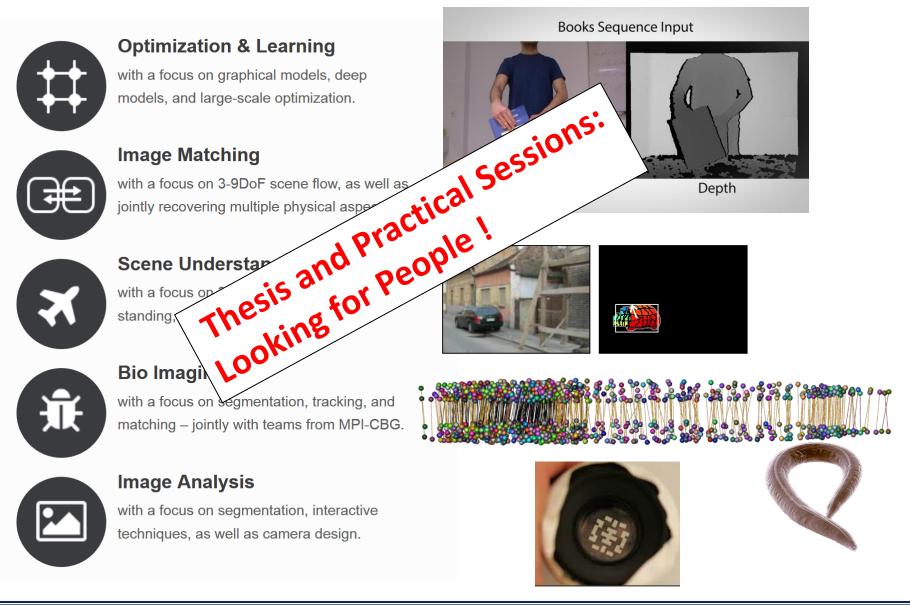
- <u>WS 15/16</u>
 - Computer Vision 1 (2+2)
 - Machine Learning 1 (2+2)



- <u>SS 16</u>
 - Computer Vision 2 (2+2)
 - Machine Learning 2 (2+2)
 - Image Processing (1+1)

- For doing a Master/PhD in the CVLD one should do the computer vision or machine learning track
- Computer graphics (Prof. Gumhold) (Introduction, I, II)
 3D Scanning with structured light; Illumination models; Geometry

Before we start ... some Advertisement



Future in Computer Vision

A project work in the CVLD is a good stepping stone if you:

- want to do a PhD in computer vision, graphics, machine learning
- Becoming a researcher or software developer in a research lab (Microsoft Research, Daimler, Google, Adobe, TechniColor, etc)
- If you are interested in doing a start-up
- Other "computer vision related" industry

Introduction to Computer Vision

What is computer Vision?

(Potential) Definition: Developing computational models and algorithms to interpret digital images and visual data in order to understand the visual world we live in.

Introduction to Computer Vision

What is computer Vision?

(Potential) Definition: Developing computational models and algorithms to interpret digital images and visual data in order to understand the visual world we live in.

What does it mean to "understand"?

(Potential) Definition:

Developing computational models and algorithms to interpret digital images and visual data in order to understand the visual world we live in.

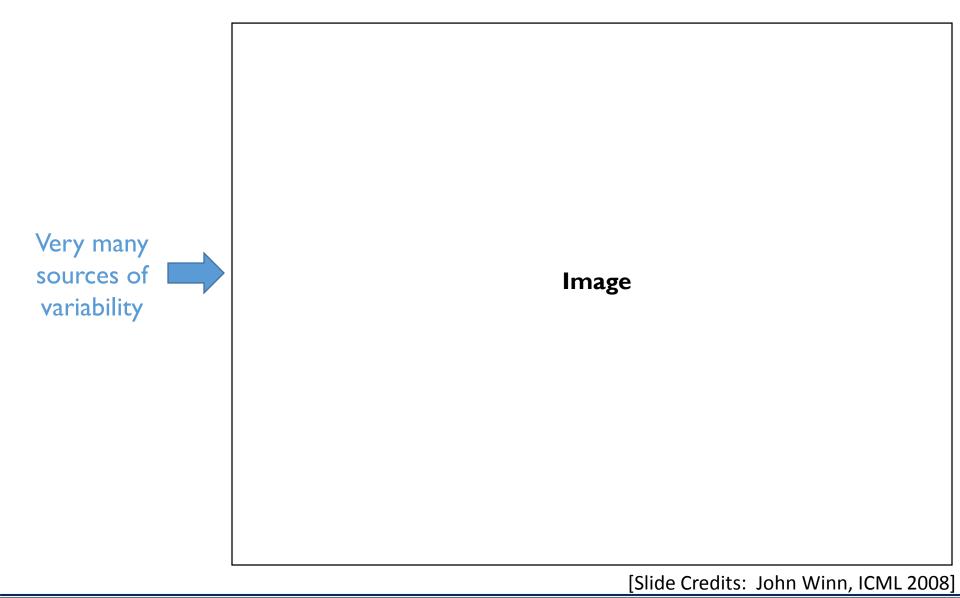
Physics-based vision:

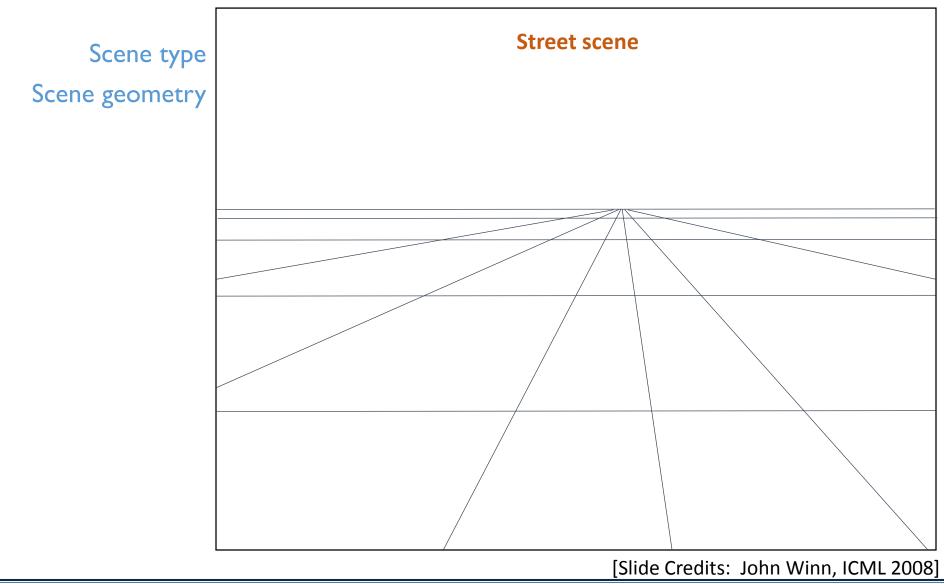
Geometry Segmentation Camera parameters Emitted light (sun) Surface properties: Reflectance, material

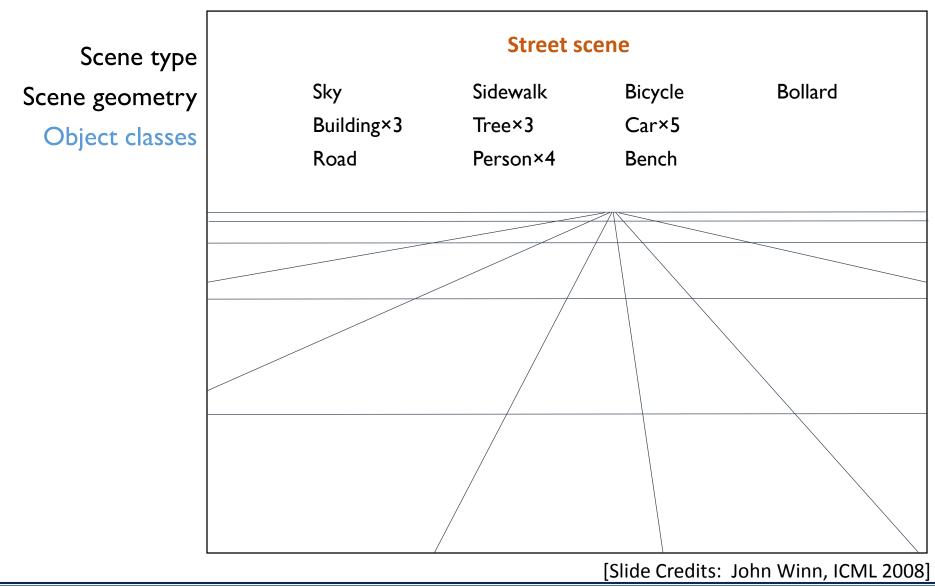
Semantic-based vision:

Objects: class, pose Scene: outdoor,... Attributes/Properties: - old-fashioned train

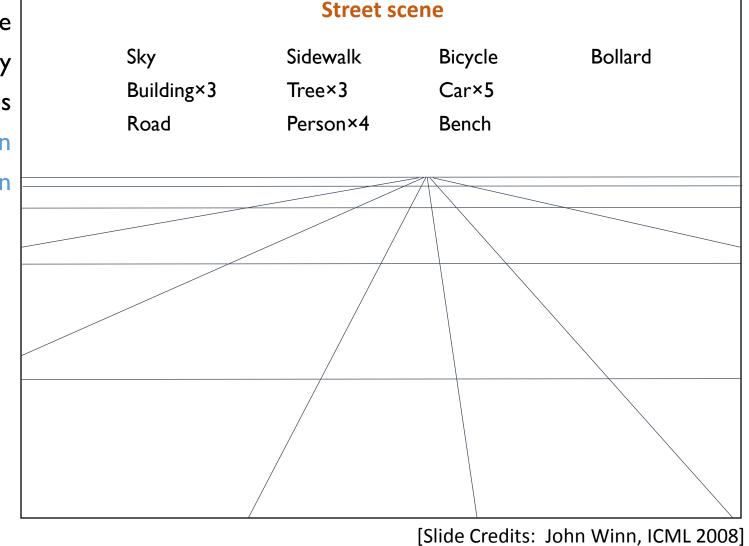
- A-on-top-of-B

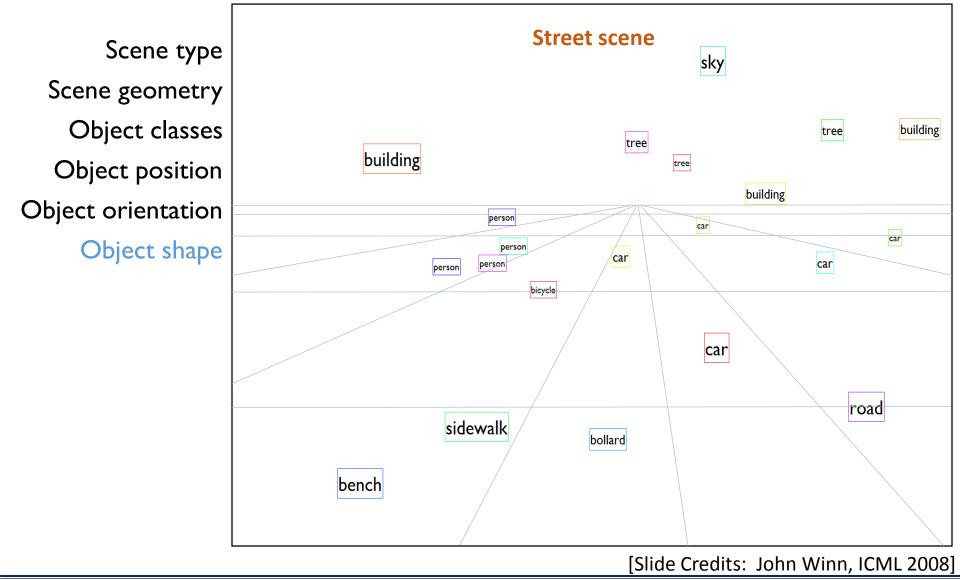


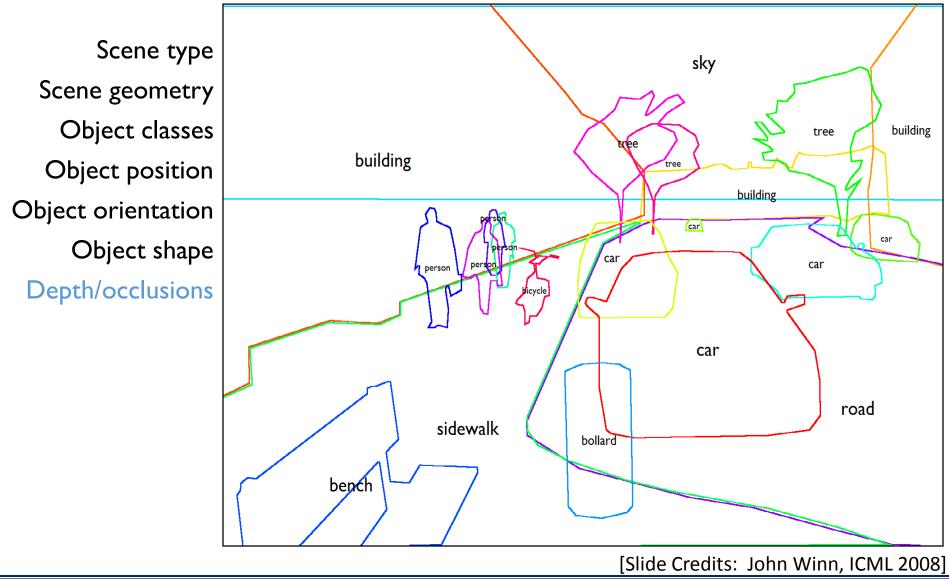




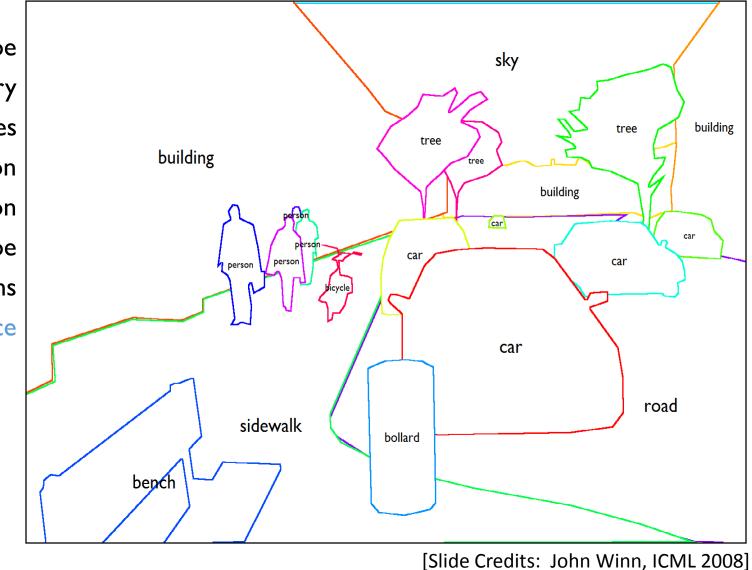
Scene type Scene geometry Object classes Object position Object orientation







Scene type Scene geometry Object classes Object position Object orientation Object shape Depth/occlusions Object appearance



Scene type Scene geometry **Object classes Object** position **Object** orientation Object shape Depth/occlusions Object appearance Illumination **Shadows**

[Slide Credits: John Winn, ICML 2008]

Scene type Scene geometry **Object classes Object** position **Object** orientation Object shape Depth/occlusions Object appearance Illumination **Shadows**

[Slide Credits: John Winn, ICML 2008]

Scene type Scene geometry **Object classes Object** position **Object** orientation Object shape Depth/occlusions Object appearance Illumination Shadows Motion blur **Camera effects**

[Slide Credits: John Winn, ICML 2008]

Scene type Scene geometry **Object classes Object** position **Object** orientation Object shape Depth/occlusions Object appearance Illumination Shadows Motion blur **Camera effects**

[Slide Credits: John Winn, ICML 2008]

The "Scene Parsing" challenge --a "grand challenge" of computer vision

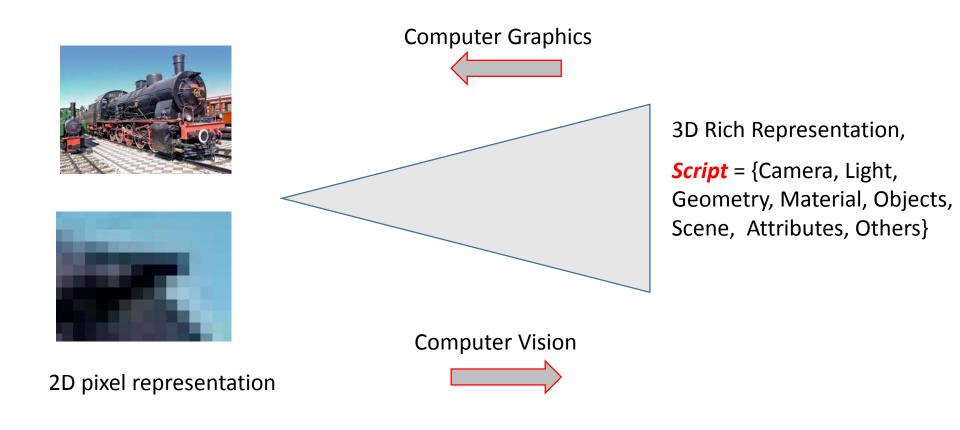
Single image

(Probabilistic) Script = {Camera, Light, Geometry, Material, Objects, Scene, Attributes, Others}

Many applications do not have to extract the full probabilistic script but only a subset, e.g. "does the image contain a car?"

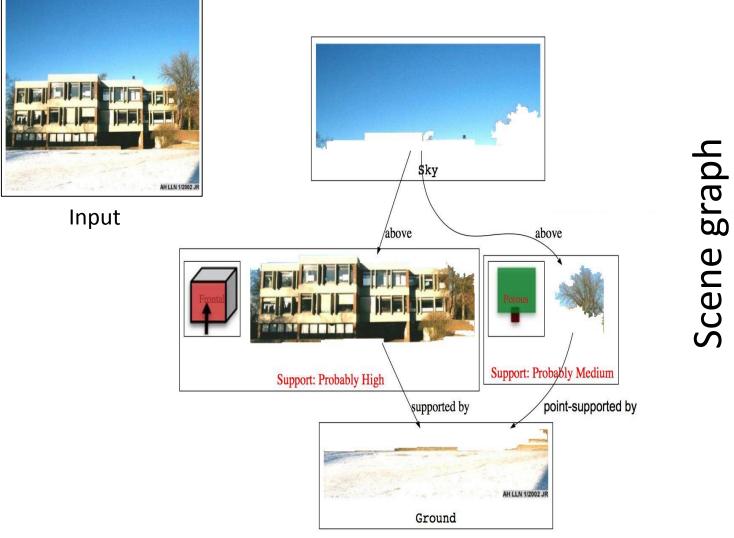
... many examples to come later

Why is "scene parsing" hard?



Computer Vision can be seen as "inverse graphics"

Example of a recent work



[Gupta, Efros, Herbert, ECCV '10]

28/10/2015 25

Why is "scene parsing" hard?

Subgoal for July

Analysis of scenes consisting of non-overlapping objects from the

balls

bricks with faces of the same or different colors or textures cylinders.

Each face will be of uniform and distinct color and/or texture.

Extensions for August

The first priority will be to handle objects of the same sort but with complex surfaces and backgrounds, e.g. cigarette pack with writing and bands of different color, or a cylindrical battery.

[Sussman, Lamport, Guzman 1966] [Slide credits Andrew Blake]

Introduction to Computer Vision

What is computer Vision?

(Potential) Definition: Developing computational models and algorithms to interpret digital images and visual data in order to understand the visual world we live in.

How can we interpret visual data?

2D pixel representation

Computer Graphics

Computer Vision

3D Rich Representation,

Script = {Camera, Light, Geometry, Material, Objects, Scene, Attributes, Others}

- What general (prior) knowledge of the world (not necessarily visual) can be exploit?
- What properties / cues from the image can be used?

Both aspects are quite well understood (a lot is based on physics) ... but how to use them is efficiently is open challenged (see later)

How can we interpret visual data?

2D pixel representation

Computer Graphics

Computer Vision

3D Rich Representation,

Script = {Camera, Light, Geometry, Material, Objects, Scene, Attributes, Others}

- What general (prior) knowledge of the world (not necessarily visual) can be exploit?
- What properties / cues from the image can be used?

Both aspects are quite well understood (a lot is based on physics) ... but how to use them is efficiently is open challenged (see later)

Prior knowledge (examples)

- "Hard" prior knowledge
 - Trains do not fly in the air
 - Objects are connected in 3D

- "Soft" prior knowledge:
 - The camera is more likely 1.70m above ground and not 0.1m.
 - Self-similarity: "all black pixels belong to the same object"

Prior knowledge – harder to describe

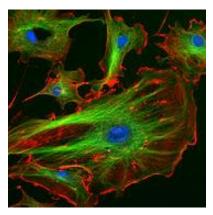
• Describe Image Texture

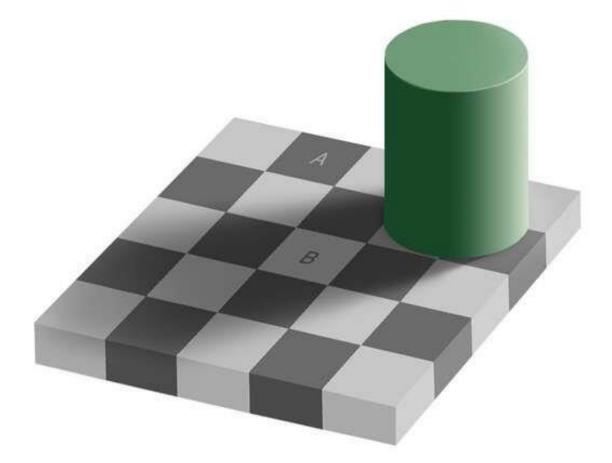
Real Image



Not a real Image zoom

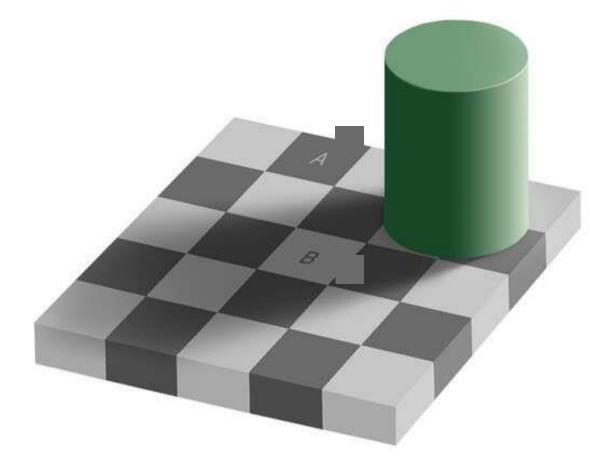
• Microscopic Images. What is the true shape of these objects





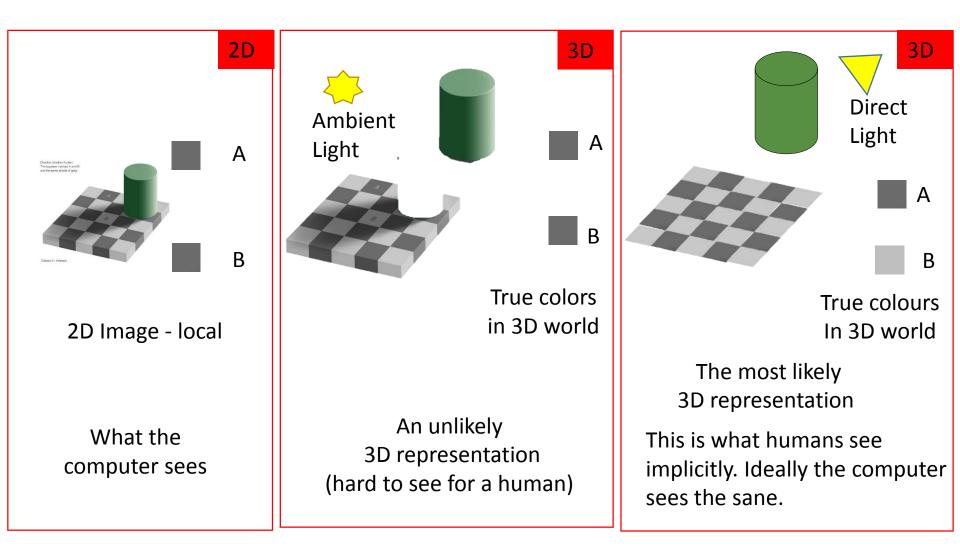
Which patch is brighter: A or B?

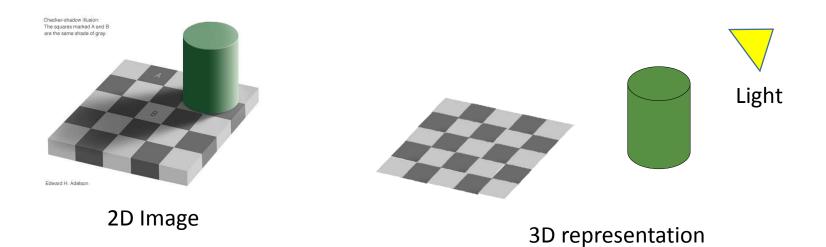
[Edward Adelson]



Which patch is brighter: A or B?

[Edward Adelson]



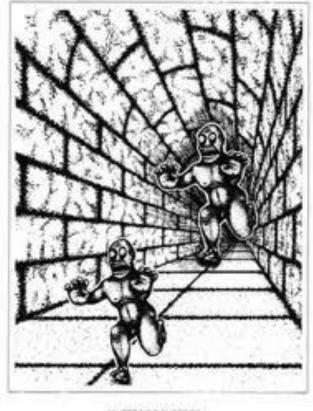


Humans see an image **not** as a set of 2D pixels. They understand an image as a projection of the 3D world we live in.

Humans have the prior knowledge about the world encoded, such as:

- Light cast shadows
- Objects do not fly in the air
- A car is likely to move but a table is unlikely to move

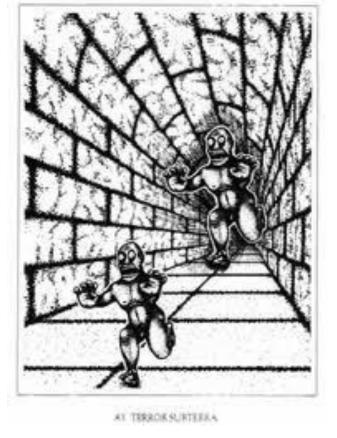
We have to teach the computer this prior knowledge to understand 2D images as picture of the 3D world

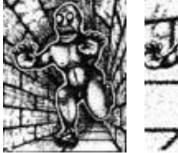


AT TERROR SURTERIA

Which monster is bigger?

The importance of Prior knowledge





In the 2D Image

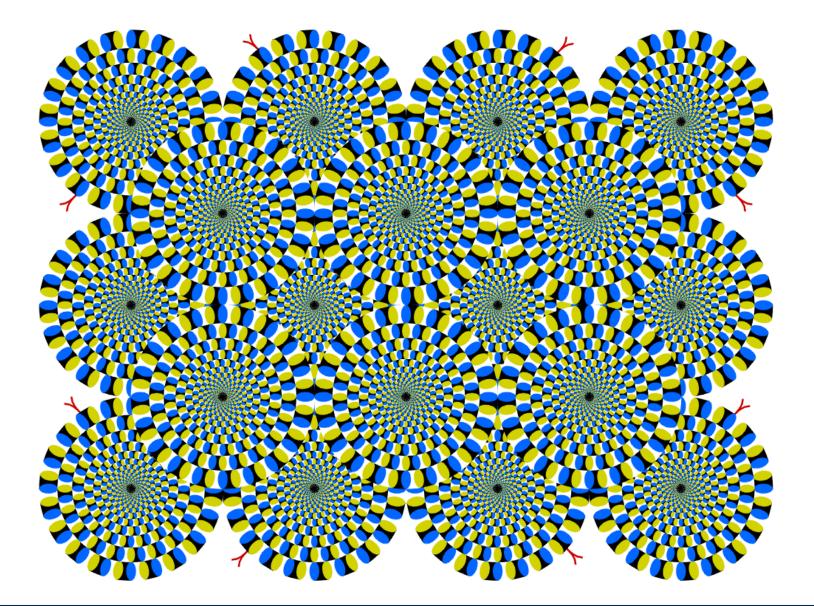
1meter

2meter

Which monster is bigger?

In the 3D world (true)

Human Vision can be fooled



How can we interpret visual data?

2D pixel representation

Computer Graphics

Computer Vision

3D Rich Representation,

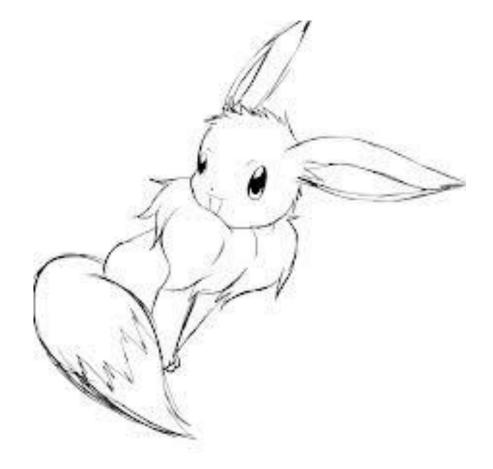
Script = {Camera, Light, Geometry, Material, Objects, Scene, Attributes, Others}

- What general (prior) knowledge of the world (not necessarily visual) can be exploit?
- What properties / cues from the image can be used?

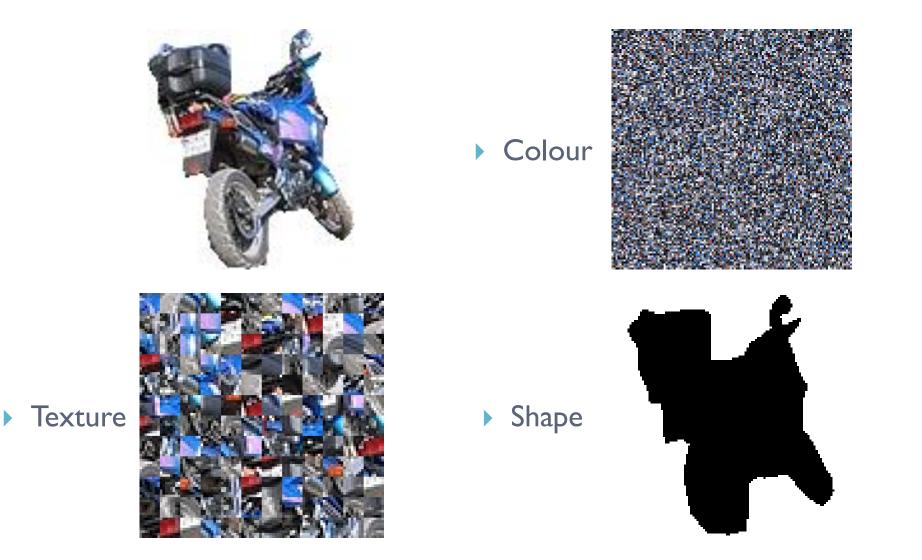
Both aspects are quite well understood (a lot is based on physics) ... but how to use them is efficiently is open challenged (see later)

Cue: Appearance (Colour, Texture) for object recognition

Cue: Outlines (shape) for object recognition



Guess the Object



/LD

Computer Vision I: Introduction

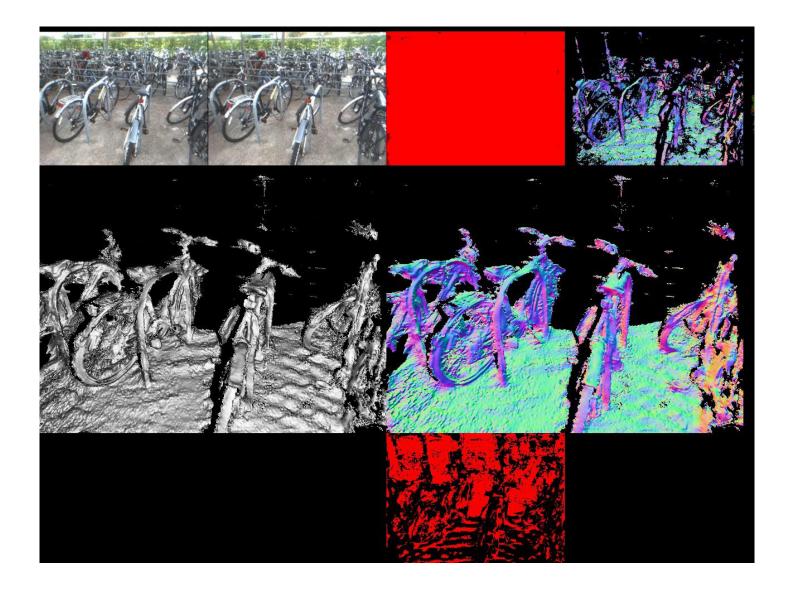
28/10/2015 42

[from JohnWinn ICML 2008]

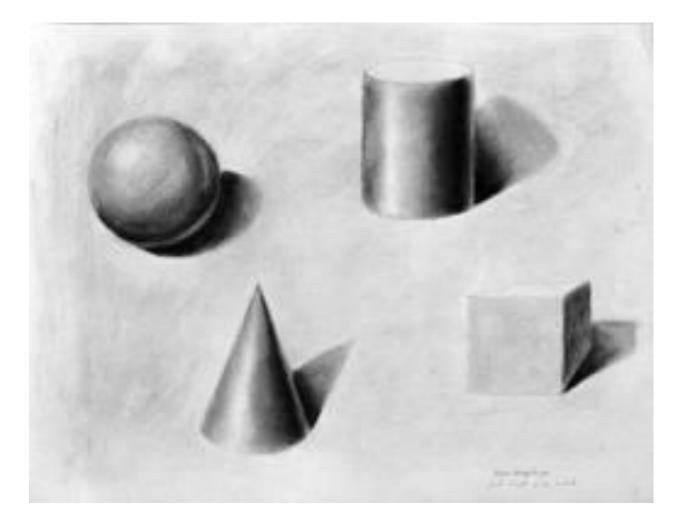
Cue: Context for object recognition

Cue: Context for object recognition

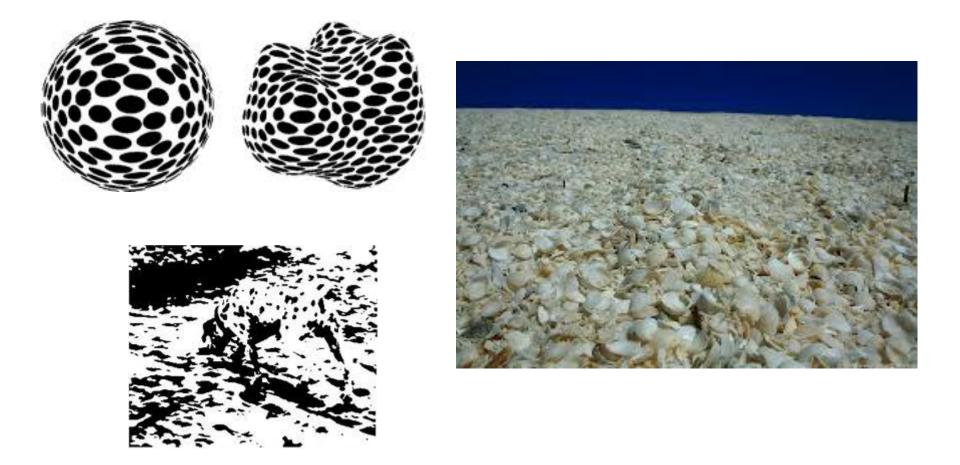
Cue: Multiple Frames for geometry estimation



Cue: Shading & shadows for geometry and Light estimation



Texture gradient for geometry estimation



The "Scene Parsing" challenge --a "grand challenge" of computer vision

Single image

(Probabilistic) Script = {Camera, Light, Geometry, Material, Objects, Scene, Attributes, Others}

Many applications do not have to extract the full probabilistic script but only a subset, e.g. "does the image contain a car?"

... many examples to come later

Many application scenarios are in reach

To simplify/tackle the problem:

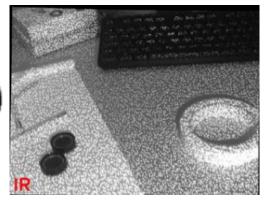
1) Richer Input:

Modern sensing technology; Video; Cameras everywhere

2) Rich Models: Deep Learning

- Lots of Data to learn from: search engines; crowdsourcing; graphics engines
- 4) For **many practical** applications: We do not have to infer the full probabilistic script

XBCX360



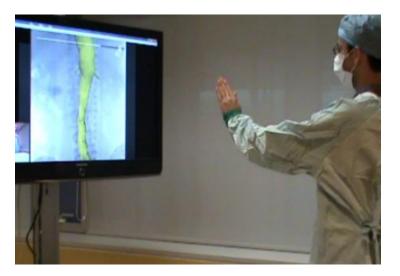
Kinect has simplified computer vision

[Izadi et al. '11]

Animate the world

[Chen et al. UIST '12]

Kinect Body tracking and Gesture Recognition

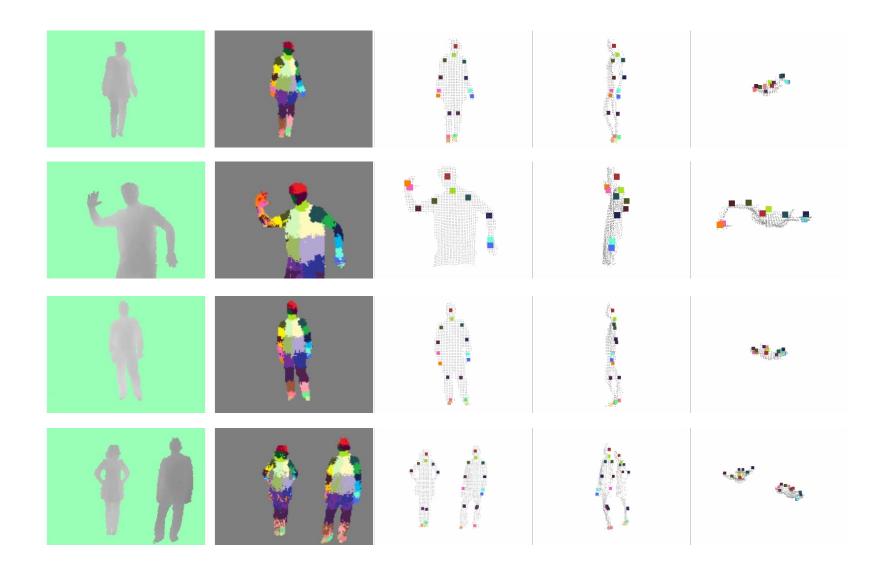




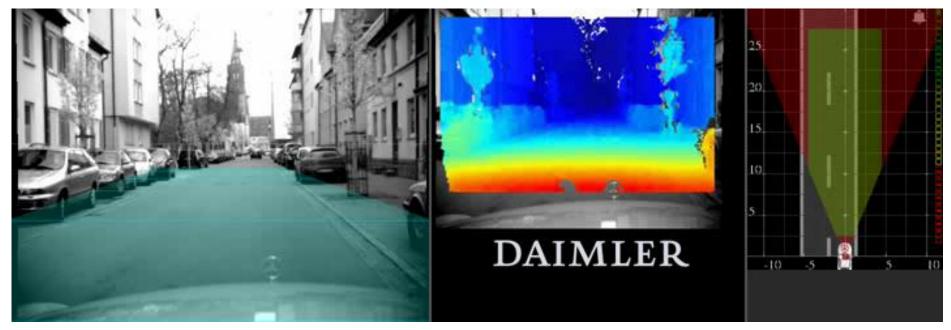
Start-Up 2012: Try Fashion online

Very large impact in many field: Gaming, Robotics, HCI, Medicine, ...

Kinect Body Pose estimation and tracking

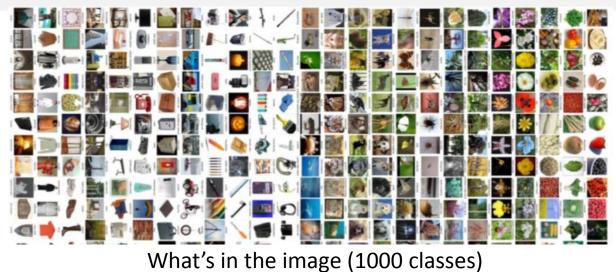


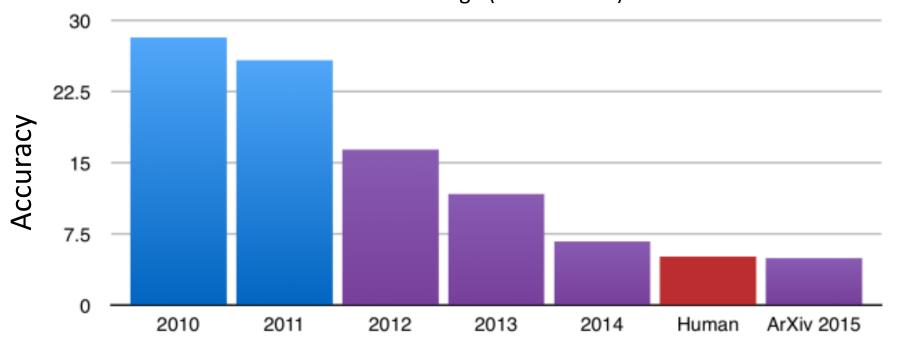
Real-time pedestrian detection



Daimler Research Lab

Object recognition – ImageNet

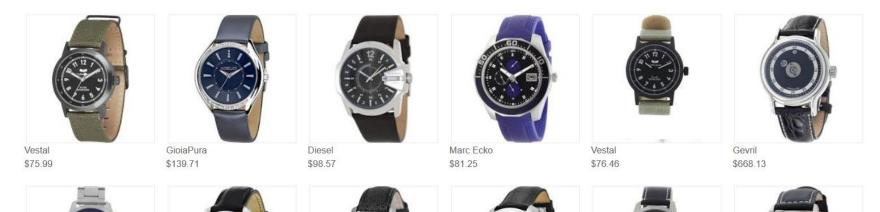




Start-up Company: Like.com



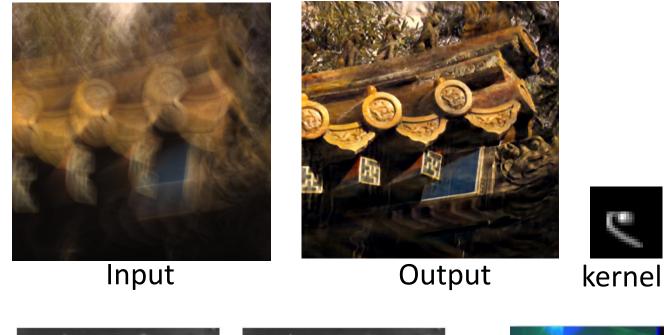
Visually Similar Items



Interactive Image manipulation

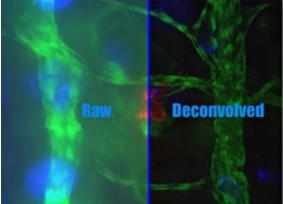
[Agrawal et al '04]

Image de-convolution



input

output

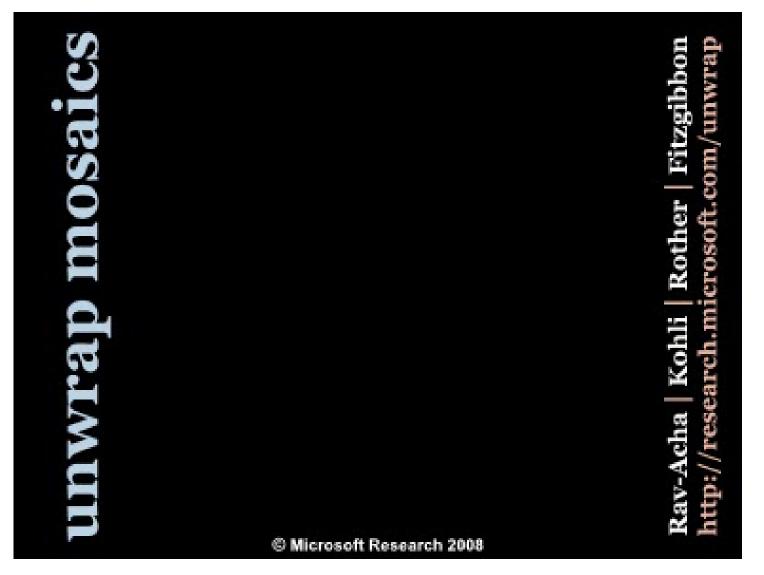


[Schmidt, Rother, Nowozin, Jancsary, Roth 2013] Best Student Paper award

Computer Vision I: Introduction

28/10/2015 58

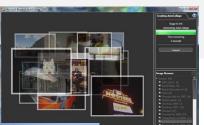
Video Editing



[Rav-Acha et al. '08]

Industry

Pirates of the Caribbean, Industrial Light and Magic



AutoCollage 2008 - Microsoft Research [Rother et al. Siggraph 2006]

Robotics

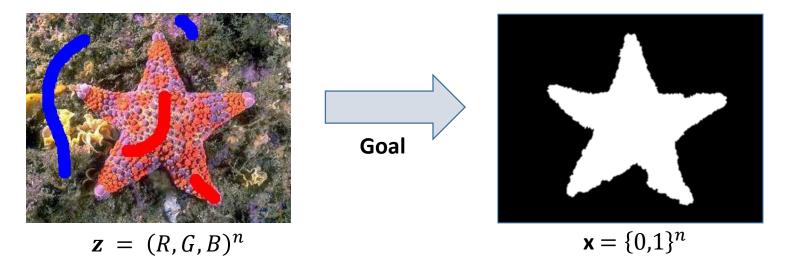
Introduction to Computer Vision

What is computer Vision?

(Potential) Definition: Developing computational models and algorithms to interpret digital images and visual data in order to understand the visual world we live in.

Model versus Algorithm

Example: Interactive Segmentation

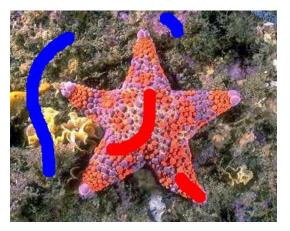


Given **z**; derive binary **x**:

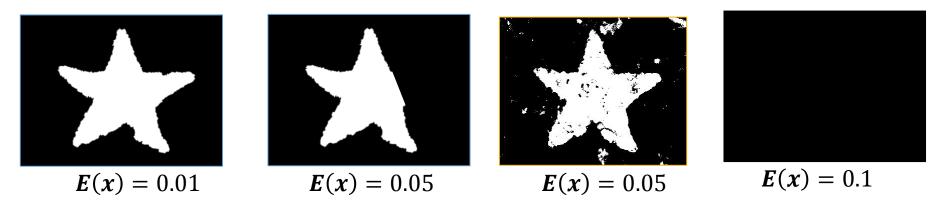
Model: Energy function E(x)

Algorithm to minimization: $\mathbf{x}^* = argmin_x E(\mathbf{x})$

Model for a starfish



Goal: formulate E(x) such that

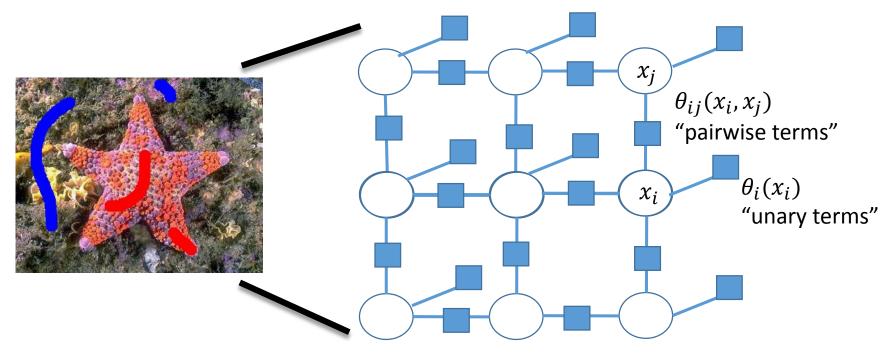


Optimal solution $\mathbf{x}^* = argmin_x E(\mathbf{x})$

How does the energy looks like?

Energy function (sum of local terms):

$$\boldsymbol{E}(\boldsymbol{x}) = \sum_{i} \theta_{i}(x_{i}) + \sum_{i,j} \theta_{ij}(x_{i}, x_{j})$$



Undirected graphical model

This is the focus of machine Learning 1 and 2

Why is computer vision interesting (to you)?

- It is a challenging problem that is far from being solved
- It combines insights and tools from many fields and disciplines:
 - Mathematics and statistics
 - Cognition and perception
 - Engineering (signal processing)
 - Computer science

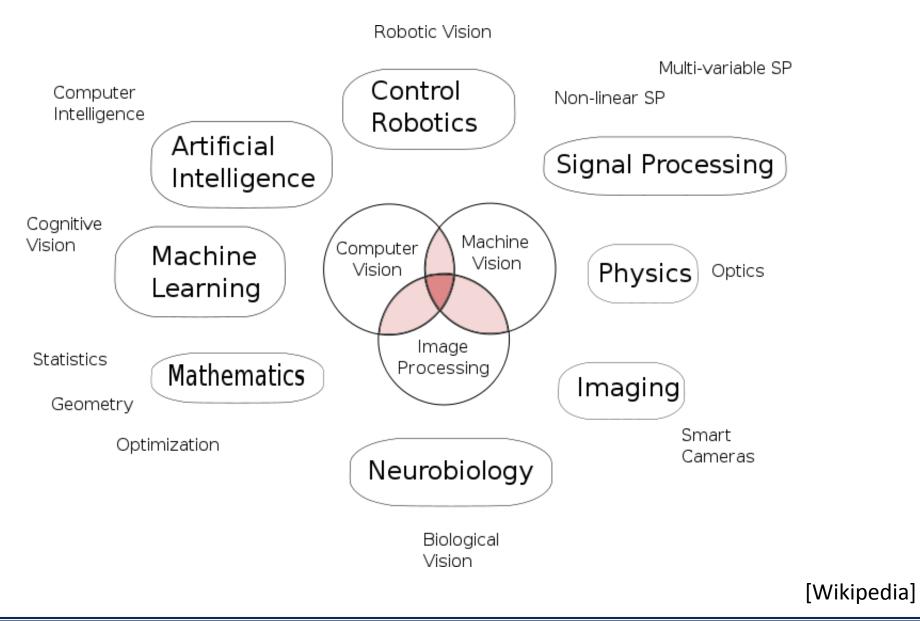
Why is computer vision interesting (to you)?

• Allows you to apply theoretical skills

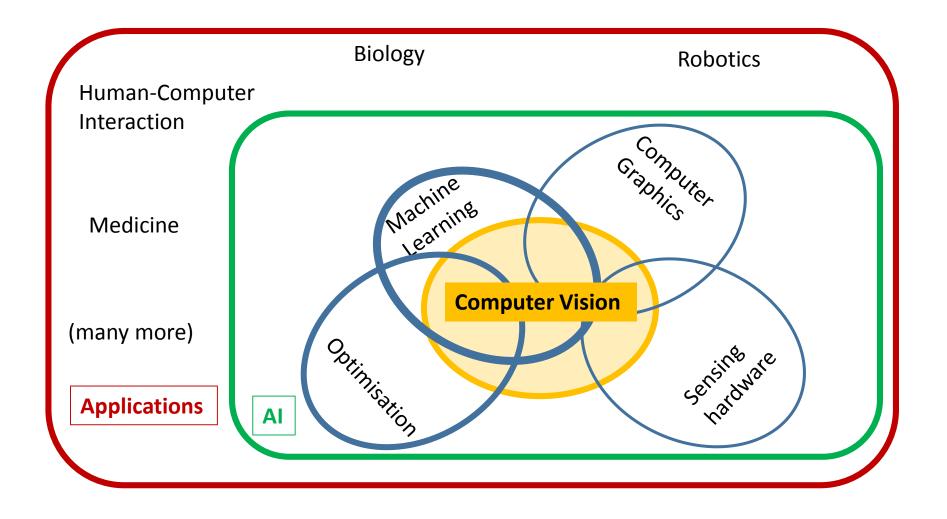
... that you may otherwise only use rarely

- Quite rewarding:
 - Often visually intuitive and encouraging results
- It is a growing field:
 - Cameras are becoming more and more popular
 - There are a lot of companies (big, small, start-up) working in vision
 - Conferences are growing rapidly
 - Deep Learning has revolutionised the field

Relationship to other fields



Relationship to other fields – my personal view



Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
 - Linear filtering
 - Non-linear filtering
- Edges detection (ch. 4.2)
- Interest Point detection (ch. 4.1.1)

What is an Image

• We can think of the image as a function:

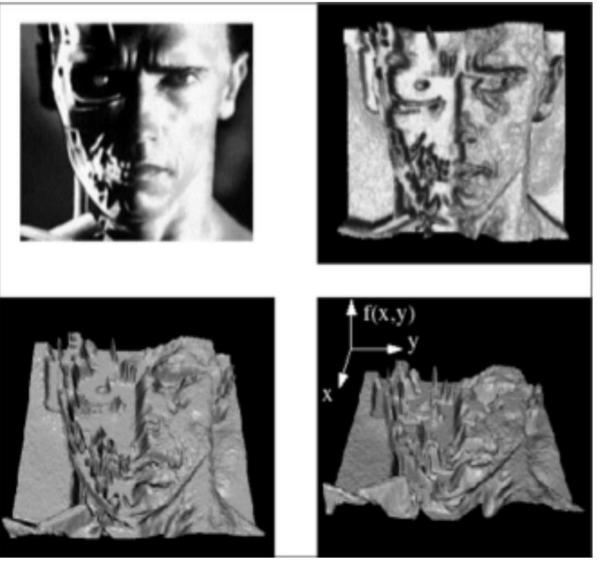
 $I(x, y), \qquad I: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

- For every 2D point (pixel) it tells us the amount of light it receives
- The size and range of the sensor is limited: $I(x, y), \quad I: [a, b] \times [c, d] \rightarrow [0, m]$
- Colour image is then a vector-valued function:

$$I(x,y) = \begin{pmatrix} I_R(x,y) \\ I_G(x,y) \\ I_B(x,y) \end{pmatrix}, \qquad I: [a,b] \times [c,d] \to [0,m]^3$$

 Comment, in most lectures we deal with grey-valued images and extension to colour is "obvious"

Images as functions

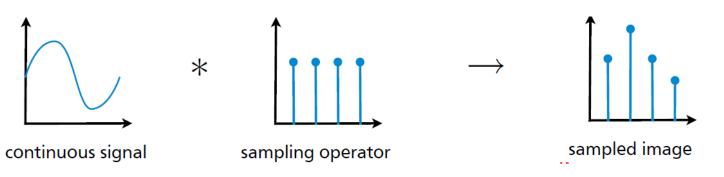


[from Steve Seitz]

Computer Vision I: Basics of Image Processing

Digital Images

- We usually do not work with spatially continuous functions, since our cameras do not sense in this way.
- Instead we use (spatially) discrete images
- Sample the 2D domain on a regular grid (1D version)

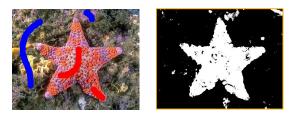


Intensity/color values usually also discrete.
 Quantize the values per channel
 (e.g. 8 bit per channel)

		x =	50	co	~	62	62	~			67	co	~~	70	74	70
		58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
y =	41	210	209	204	202	197	247	143	71	64	80	84	54	54	57	58
	42	206	196	203	197	195	210	207	56	63	58	53	53	61	62	51
	43	201	207	192	201	198	213	156	69	65	57	55	52	53	60	50
	44	216	206	211	193	202	207	208	57	69	60	55	77	49	62	61
	45	221	206	211	194	196	197	220	56	63	60	55	46	97	58	106
	46	209	214	224	199	194	193	204	173	64	60	59	51	62	56	48
	47	204	212	213	208	191	190	191	214	60	62	66	76	51	49	55
	48	214	215	215	207	208	180	172	188	69	72	55	49	56	52	56
	49	209	205	214	205	204	196	187	196	86	62	66	87	57	60	48
	50	208	209	205	203	202	186	174	185	149	71	63	55	55	45	56
	51	207	210	211	199	217	194	183	177	209	90	62	64	52	93	52
	52	208	205	209	209	197	194	183	187	187	239	58	68	61	51	56
	53	204	206	203	209	195	203	188	185	183	221	75	61	58	60	60
	54	200	203	199	236	188	197	183	190	183	196	122	63	58	64	66
	55	205	210	202	203	199	197	196	181	173	186	105	62	57	64	63

Comment on Continuous Domain / Range

- There is a branch of computer vision research ("variational methods"), which operates on continuous domain for input images and output results
- Continuous domain methods are typically used for physics-based vision: segmentation, optical flow, etc.



• In this lecture and other lectures we mainly operate in discrete domain and discrete or continuous range for output results

Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
 - Linear filtering
 - Non-linear filtering
- Edges detection (ch. 4.2)
- Interest Point detection (ch. 4.1.1)

Point operators

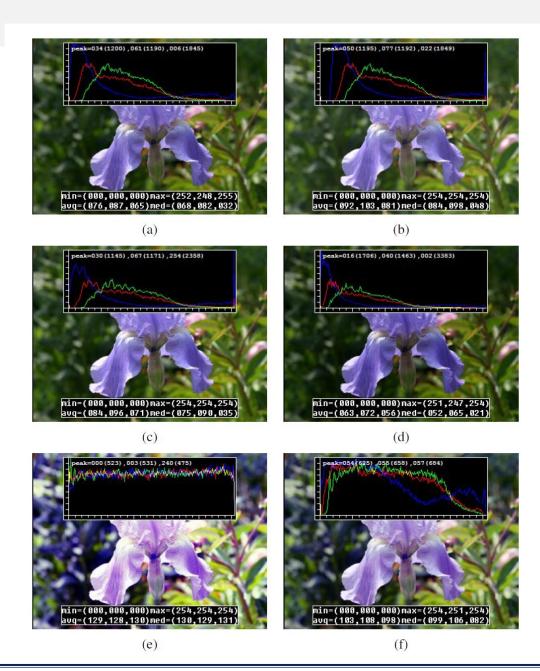
• Point operators work on every pixel independently: J(x, y) = h(I(x, y))

- Examples for *h*:
 - Control contrast and brightness; $h(z) = az^b + c$

original

Contrast enhanced

Example



Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
 - Linear filtering
 - Non-linear filtering
- Edges detection (ch. 4.2)
- Interest Point detection (ch. 4.1.1)

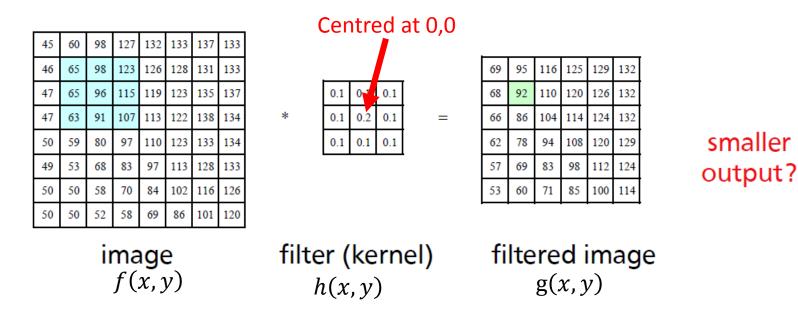
Linear Filters / Operators

- Properties:
 - Homogeneity: T[aX] = aT[X]
 - Additivity: T[X + Y] = T[X] + T[Y]
 - Superposition: T[aX + bY] = aT[X] + bT[Y]
- Example:
 - Convolution
 - Matrix-Vector operations

Convolution

- Replace each pixel by a linear combination of its neighbours and itself
- 2D convolution (discrete)

$$g = f * h$$



 $g(x,y) = \sum_{k,l} f(x-k,y-l)h(k,l)$ "the image f is implicitly mirrored"

Convolution - Properties

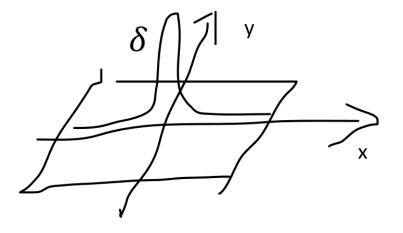
- Linear $h * (f_0 + f_1) = h * f_0 + h * f_1$
- Associative (f * g) * h = f * (g * h)
- Commutative f * h = h * f
- Can be written in Matrix form: g = H f
- Correlation (not mirrored filter):

$$g(x,y) = \sum_{k,l} f(x+k,y+l)h(k,l)$$

72	88	62	52	37	*	$^{1/_{4}}$	$^{1/2}$	1/4	4 ⇔	
		Г	0	1			-		70	1
			2	T		•			12	L
			1	2	1				88	
		$\frac{1}{4}$		1	2	1	•		62	
					1	2	1		72 88 62 52 37	
		L				1	2		37	

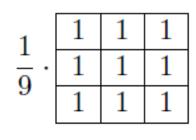
Examples

• Impulse function: $f = f * \delta$



Original Image

• Box Filter:



Box-filtered image

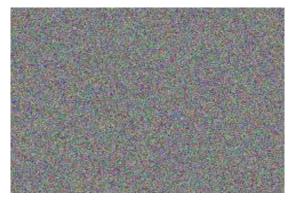
Application: Noise removal

- Noise is what we are not interested in: sensor noise (Gaussian, shot noise), quantisation artefacts, etc
- Typical assumption is that the noise is not correlated between pixels
- Basic Idea: neighbouring pixel contain information about intensity

2	3	3		2	3	3
3	20	2	\rightarrow	3	3	2
3	2	3		3	2	3

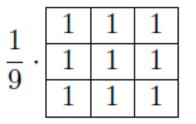
The box filter does noise removal

• Box filter takes the mean in a neighbourhood



Noise

Pixel-independent Gaussian noise added

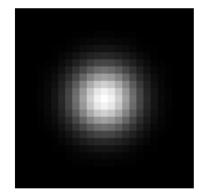


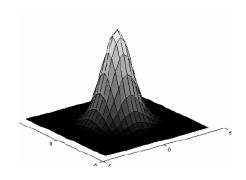
Filtered Image

Gaussian (Smoothing) Filters

- Nearby pixels are weighted more than distant pixels
- Isotropic Gaussian (rotational symmetric)

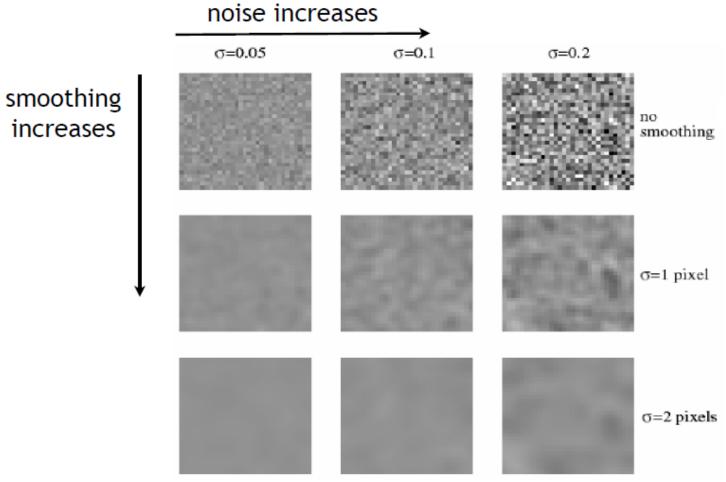
$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$





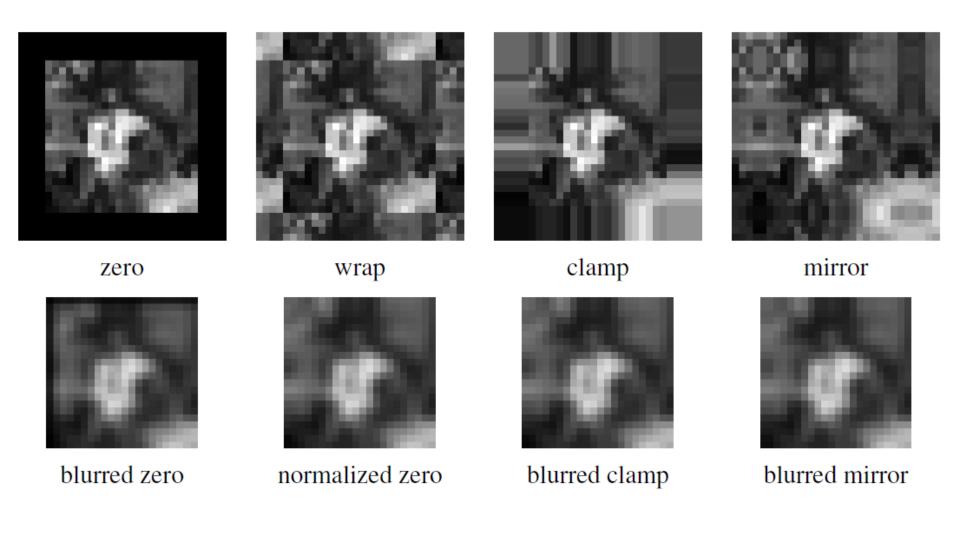
Gaussian Filter

Input: constant grey-value image



More noise needs larger sigma

Handling the Boundary (Padding)

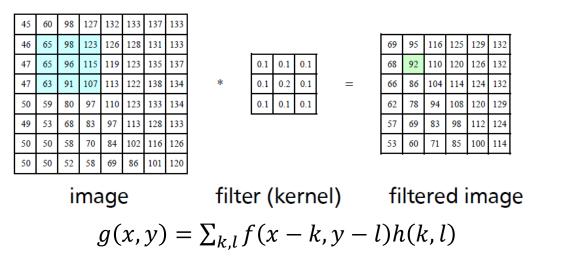


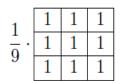
How to compute convolution efficiently?

- Separable filters (next)
- Fourier transformation
- Integral Image trick (see exercise)

Important for later (integral Image trick):

- Naive implementation would be O(Nw) where w is the number of elements in box filter
- The Box filter (and a few others) can be computed in O(N)

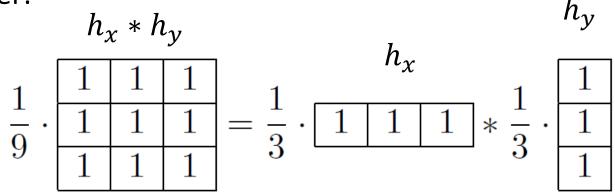




Separable filters

For some filters we have: $f * h = f * (h_x * h_y)$ Where h_x , h_y are 1D filters.

Example Box filter:



Now we can do two 1D convolutions:

$$f * h = f * (h_x * h_y) = (f * h_x) * h_y$$

Naïve implementation for 3x3 filter: 9N operations versus 3N+3N operations

Can any filter be made separable?

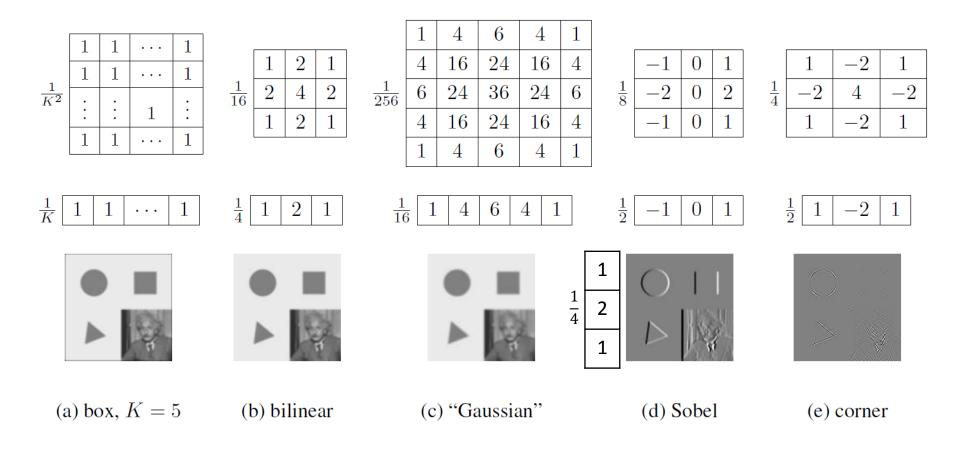


Apply SVD to the kernel matrix:

$$\begin{aligned} \boldsymbol{A} &= \left[\begin{array}{c} u_0 \\ w_0 \\ w_{p-1} \end{array} \right] \left[\begin{array}{c} \sigma_0 \\ \ddots \\ \sigma_{p-1} \end{array} \right] \left[\begin{array}{c} \frac{v_0^T}{\cdots} \\ \frac{v_0^T}{v_{p-1}} \end{array} \right] \\ &= \sum_{j=0}^{p-1} \sigma_j u_j v_j^T, \end{aligned}$$

If all σ_i are 0 (apart from σ_0) then it is separable.

Example of separable filters



Computer Vision I: Basics of Image Processing

28/10/2015 90