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Roadmap: Basics of Digital Image Processing

* What is an Image?
* Point operators (ch. 3.1)

Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
* Linear filtering
* Non-linear filtering

Edges detection (ch. 4.2)
Interest Point detection (ch. 4.1.1)
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Reminder: Convolution

* Replace each pixel by a linear combination of its neighbours and

itself

e 2D convolution (discrete)
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Reminder: Application: Noise removal

* Noise is what we are not interested in:
Sensor noise (Gaussian, shot noise), quantisation artefacts, light
fluctuation, etc.

* Typical assumption is that the noise is not correlated between
pixels

* Basic Idea: neighbouring pixel contain information about intensity

213 |3 21313
312012 |—13|3]2
312 |3 31213
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Reminder: Gaussian (Smoothing) Filters

* Nearby pixels are weighted more than distant pixels

* [sotropic Gaussian (rotational symmetric)

1 2 g
e ppo (522)

§
o
[:}
]

Original Image Gaussian-filtered image  Box-filtered image
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The box filter does noise removal

* Box filter takes the mean in a neighbourhood

Noise | Pixel-independent

Image Gaussian noise added
111
1
11111 % B e
i

Filtered Image
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Derivation of the Box Filter

* y, is true gray value (color)
* x,- observed gray value (color)

* Noise model: Gaussian noise

2
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Derivation of Box Filter Comments:

1) ~ means equal up to scale |

L : (i.e. 5x ~ x)
Further assumption: independent noise ) flall? = (W)z _
(B (i.e. squared L2 norm)
p(X|)I) ~ 1;[ exp|— TZGzr | 3) |a] is norm of a

(i.e. L1 norm)

Find the most likely solution for the true signal y

Maximum-Likelihood principle (probability maximization):

. likelihood  prior
posterior

) p(x|ly) p(y)
y* = argmax, p(y|x) = argmax,

p(x)

p(x) is a constant (drop it), assume (for now) uniform prior p(y).
W t: =312
-6 pOr1) = paly) ~ [ | expl- 20

2072
a

C> the solution is trivial: y,. = x,. forall r ®

C> additional assumptions about the signal y are necessary !!!

&LD



Derivation of Box Filter

Assumption: not uniform prior p(y) but ...
in a small vicinity W (r) c D the “true” signal y- is nearly constant

Only one y, in a

Maximum-a-posteriori: window W (1)

po) ~ [ | [ expl B2l

2072
- r r’'eW(r)
For one pixel r :

% ”xr/ - yrllz
yr = argmax,, exp[— P ]

r'e W(r)

take neg. logarithm:

. | s — 12
yr = argmin,, P

Note, Log-function is monotonically
increasing hence minimum does not
change, i.e. x; < x, thenlogx; <logx,

)
-
<g§§
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Derivation of Box Filter

Let us minimize:

yi = argminy, " [, =y, I
r'e W(r)

Take derivative and set to O:

FOm = ) Il =y, |1

r’e W(r)

oF

1
:> v = i Z;z_.,,,f (the average)

!

r

factor 1/202 is irrelevant

|W | means number of
pixel in window W

|
3y, 4 (xr yr) ( 4 Xy | |yr )

Box filter is optimal under pixel-independent, Gaussian Noise
assumption and assuming that the signal is constant in a window.

)
-
<g§§
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Roadmap: Basics of Digital Image Processing

* What is an Image?
* Point operators (ch. 3.1)

Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
* Linear filtering
* Non-linear filtering

Edges detection (ch. 4.2)
Interest Point detection (ch. 4.1.1)
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Non-linear filters

* There are many different non-linear filters.
(see Image Processing in SS16)

* We only look at the Median filter, Bilateral filter
and Joint Bilateral Filter

)
-
<g:§
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Shot noise (Salt and Pepper Noise)

Gaussian
filtered

Original + shot noise
(a random number of
independent pixels have a

random value)
Mledian

‘iltered

\_O“LD Computer Vision I: Basics of Image Processing 30/10/2015 13



Another example

Mean Median

&LD
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Median Filter

Replace each pixel with the median in a neighbourhood:

6 5 6 5
20 5 » 5 5
4 6 5 4 6 5
—0 000 0 0 00 @
median

Median filter: order the values and take the middle one

* No strong smoothing effect since values are not averaged
* Very good to remove outliers (shot noise)
e Used a lot for post processing of outputs (e.g. optical flow)
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Median Filter: Derivation

Reminder, for Gaussian noise we did solve the following Maximum
Likelihood Estimation Problem:

% ”x r — Y ”2 .
Yr = argmaxy, 1—[ exp[— Tzo.zr ] — argmlnyrzllxﬂ —}’r||2 = 1/|W| Zxr/

e W(r) ) r'e W(r) r'e W(r)
p(ylx)
— 0000 0 0@ o @
median mean

Mean and median are quite Different

For Median we solve the following problem:

(see next slide)

Xy —
Yr = argmax,, 1_[ exp[—| r Zazrl ] = argmin,,_ z |%,r — y-| = Median (W (r))

r'e W(r) r'e W(r)
This is a different noise distribution than Gaussian.
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Median Filter Derivation

minimize the following:

FOw) = ) [t =yl

== 0% r'e W(r)
Problem: not differentiable ®,
—0+0+0 good news: it is convex ©
> o

Optimal solution is the median of all values
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Bilateral Filter

More sharp

v .at

Bilateral filtered

Edge over-smoothed Edge not over-smoothed

G‘?{LD Computer Vision I: Basics of Image Processing 30/10/2015 18



Bilateral Filter — in Pictures

Gaussian Filter weights Output (sketched)

Centre

pixel Noisy input

"

Bilateral Filter weights Output

(‘VLD Computer Vision |: Basics of Image Processing 30/10/2015 19



Bilateral Filter —in equations

Filters looks at: a) distance to surrounding pixels (as Gaussian)
b) Intensity of surrounding pixels

> e fh Dw(i, g, k. 1)

gli.j) = Linear combination

Zk,l w(i, g, k,[)
(i—k>+ G =0 |[fGi.j)— f(k, )\)

202 2072
Same as Gaussian filter Consider intensity

w(i, j, k.l) = exp (

Problem: computation is slow O (Nw); approximations can be done in O(N)
Comment: Guided filter is similar and can be computed exactly in O(N)

See a tutorial on: http://people.csail.mit.edu/sparis/bf_course/

Q“LD Computer Vision I: Basics of Image Processing 30/10/2015 20



Application: Bilateral Filter

Original HDR o Bilateral Filter

HDR compression (Tone mapping)

c"LD

Computer Vision I: Basics of Image Processing
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Joint Bilateral Filter

Do SR Dw(i, g,k 1)

g(?” J) Zk‘-,l ’lL-(?sgjgl'-'ﬁz)

(i = k)’ + G =0 [ fG5) = f( W)
203 2072

Same as Gaussian Consider intensity

w(i, j, k.l) = exp (—

fis the input image — which is processed

fis a guidance image — where we look for pixel similarity

G“?JLD Computer Vision I: Basics of Image Processing 30/10/2015 22



Application: Combine Flash and No-Flash

input image f Guidance imagef Joint Bilateral Filter

We don‘t care about
absolute colors

ik + G-

w(i, 7, k) = exp (

[Petschnigg et al. Siggraph ‘04]
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Reminder: Model versus Algorithm

Example: Interactive Image Segmentation

Goal

z = (R,G,B)" x = {0,1}"

Given z; derive binary x:

Model: Energy function E(x) = X.; 0;(x;) + X; ; 0;;(x;, x;)

Algorithm to minimization: x* = argmin, E(x)

Q“LD Computer Vision I: Introduction 30/10/2015 24



Filtering for Binary Segmentation
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Filtering for Binary Segmentation

0i(x;=1) .

Ratio Image 8.(x=0) ' Filtered Ratio Guidance Input Image]er
the Input Imaglelf Image (also shown user brush

strokes)

* Results are very similar: This is an
alternative to energy minimization

* This can also be done for stereo, etc.

Energy minimization
(Winner takes all Result)

[C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, Fast Cost-
Volume Filtering for Visual Correspondence and Beyond, CVPR 11]
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Roadmap: Basics of Digital Image Processing

* What is an Image?
* Point operators (ch. 3.1)

Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
* Linear filtering
* Non-linear filtering

Edges detection (ch. 4.2)
Interest Point detection (ch. 4.1.1)

)
-
<g§§
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ldealized edge types

step We focus
on this
ramp /
line or bar
roof

\_O“LD Computer Vision I: Basics of Image Processing 30/10/2015 28



What are edges ?

e Corresponds to fast changes in the image

* The magnitude of the derivative is large

Image of 2
step edges

Image of 2
ramp edges

B 8 2 B8 & BN =

E & 8 3 B B &5 88 8

2

Slice through -
the image

2 a

Slice through
the image

L L y s L L L
UEI 10 Fl 3 40 =0 Bl mn

Y
o,
ey
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What are fast changes in the image?

250

A" T
100} ‘ i ' ‘l -u:
LI

0 ! ‘ 1 Texture or many
D - edges?
Scanline 250
0 00 10 200 20 300 350 400 480 O 250 .
. “’\Il
Image | | .
mﬂUJ \w v }m‘ \ HF 7 Edges defined
oo} ! \U \ ol J } after smoothing
\

m g

Scanline 250 smoothed with Gausian

c"LD
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Edges and Derivatives

10 '
n 1 I .
' ! We will
1st derivative : T | look at this
BI |
: | Maxima of tirst mamly
ol ] : If_,,--f’”f dervative
[i1] I ) ) 1 !
2nd derivative ' )
@ | \ s |
2 - , J
2 | “zero crossings’ ,xf”T_Lf,_- —a
[ —— — - of second — | !
i} n a0 il (1} Fanl a n a0 . . |
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Ya A
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Edge filtersin 1D

%f(a:) = lim flx+h) = fl@) ~ fle+1)— f(o)

h—0 h

We can implement this as a linear filter:
Where is the

derivative computed?
Forward differences: 1/2|-1 |1 + + +

in between pixels

Central differences: 1/2 -1 0 1 o

at pixels

G“?JLD Computer Vision I: Basics of Image Processing 30/10/2015 32



Reminder: Seperable Filters

BE . 11416141
o 1 1121 4116124116 | 4 —110 1|1 1 =211
1 1 1 1
% : 16 412 5eg| 0124136246 5| =202 I =2 4 | =2
11 1121 4116124116 | 4 —1 1011 1 1 -21 1
1! ! 14641
1 1 1 1 1
| 1|1 1 711121 ol 1146 4]1 51 —1]0]1 s 1] =21
. . ;
® = o= F
W | 4
S 1
(a)box, K =5 (b) bilinear (c) “Gaussian” (d) Sobel (e) corner

This is the centralized
difference-operator
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Edge Filter in 1D: Example

Based on 1st derivative
* Smooth with Gaussian — to filter out noise

* Calculate derivative N
* Find its optima e

N
*
~
Convolution

1 | | “--I-" -.“I.-" 1 |
0 200 400 600  BOO 1000 1200 1400 1600 1800 2000

—
&
*
Qh-+;
S
Differentiation

0 200 400 600  BOO 1000 1200 1400 1600 1800 2000
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Edge Filtering in 1D

1(g f)= % x f

Derivative of Gaussian

Simplification:
(saves one operation) dx

Q'-'h
Signal

; 1 1 1 1 ; ; 1 1
a 200 400 600 800 1000 1200 1400 1600 1800 2000

d

dx

1 1 1 1 I I 1 1 1
a 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution

(_1 * ;
dx Lo

1 I P T 1 ] ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

\_OWLD Computer Vision I: Basics of Image Processing 30/10/2015
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Edge Filtering in 2D

» Derivative in x-direction: D, x (G x1) = (D, xG) %1

e in1D:

* in2D:
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Edge Filter in 2D: Example

=)

"

e y
il Is this 7, or I,
e “ Is the sign right?
o 0 X
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Edge Filter in 2D
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What is a gradient

)l 01
2 = (k0
oxr Oy

no change

change




What is a gradient

change

(

ol ol

Ox Oy

no change

)




What is a gradient

( ol 0Ol

Jxr’ Oy
small
change

large change

) — (‘lf‘mv ky)

= gradient direction is perpendicular
to edge

= gradient magnitude measures
edge strength




What is a Gradient

e the gradient is:

o ol
vi=leh)= (81” ay)

e the magnitude of the gradient is: 0
_ 2 2
V1)) = /12 + I2
e the direction of the gradient is:
0 = atan([,, I,)
G'%;’LD Computer Vision |: Basics of Image Processing 30/10/2015 42



Example — Gradient magnitude image

First smoothed with Gaussian First smoothed with
broad Gaussian

In Image Processing Lecture we look at
how to get edge chains?

(;‘QJLD Computer Vision I: Basics of Image Processing 30/10/2015 43



Half-way Slide

3 minutes break

@‘?’LD Computer Vision I: Basics of Image Processing
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Roadmap: Basics of Digital Image Processing

* What is an Image?
* Point operators (ch. 3.1)

Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
* Linear filtering
* Non-linear filtering

Edges detection (ch. 4.2)
Interest Point detection (ch. 4.1.1)

)
-
<g:§
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What region should we try to match?

We want to find a few regions where this image pair matches (applications later)

Look for a region that is unique, i.e. not ambiguous

\O“LD Computer Vision I: Basics of Image Processing 30/10/2015
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Goal: Interest Point Detection

e Goal: predict a few “interest points” in order to
remove redundant data efficiently

Should be invariant against:

a. Geometric transformation — scaling, rotation, translation,

affine transformation, projective transformation etc.

b. Color transformation — additive (lightning change),
multiplicative (contrast), linear (both), monotone etc.;

c. Discretization (e.g. spatial resolution, focus);

Q“LD Computer Vision |: Basics of Image Processing

30/10/2015
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Points versus Lines

»Apeture problem®

&)

X
u
X;

Lines are not as good as points

VLD
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Harris Corner Detector — Basic Idea

Local measure of feature uniqueness:
Shifting the window in any direction: How does it change?

[]

“flat” region: “edge”: ‘corner’:
no change in all no change along the significant change in
directions edge direction all directions

[Szeliski and Seitz]
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Harris Corner Detector

How similar is a local window with its neighbor?

Auto-correlation function:

c(z,y, Az, Ay) = Z w(u, v) (f(u, v) — I(“—{_ﬂ‘m’ﬂ—i_&y))g
(U“.'U)EW(I?y)

W (z,y) is a small window around (z,y)

w(u, v) is a convolution kernel and used to decrease the influence of
pixels far from (z, y), e.g. with Gaussian cxp [_ (“—I);Lé“—y)z}
For simplicity we use for now w(u, v) =1,

G?JFLD Computer Vision |: Basics of Image Processing 30/10/2015 50



Harris Corner Detector

2
f_‘:(:lj! Us &11:, &fy) — Z (f(u, 'U) — I(’EL+&$3 U"‘ﬁ*\y))
(uw,v)e W (x,y)

One is interested in properties of ¢(z, y, Az, Ay) at each position (z, v)
We could evaluate c(z, y, Az, Ay) for all discrete shifts Az, Ay = +/-1.
But we would like to do smaller shifts and have a fast method.

Let us look at a linear approximation of /(u+Az, v+2A7vy), i.e. the
Taylor expansion around (u, v)

M (w., v Ol (u, v
( (‘_uf t)&iﬂ—l— (‘u, ‘t)&y + €(Ax, Ay)
Ox dy

[(u,v) + [Iz(u, v), Iy(u, v)] {
Gradient at (u, v)

I(u+Az,v+0y) = I(u,v)+

AT
AY

S

{?‘QJLD Computer Vision I: Basics of Image Processing 30/10/2015 51



Reminder: Taylor Expansion

A function f(x) is approximated by:

(n)
foo = 3 L@ oy

The approximation is most accurate at point a

10 T ]
faiiiRsEn
6 1, -

4 \ \‘,\ //[

| |

2 ‘ |

0 \\/4 \\ NN ‘ //\\
: TR

4 / \\ \

6 / ]1‘ \

8 74 \!\
10 L 1L

-10-8 6 4 -2 0 2 4 6 8 10

As the degree of the Taylor polynomial rises, it =
approaches the correct function. This image shows
sin(x) and its Taylor approximations, polynomials of
degree 1,3, ,7,9,11 and
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Harris Corner Detector

Put it together:

c(z,y, Az, Ay) = Z (I(u, v) — I(u+Ax, ‘U—I—&y))Q
(u,v)e W(z,y)

ATy 2
~ Z ([Ix(u, v), Iy(u, v)] Ay )
(u,v)€ W(z,y)
Ax
= [2z,Ay]Q(z,y) Ay
Q is call the Structure Tensor
with
Z I (u,v Z L (uw, v) Iy (u, v) A B
W W _
Rz, y) = [wa(u'uf(u v) way(u,t})g _{ B C}

We compute this at any image location (x, y)

G'%;’LD Computer Vision |: Basics of Image Processing 30/10/2015 53



Harris Corner Detector

The auto-correlation function

AT

c(z,y, bz, Ay) & [Az, Ay Q(2,9) |

Function cis (after approximation) a quadratic function in Az and Ay

* |solines are ellipses (Q(z, v) is symmetric and positive definite)
* Eigenvector x; with (larger) Eigenvalue A is the direction of fastest change in

function ¢
e Eigenvector x, with (smaller) Eigenvalue A, is direction of slowest change in
function ¢
X2
Ax
X1 Function ¢
Ay Notec = 0forAx = Ay =0
{?“JLD Computer Vision I: Basics of Image Processing 30/10/2015 54



Harris Corner Detector

Some examples —isolines forc(z, y, Az, Ay) = 1

d.

b.

C.

(a) Flat (b) Edges (c) Corners

Homogenous regions: both \-s are small
Edges: one A is small the other one is large

Corners: both \-s are large (this is what we are looking for!)

&LD
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Harris Corner Detector

] |

Image A4 (larger eigenvalue) A, (smaller eigenvalue)

Zoom in




Harris Corner Detector

“Cornerness” is a characteristic of Q(z, v)

Ao =det Q(z,y) = AC — B2, A\ + Ao =traceQ(z,y) = A+ C

Proposition by Harris: H = A1 )\» — 0.04(A\1 + }\2)2}
I
Downweights edges where A; > 1,

n o

Harris Value Smallest eigenvalue

&LD



Harris Corners - Example

Computer Vision I: Basics of Image Processing 30/10/2015 58



H-score (red- high, blue - low)

Computer Vision I: Basics of Image Processing 30/10/2015 59






Non-maximum suppression

(all points are set to O for which a higher
H-score in a window-neighborhood exists)

N
&LD



Harris Corners in Red

Computer Vision: Algorithms and Applications —
omputer Vision gos pplications 30/10/2015 62



Other examples

150

600 PP
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Maximally stable “extremal regions”

* |nvariant to affine transformation of gray-values
 Both small and large structures are detected

(:‘V;LD Computer Vision I: Basics of Image Processing 30/10/2015 64



Literature

There is a large body of literature on detectors and
descriptors (later lecture)

A comparison paper (e.g. what is the most robust corner
detectors):

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J.
Matas, F. Schaffalitzky, T. Kadir: A Comparison of Affine
Region Detectors (1JCV 2006)
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