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A Stereo Vision System
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Improvising Stereo Cameras
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Video Cameras

7

x

y t

• 25-30 frames per second
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Temporal Sampling
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• Images

• Time



Applications

• Frame Interpolation

• Compression

• Video stabilization

• Inpainting

• Superresolution

• Pedestrian recognition

• …
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Optical Flow Estimation in Computer Vision

• Input: at least 2 frames

• Wanted: dense motion field

• Most general setup: multiple moving objects, 
unknown camera
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Optical Flow Estimation: Assumption I
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• The color of a pixel does not change between frames
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What is the Optical Flow of this Object?
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• Perfect sphere undergoing 3D rotation

• Material reflects equally in all directions 
( Lambertian )

1: 2D projection of the motion

2: static

4: don't know

3: random
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What is the Optical Flow of this Object?
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• Perfect sphere, static

• Material reflects equally in all directions 
( Lambertian )

• Lightsource moves

• 2D motion field

• Optical flow field



What is the Optical Flow of this Object?
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• Many objects have at least some texture

• Often, texture dominates the effects of light



Optical Flow Assumption I
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• The color of a pixel does not change between frames

Image domain

Image sequence

Optical Flow

Ω⊂ℝ
2

I :Ω×ℝ
+
→ℝ

+ ,( x , y , t)→ I (x , y , t)
u⃗ :Ω×ℝ

+
→ℝ

2 ,(x , y ,t )→u(x , y , t)

I (x , y ,0)≈ I (x+u (x , y ,0) , y+v (x , y ,0) ,1)



Optical Flow Assumption II(a)
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• Neighbouring scene points belong to the same 
surface

• Neighbouring pixels move in similar directions

u( x , y )≈u(x+ϵx , y+ϵ y)



Consider Image Patches
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• Assume an entire image patch moves with constant 
motion

• Minimize brightness difference for a patch

 

 



Bloch Matching in 2D
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• For each pixel
– For each possible 2D motion ( in a range )

● Compare image patches
● Greedy pointwise optimization



Discretization in 2D
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Optical Flow as Optimization Problem
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Optical Flow as Optimization Problem
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• Non-linear function

• Non-convex function

 

 

 



Linearize the Image Function
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Linearize the Image Function
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Linearize the Image Function
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• The approximation is a convex function of the motion 
u and v.  ( we will see how to optimize this shortly )

• It holds only for small motions.

• Practically, image derivatives are approximated by 
finite differences.



Optical Flow Constraint Equation
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The Aperture Problem
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• Given a patch, the motion can only be estimated 
perpendicular to the image gradient



The Aperture Problem
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• Given a patch, the motion can only be estimated 
perpendicular to the image gradient



Optimization
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Optimization
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Differentiate with respect to u and v.

Set to zero.



Optimization

1/29/16 Lecture : Optical Flow 30

Symmetric positive definite 2x2 matrix
“structure tensor”



Lucas Kanade Optical Flow
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• A classic optical flow technique:

  B.D. Lucas and T. Kanade: An iterative image 
registration technique
  with an application to stereo vision. IJCA, pp. 674-679, 
1981



SSD Surface – Textured Area

1/29/16 Lecture : Optical Flow 32



SSD Surface – Single Edge
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SSD Surface – Homogeneous Areas
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Dealing with Large Motions

• The linearization with Taylor approximation is only 
valid for small motions!

• Remember the title of the Lucas-Kanade paper:

   B.D. Lucas and T. Kanade: An iterative image 
registration technique
  with an application to stereo vision. IJCA, pp. 674-679, 
1981

• Two workarounds ( use both ):
• Iterative estimation
• Coarse-to-fine estimation
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Iterative Optical Flow Estimation

• Warp the image with the previous estimate

• Use e.g. bilinear interpolation
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Applying Previous Flow Estimates

• Compute initial flow estimate
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The First Frame
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The Second Frame
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The Second Frame Warped
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The First Frame
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Incremental Flow From Warped Image Pair
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Always warp the original image with the sum of 
the computed flows! 



The Gaussian Image Pyramid
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Example: Downscaling

Original Size: 
1344x1024 pixel

Downsample (factor 10)

Downscale (factor 10)



Example: Downscaling

Downscale

Downsample



Last Semester: Discrete Sampling

Input Image:
Sufficiently 
resolved by 
optics

Nyquist Sampling:
At least 2 
samples per 
cycle

Aliasing:
Too little 
samples for 
correct 
reconstruction
!

Discrete Sampling



Last Semester: Discrete Sampling

Input Image:
Sufficiently 
resolved by 
optics

Nyquist Sampling:
At least 2 
samples per 
cycle

Aliasing:
Too little 
samples for 
correct 
reconstruction
!

Discrete Sampling



Discrete Sampling

Input Image:
Sufficiently 
resolved by 
optics

Nyquist Sampling:
At least 2 
samples per 
cycle

Aliasing:
Too little 
samples for 
correct 
reconstruction!



Anti-Aliasing

• Remove fine structures via blurring

Blur Down-

sample



Pyramid Lucas-Kanade Algorithm

• For each level of the image pyramid
• Generate image of appropriate resolution
• For a number of iterations

• Warp second image with current flow estimate 
backwards

• For each pixel 
• Assume constant motion on region
• Assume small motion update for linearization
• Solve 2x2 equation system for motion vector
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Is that a good result?

• Maybe not…

• The window is too big
• Discontinuities are smoothed over

• The window is too small
• In some areas the flow is bad because there is not 

enough image information in the window
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Revisiting the Assumptions

• Brightness constancy assumption
• SSD error as objective

• The motion within a patch is constant
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Optical Flow Assumption II(b)
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• Neighbouring scene points belong to the same 
surface

• Neighbouring pixels move in similar directions

∇ u(x , y )≈0



Optical Flow as Optimization Problem II

• Horn and Schunck formulated the problem as a 
global energy term

• B.K.P. Horn and B.G. Schunck. Determining optical 
flow. Artificial Intelligence, 17(1-3):185-203, 1981
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The brightness difference between pixels

Regularization 
parameter

Gradient magnitude 
of the horizontal flow



Variational Calculus

A functional of the form

Is minimized if f satisfies the partial differential 
equation
(Euler-Lagrange Equations )
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Variational Calculus: Our Case

• Applied to our case we have

For the PDE we thus can determine
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Horn-Schunck Iterations

• Need to solve large, but sparse system of equations

• Use your favourite solver for this system (e.g. Jacobi-
solver )
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Pyramid Horn Schunck Algorithm

• For each level of the image pyramid
• Generate image of appropriate resolution
• For a number of iterations

• Warp second image with current flow estimate 
backwards

• Assume small motion update for linearization
• For a number of iterations

• For each pixel 
• For each pixel

• Compute flow update
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Horn Schunck Results

1/29/16 Lecture : Optical Flow 59



Optical Flow Algorithms
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• Lucas Kanade algorithm
– Sum of squared differences of brightness
– Motion in a region is constant
– Linearization of the target function ( pyramid, 

warping )
– Pointwise solution

• Horn Schunck algorithm
– Sum of squared differences of brightness
– Gradient-magnitude of the motion is small
– Linearization of the target function ( pyramid, 

warping )
– Global solution



Optical Flow Algorithms: Results
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Lucas Kanade Horn Schunck

Ground Truth



Ground Truth Generation

• Use UV paint!
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Known Optical Flow Fields

• Synthetic data sets
• Sintel data set (http://sintel.is.tue.mpg.de )

• Real data sets
• Middlebury data set (http://vision.middlebury.edu/flow )
• Kitti data set ( www.cvlibs.net/dataset/kitti )
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http://sintel.is.tue.mpg.de/
http://vision.middlebury.edu/flow
http://www.cvlibs.net/dataset/kitti
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