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Admin Stuff
• Language: German/English; Slides: English 

(all the terminology and books are in English)

• Lecturer: Carsten Rother (Eric Brachmann, Anita Sellent)

• Exercises: Dmitri Schlesinger, Eric Brachmann 

• Staff Email: dmytro.shlezinger@tu-dresden.de

• Announcements: on our webpage

• Course Books: 
• Image Processing/Geometry: 

Computer Vision: Algorithms and Applications 
by Rick Szeliski; Springer 2011. An earlier version of the book is online: 
http://szeliski.org/Book/

• Geometry: 
Multiple View Geometry; Hartley and Zisserman; 
Cambridge Press 2004. Second edition. Parts of book are online: 
http://www.robots.ox.ac.uk/~vgg/hzbook/

• Also pointers to conference and journal articles    
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Course Overview (total 14 lectures)

Lecture 1 (23.10): Introduction & Filtering
Ex1: Intro to OpenCV

Lecture 2 (30.10): Filtering and Feature detection
Ex2: Intro to exercise: Filtering 

Lecture 3 (6.11): Image Matching and Projective Geometry
Ex3: homework 

Lecture 4 (13.11): Geometry of One and Two Images
Ex4: homework 

Lecture 5 (20.11): Robust Geometry Estimation
Ex5: Intro to exercise: Panoramic Stitching (Geometry)

Lecture 6 (27.11): Multi-View 3D Reconstruction
Ex6: homework

Lecture 7 (4.12): Object Pose estimation 
Ex7: homework 
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Course Overview (total 14 lectures)
Lecture 8 (11.12): Tracking – Part 1
Ex8: Intro to exercise: Object Pose Estimation 

Lecture 9 (18.12): Tracking – Part 2
Ex9: homework

Lecture 10 (8.1): Dense Matching  – Optical Flow
Ex10: homework

Lecture 11 (15.1): Dense Matching  – Stereo Part 1
Ex11: homework

Lecture 12 (22.1): Dense Matching  – Stereo Part 2
Ex12: homework 

Lecture 13 (29.1): Dense Matching – Scene Flow
Ex13: Prepare Poster Session

Lecture 14 (5.2): Poster Session
Ex14: homework
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Exams and Exercises
• Exam: in Person

• Exercises/homework: 
• There are three blocks
• In each block you have to do a certain amount of exercises
• The exercises should to be handed in until end of semester (ideally 

after each block)

• Exam:
• Exercises are not mandatory, i.e. you can sit the exam without 

having done the exercises
• In the exam I may ask questions about the exact exercise you have 

done. If you have not done any exercise then this may result in a 
worse mark
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CVLD Lectures
• WS 15/16

• Computer Vision 1 (2+2) 

• Machine Learning 1 (2+2)

• SS 16

• Computer Vision 2 (2+2)

• Machine Learning 2 (2+2)

• Image Processing (1+1)

• For doing a Master/PhD in the CVLD one should do the 
computer vision or machine learning track

• Computer graphics (Prof. Gumhold) (Introduction, I, II) 
3D Scanning with structured light; Illumination models; Geometry
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Before we start … some Advertisement
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Future in Computer Vision

A project work in the CVLD is a good stepping stone if you:

• want to do a PhD in computer vision, graphics, machine learning

• Becoming a researcher or software developer in a research lab 
(Microsoft Research, Daimler, Google, Adobe, TechniColor, etc)

• If you are interested in doing a start-up

• Other “computer vision related” industry
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Introduction to Computer Vision

What is computer Vision?
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(Potential) Definition:
Developing computational models and algorithms
to interpret digital images and visual data in order 
to understand the visual world we live in.



Introduction to Computer Vision

What is computer Vision?
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(Potential) Definition:
Developing computational models and algorithms
to interpret digital images and visual data in order 
to understand the visual world we live in.



What does it mean to “understand”?
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Physics-based vision: 
Geometry 
Segmentation
Camera parameters
Emitted light (sun)
Surface properties: Reflectance, 
material

Semantic-based vision:
Objects: class, pose
Scene: outdoor,…
Attributes/Properties: 

- old-fashioned train 
- A-on-top-of-B

(Potential) Definition:

Developing computational models and algorithms to 
interpret digital images and visual data in order to 
understand the visual world we live in.



Image-formation model
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[Slide Credits:  John Winn, ICML 2008]

Image

Very many 

sources of 

variability



Image-formation model
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[Slide Credits:  John Winn, ICML 2008]

Scene type

Scene geometry

Street scene



Image-formation model
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[Slide Credits:  John Winn, ICML 2008]
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Image-formation model
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[Slide Credits:  John Winn, ICML 2008]

Street scene

Sky

Building×3

Road

Sidewalk

Tree×3

Person×4

Bicycle

Car×5

Bench

Bollard

Scene type

Scene geometry

Object classes

Object position

Object orientation



Image-formation model
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[Slide Credits:  John Winn, ICML 2008]
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Image-formation model

28/10/2015Computer Vision I: Introduction 17

[Slide Credits:  John Winn, ICML 2008]
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Image-formation model
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[Slide Credits:  John Winn, ICML 2008]
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Image-formation model
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Image-formation model

28/10/2015Computer Vision I: Introduction 20

[Slide Credits:  John Winn, ICML 2008]
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Image-formation model
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[Slide Credits:  John Winn, ICML 2008]
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Image-formation model
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[Slide Credits:  John Winn, ICML 2008]
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The “Scene Parsing” challenge ---
a “grand challenge” of computer vision
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(Probabilistic) Script = {Camera, 
Light, Geometry, Material, Objects, 
Scene,  Attributes, Others}

Many applications do not have to extract the full probabilistic 
script but only a subset, e.g. “does the image contain a car?” 

… many examples to come later

Single image



Why is “scene parsing” hard?
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Computer Vision

Computer Graphics

3D Rich Representation, 

2D pixel representation

Computer Vision can be seen as “inverse graphics”

Script = {Camera, Light, 
Geometry, Material, Objects, 
Scene,  Attributes, Others}



Example of a recent work
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[Gupta, Efros, Herbert, ECCV ‘10]



Why is “scene parsing” hard?
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[Sussman, Lamport, Guzman 1966]

[Slide credits Andrew Blake]

[Xiao et al.  NIPS 2012]



Introduction to Computer Vision

What is computer Vision?
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(Potential) Definition:
Developing computational models and algorithms
to interpret digital images and visual data in order 
to understand the visual world we live in.



How can we interpret visual data?
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• What general (prior) knowledge of the world 
(not necessarily visual) can be exploit?

• What properties / cues from the image can be used?

2D pixel representation

3D Rich Representation, 

Both aspects are quite well understood (a lot is based on physics) … 
but how to use them is efficiently is open challenged (see later)

Computer Graphics

Computer Vision

Script = {Camera, Light, Geometry, 
Material, Objects, Scene,  
Attributes, Others}



How can we interpret visual data?
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• What general (prior) knowledge of the world 
(not necessarily visual) can be exploit?

• What properties / cues from the image can be used?

2D pixel representation

3D Rich Representation, 

Both aspects are quite well understood (a lot is based on physics) … 
but how to use them is efficiently is open challenged (see later)

Computer Graphics

Computer Vision

Script = {Camera, Light, Geometry, 
Material, Objects, Scene,  
Attributes, Others}



Prior knowledge (examples)

• “Hard” prior knowledge

• Trains do not fly in the air

• Objects are connected in 3D

• “Soft” prior knowledge:

• The camera is more likely 1.70m above ground 
and not 0.1m.

• Self-similarity: “all black pixels belong to the same object”  
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Prior knowledge – harder to describe

• Describe Image Texture

• Microscopic Images. What is the true shape of these objects
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Not a real Image zoomReal Image zoom



The importance of Prior knowledge
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[Edward Adelson]

Which patch is brighter: A or B?



The importance of Prior knowledge
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[Edward Adelson]

Which patch is brighter: A or B?



The importance of Prior knowledge
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Direct 
Light

The most likely
3D representation 

2D Image - local

What the 
computer sees

This is what humans see 
implicitly. Ideally the computer 
sees the sane.

True colours
In 3D world

A

B

A

B

Ambient 
Light

An unlikely 
3D representation

(hard to see for a human) 

2D 3D 3D

True colors
in 3D world

A

B



The importance of Prior knowledge
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2D Image

Light

3D representation 

Humans see an image not as a set of 2D pixels. They understand an 
image as a projection of the 3D world we live in.

Humans have the prior knowledge about the world encoded, such as:
• Light cast shadows
• Objects do not fly in the air
• A car is likely to move but a table is unlikely to move 

We have to teach the computer this prior knowledge to understand 
2D images as picture of the 3D world



The importance of Prior knowledge
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Which monster is bigger?



The importance of Prior knowledge
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Which monster is bigger?

In the 2D Image

In the 3D world (true)

1meter 2meter



Human Vision can be fooled
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How can we interpret visual data?
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• What general (prior) knowledge of the world 
(not necessarily visual) can be exploit?

• What properties / cues from the image can be used?

2D pixel representation

3D Rich Representation, 

Both aspects are quite well understood (a lot is based on physics) … 
but how to use them is efficiently is open challenged (see later)

Computer Graphics

Computer Vision

Script = {Camera, Light, Geometry, 
Material, Objects, Scene,  
Attributes, Others}



Cue: Appearance (Colour, Texture) 
for object recognition
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To what object does the patch belong to ?



Cue: Outlines (shape) for object recognition
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Guess the Object
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 Colour

 Texture  Shape

[from JohnWinn ICML 2008]



Cue: Context for object recognition
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Cue: Context for object recognition
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Cue: Multiple Frames for geometry estimation
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Cue: Shading & shadows for geometry and Light estimation
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Texture gradient for geometry estimation
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The “Scene Parsing” challenge ---
a “grand challenge” of computer vision
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(Probabilistic) Script = {Camera, 
Light, Geometry, Material, Objects, 
Scene,  Attributes, Others}

Many applications do not have to extract the full probabilistic 
script but only a subset, e.g. “does the image contain a car?” 

… many examples to come later

Single image



To simplify/tackle the problem:

1) Richer Input:
Modern sensing technology; Video; 
Cameras everywhere

2) Rich Models: Deep Learning

3) Lots of Data to learn from: 
search engines; crowdsourcing;
graphics engines

4) For many practical applications:
We do not have to infer the full probabilistic script

Many application scenarios are in reach 
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Kinect has simplified computer vision

28/10/2015Computer Vision I: Introduction 50

[Izadi et al.  ´11]



Animate the world
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[Chen et al. UIST ‘12]



Kinect Body tracking and  Gesture Recognition

28/10/2015Computer Vision I: Introduction 52

Very large impact in many field: Gaming, Robotics, HCI, Medicine, …

Start-Up 2012: Try Fashion online



Kinect Body Pose estimation and tracking
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Real-time pedestrian detection 
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Daimler Research Lab



Object recognition – ImageNet
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What’s in the image (1000 classes)

A
cc

u
ra

cy



Start-up Company: Like.com
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Interactive Image manipulation
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[Agrawal et al ’04]



Image de-convolution
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Input Output kernel

[Schmidt, Rother, Nowozin, Jancsary, 
Roth 2013] Best Student Paper award

input output



Video Editing
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[Rav-Acha et al. ‘08]



Industry
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Pirates of the Caribbean, 
Industrial Light and Magic

AutoCollage 2008 - Microsoft Research   
[Rother et al. Siggraph 2006]

Robotics



Introduction to Computer Vision

What is computer Vision?
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(Potential) Definition:
Developing computational models and algorithms
to interpret digital images and visual data in order 
to understand the visual world we live in.



Model versus Algorithm
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Goal

Given z; derive binary x:

Algorithm to minimization:  𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐸(𝒙)

𝒛 = 𝑅, 𝐺, 𝐵 𝑛 x= 0,1 𝑛

Model: Energy function 𝑬 𝒙

Example: Interactive Segmentation



Model for a starfish
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Goal: formulate 𝑬(𝒙) such that  

Optimal solution 𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐸(𝒙)

𝑬 𝒙 = 0.01 𝑬 𝒙 = 0.05 𝑬 𝒙 = 0.05 𝑬 𝒙 = 0.1



How does the energy looks like?
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Energy function (sum of local terms): 

𝑬(𝒙) = 

𝑖

𝜃𝑖 𝑥𝑖 + 

𝑖,𝑗

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

Undirected graphical model

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

“pairwise terms”

𝑥𝑗

𝜃𝑖(𝑥𝑖)
“unary terms”

𝑥𝑖

This is the focus of machine Learning 1 and 2



Why is computer vision interesting (to you)?

• It is a challenging problem that is far from being solved

• It combines insights and tools from many fields and disciplines:

• Mathematics and statistics

• Cognition and perception

• Engineering (signal processing)

• Computer science
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Why is computer vision interesting (to you)?

• Allows you to apply theoretical skills

... that you may otherwise only use rarely

• Quite rewarding:

• Often visually intuitive and encouraging results

• It is a growing field:

• Cameras are becoming more and more popular

• There are a lot of companies (big, small, start-up) working in 
vision

• Conferences are growing rapidly

• Deep Learning has revolutionised the field
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Relationship to other fields
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[Wikipedia]



Relationship to other fields – my personal view
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Biology Robotics

AI

(many more)

Human-Computer 
Interaction

Applications

Medicine

Computer Vision



Roadmap: Basics of Digital Image Processing 

• What is an Image?

• Point operators (ch. 3.1)

• Filtering: (ch. 3.2, ch 3.3, ch. 3.4)

• Linear filtering

• Non-linear filtering

• Edges detection (ch. 4.2)

• Interest Point detection (ch. 4.1.1)
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What is an Image

• We can think of the image as a function:
𝐼 𝑥, 𝑦 , 𝐼: ∗ × ∗ →∗

• For every 2D point (pixel) it tells us the amount of light it 
receives

• The size and range of the sensor is limited:
𝐼 𝑥, 𝑦 , 𝐼: 𝑎, 𝑏 × 𝑐, 𝑑 → [0,𝑚]

• Colour image is then a vector-valued function:

𝐼 𝑥, 𝑦 =

𝐼𝑅 𝑥, 𝑦

𝐼𝐺 𝑥, 𝑦

𝐼𝐵 𝑥, 𝑦

, 𝐼: 𝑎, 𝑏 × 𝑐, 𝑑 → 0,𝑚 3

• Comment, in most lectures we deal with grey-valued images 
and extension to colour is “obvious”
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Images as functions
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[from Steve Seitz]

Computer Vision I: Basics of Image Processing



Digital Images

• We usually do not work with spatially continuous functions, since 
our cameras do not sense in this way.

• Instead we use (spatially) discrete images

• Sample the 2D domain on a regular grid (1D version)

• Intensity/color values usually also discrete. 
Quantize the values per channel 
(e.g. 8 bit per channel)
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Comment on Continuous Domain / Range
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• There is a branch of computer vision research (“variational
methods”), which operates on continuous domain for input 
images and output results

• Continuous domain methods are typically used for physics-based 
vision: segmentation, optical flow, etc.  

• In this lecture and other lectures we mainly operate in discrete 
domain and discrete or continuous range for output results

Computer Vision I: Basics of Image Processing



Roadmap: Basics of Digital Image Processing 

• What is an Image?

• Point operators (ch. 3.1)

• Filtering: (ch. 3.2, ch 3.3, ch. 3.4)

• Linear filtering

• Non-linear filtering

• Edges detection (ch. 4.2)

• Interest Point detection (ch. 4.1.1)
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Point operators

• Point operators work on every pixel independently:
𝐽 𝑥, 𝑦 = ℎ 𝐼 𝑥, 𝑦

• Examples for ℎ:

• Control contrast and brightness; ℎ(𝑧) = 𝑎𝑧𝑏 + 𝑐
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Contrast enhancedoriginal

Computer Vision I: Basics of Image Processing



Example
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Roadmap: Basics of Digital Image Processing 

• What is an Image?

• Point operators (ch. 3.1)

• Filtering: (ch. 3.2, ch 3.3, ch. 3.4)

• Linear filtering

• Non-linear filtering

• Edges detection (ch. 4.2)

• Interest Point detection (ch. 4.1.1)
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Linear Filters / Operators

• Properties:

• Homogeneity:   𝑇[𝑎𝑋] = 𝑎𝑇[𝑋]

• Additivity: 𝑇[𝑋 + 𝑌] = 𝑇[𝑋] + 𝑇[𝑌]

• Superposition: 𝑇[𝑎𝑋 + 𝑏𝑌] = 𝑎𝑇[𝑋] + 𝑏𝑇[𝑌]

• Example: 

• Convolution

• Matrix-Vector operations
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Convolution

• Replace each pixel by a linear combination of its neighbours and 
itself

• 2D convolution (discrete)

𝑔 = 𝑓 ∗ ℎ
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𝑔 𝑥, 𝑦 =  𝑘,𝑙 𝑓 𝑥 − 𝑘, 𝑦 − 𝑙 ℎ 𝑘, 𝑙

𝑓 𝑥, 𝑦 ℎ 𝑥, 𝑦 g 𝑥, 𝑦

Centred at 0,0

“the image f is implicitly mirrored” 
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Convolution - Properties
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• Linear  ℎ ∗ 𝑓0 + 𝑓1 = ℎ ∗ 𝑓0 + ℎ ∗ 𝑓1

• Associative 𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ 𝑔 ∗ ℎ

• Commutative  𝑓 ∗ ℎ = ℎ ∗ 𝑓

• Can be written in Matrix form: 𝑔 = 𝐻 𝑓

• Correlation (not mirrored filter):

𝑔 𝑥, 𝑦 = 

𝑘,𝑙

𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 ℎ 𝑘, 𝑙
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Examples
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• Impulse function: 𝑓 = 𝑓 ∗ 𝛿

• Box Filter:

Computer Vision I: Basics of Image Processing



Application: Noise removal

• Noise is what we are not interested in:
sensor noise (Gaussian, shot noise), quantisation artefacts, etc

• Typical assumption is that the noise is not correlated between 
pixels

• Basic Idea: neighbouring pixel contain information about intensity
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The box filter does noise removal 

• Box filter takes the mean in a neighbourhood
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Filtered Image

Image 
Pixel-independent 
Gaussian noise added

Noise
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Gaussian (Smoothing) Filters

• Nearby pixels are weighted more than distant pixels

• Isotropic Gaussian (rotational symmetric)
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Gaussian Filter
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Input: constant grey-value image

More noise needs larger sigma

Computer Vision I: Basics of Image Processing



Handling the Boundary (Padding)

28/10/2015 86Computer Vision I: Basics of Image Processing



How to compute convolution efficiently?

• Separable filters  (next)

• Fourier transformation 

• Integral Image trick (see exercise)
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Important for later (integral Image trick):
• Naive implementation would be 𝑂(𝑁𝑤)

where 𝑤 is the number of elements in box filter
• The Box filter (and a few others)  can be computed in 𝑂(𝑁)

𝑔 𝑥, 𝑦 =  𝑘,𝑙 𝑓 𝑥 − 𝑘, 𝑦 − 𝑙 ℎ 𝑘, 𝑙

Computer Vision I: Basics of Image Processing



Separable filters

28/10/2015 88

For some filters we have:   𝑓 ∗ ℎ = 𝑓 ∗ (ℎ𝑥 ∗ ℎ𝑦)

Where ℎ𝑥, ℎ𝑦 are 1D filters. 

Example Box filter:

Now we can do two 1D convolutions:   
𝑓 ∗ ℎ = 𝑓 ∗ ℎ𝑥 ∗ ℎ𝑦 = (𝑓 ∗ ℎ𝑥) ∗ ℎ𝑦

Naïve implementation for 3x3 filter: 9N operations versus 3N+3N operations  

ℎ𝑥 ∗ ℎ𝑦
ℎ𝑥

ℎ𝑦
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Can any filter be made separable?
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Apply SVD to the kernel matrix:

If all 𝜎𝑖 are 0 (apart from 𝜎0) then it is separable. 

Note:

ℎ𝑥 ∗ ℎ𝑦
ℎ𝑥

ℎ𝑥ℎ𝑦
ℎ𝑦
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Example of separable filters
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1

2

1

1

4
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