Computer Vision I -Filtering and Feature detection

Carsten Rother

30/10/2015

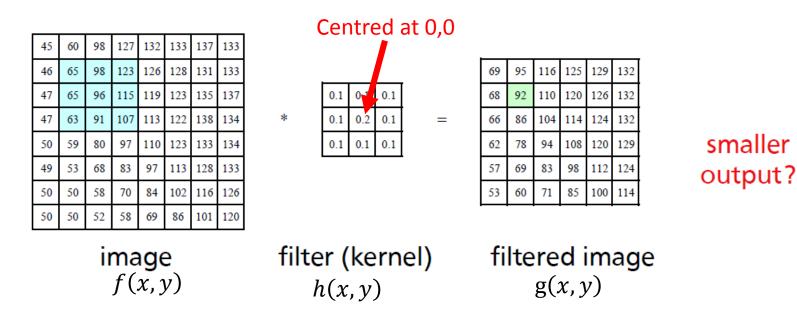
Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
 - Linear filtering
 - Non-linear filtering
- Edges detection (ch. 4.2)
- Interest Point detection (ch. 4.1.1)

Reminder: Convolution

- Replace each pixel by a linear combination of its neighbours and itself
- 2D convolution (discrete)

$$g = f * h$$



 $g(x,y) = \sum_{k,l} f(x-k,y-l)h(k,l)$ "the image f is implicitly mirrored"

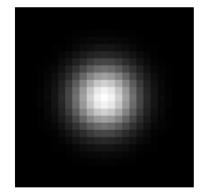
Reminder: Application: Noise removal

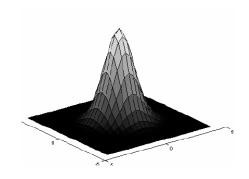
- Noise is what we are not interested in: Sensor noise (Gaussian, shot noise), quantisation artefacts, light fluctuation, etc.
- Typical assumption is that the noise is not correlated between pixels
- Basic Idea: neighbouring pixel contain information about intensity

Reminder: Gaussian (Smoothing) Filters

- Nearby pixels are weighted more than distant pixels
- Isotropic Gaussian (rotational symmetric)

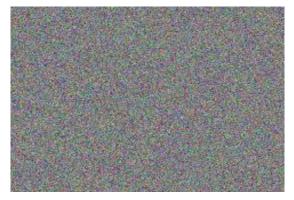
$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$





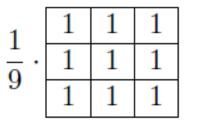
The box filter does noise removal

• Box filter takes the mean in a neighbourhood



Noise

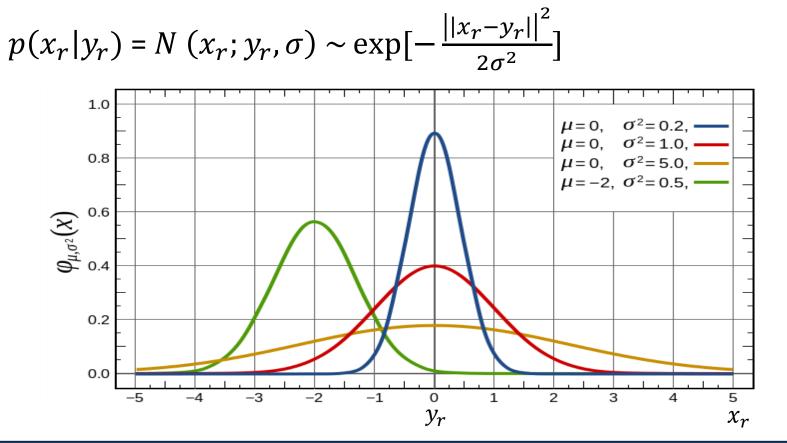
Pixel-independent Gaussian noise added



Filtered Image

Derivation of the Box Filter

- y_r is true gray value (color)
- x_r observed gray value (color)
- Noise model: Gaussian noise



Derivation of Box Filter

Further assumption: independent noise

$$p(x|y) \sim \prod_{r} \exp\left[-\frac{\|x_r - y_r\|^2}{2\sigma^2}\right]$$

$$\begin{array}{|c|c|}\hline \underline{Comments:}\\ 1) \sim \text{means equal up to scale}\\ (i.e. 5x \sim x)\\ 2) ||a||^2 = (\sqrt{a^2})^2 = a^2\\ (i.e. \text{ squared L2 norm})\\ 3) |a| \text{ is norm of a}\\ (i.e. \text{ L1 norm}) \end{array}$$

Find the most likely solution for the true signal \overline{y} Maximum-Likelihood principle (probability maximization):

$$y^* = argmax_y \ p(y|x) = argmax_y \frac{p(x|y) \ p(y)}{p(x)}$$

p(x) is a constant (drop it), assume (for now) uniform prior p(y). We get: $p(y|x) = p(x|y) \sim \prod \exp[-\frac{\|x_r - y_r\|^2}{2\sigma^2}]$

the solution is trivial: $y_r = x_r$ for all $r \otimes$

additional assumptions about the signal y are necessary !!!

Derivation of Box Filter

<u>Assumption:</u> not uniform prior p(y) but ...

in a small vicinity $W(r) \subset D$ the "true" signal y_r is nearly constant

Maximum-a-posteriori:

$$p(y|x) \sim \prod_{r} \prod_{r' \in W(r)} \exp\left[-\frac{\|x_{r'} - y_r\|^2}{2\sigma^2}\right]$$
Only one y_r in a window $W(r)$
For one pixel r :

$$y_r^* = \arg\max_{y_r} \prod_{r' \in W(r)} \exp\left[-\frac{\|x_{r'} - y_r\|^2}{2\sigma^2}\right]$$

take neg. logarithm: $y_r^* = argmin_{y_r} \sum \frac{\|x_{r'} - y_r\|^2}{2\sigma^2}$ Note, L increas change

Note, Log-function is monotonically increasing hence minimum does not change, i.e. $x_1 < x_2$ then $\log x_1 < \log x_2$

Derivation of Box Filter

Let us minimize:

$$y_r^* = argmin_{y_r} \sum_{r' \in W(r)} ||x_{r'} - y_r||^2 \qquad fac$$

factor
$$1/2\sigma^2$$
 is irrelevant

Take derivative and set to 0:

$$F(y_r) = \sum_{r' \in W(r)} ||x_{r'} - y_r||^2$$

$$|W| \text{ means number of pixel in window } W$$

$$\frac{\partial F}{\partial y_r} = -2 \sum_{r'} (x_{r'} - y_r) = -2 \left(\sum_{r'} x_{r'} - |W| y_r \right) \stackrel{!}{=} 0$$

$$y_r^* = \frac{1}{|W|} \sum_{r'} x_{r'} \quad \text{(the average)}$$

Box filter is optimal under pixel-independent, Gaussian Noise assumption and assuming that the signal is constant in a window.

Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
 - Linear filtering
 - Non-linear filtering
- Edges detection (ch. 4.2)
- Interest Point detection (ch. 4.1.1)

Non-linear filters

- There are many different non-linear filters. (see Image Processing in SS16)
- We only look at the Median filter, Bilateral filter and Joint Bilateral Filter

Shot noise (Salt and Pepper Noise)

Gaussian filtered

Original + shot noise (a random number of independent pixels have a random value)

Median [:]iltered

Another example

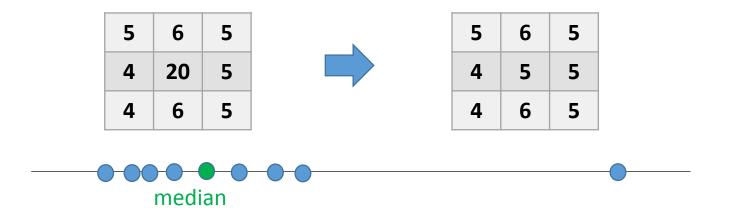
Original

Noisy

Mean

Median

Replace each pixel with the median in a neighbourhood:

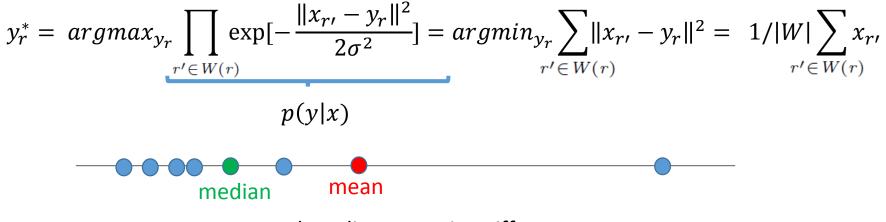


Median filter: order the values and take the **middle** one

- No strong smoothing effect since values are not averaged
- Very good to remove outliers (shot noise)
- Used a lot for post processing of outputs (e.g. optical flow)

Median Filter: Derivation

Reminder, for Gaussian noise we did solve the following Maximum Likelihood Estimation Problem:



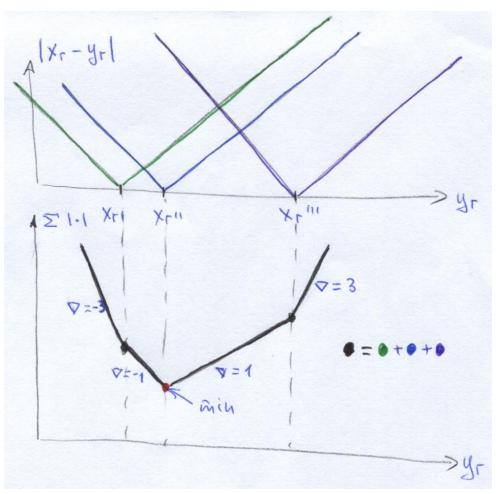
Mean and median are quite Different

For Median we solve the following problem:

$$y_r^* = argmax_{y_r} \prod_{r' \in W(r)} \exp\left[-\frac{|x_{r'} - y_r|}{2\sigma^2}\right] = argmin_{y_r} \sum_{r' \in W(r)} |x_{r'} - y_r| = Median (W(r))$$
(see next slide)
$$r' \in W(r)$$

This is a different noise distribution than Gaussian.

Median Filter Derivation



minimize the following:

$$F(y_r) = \sum_{r' \in W(r)} |x_{r'} - y_r|$$

Problem: not differentiable ⊗, good news: it is convex ☺

Optimal solution is the median of all values

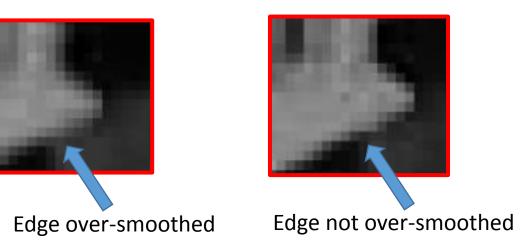
Bilateral Filter

Original + Gaussian noise

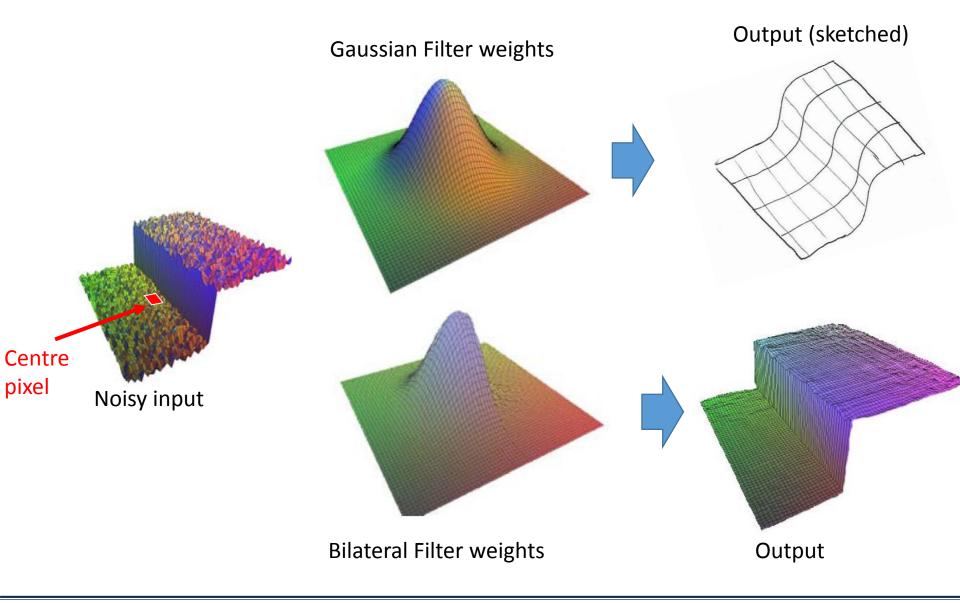
Gaussian filtered

More sharp

Bilateral filtered



Bilateral Filter – in Pictures



Bilateral Filter – in equations

Filters looks at: a) distance to surrounding pixels (as Gaussian)b) Intensity of surrounding pixels

$$g(i,j) = \frac{\sum_{k,l} f(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)} \qquad \text{Line}$$

inear combination

$$\begin{split} w(i,j,k,l) &= \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{\|f(i,j) - f(k,l)\|^2}{2\sigma_r^2}\right)\\ \text{Same as Gaussian filter} \quad \begin{array}{c} \text{Consider intensity} \end{split}$$

Problem: computation is slow O(Nw); approximations can be done in O(N)Comment: **Guided filter** is similar and can be computed exactly in O(N)

See a tutorial on: http://people.csail.mit.edu/sparis/bf_course/

Application: Bilateral Filter

Cartoonization

Original HDR

Bilateral Filter

HDR compression (Tone mapping)

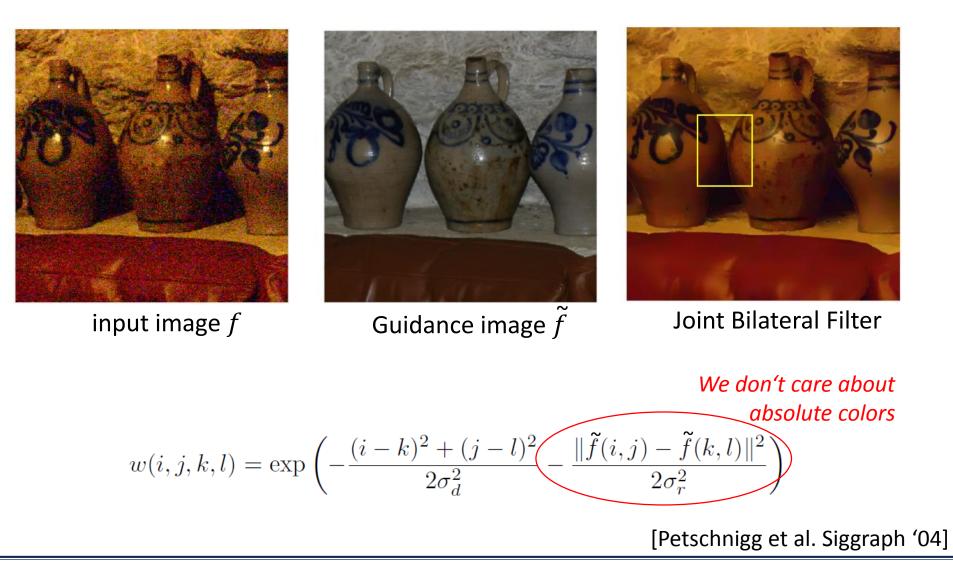
Joint Bilateral Filter

$$g(i,j) = \frac{\sum_{k,l} f(k,l)w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}$$
$$w(i,j,k,l) = \exp\left(-\frac{(i-k)^2 + (j-l)^2}{2\sigma_d^2} - \frac{\|\tilde{f}(i,j) - \tilde{f}(k,l)\|^2}{2\sigma_r^2}\right)$$
$$Same \text{ as Gaussian} \qquad Consider \text{ intensity}}$$

f is the input image – which is processed

 \tilde{f} is a guidance image – where we look for pixel similarity

Application: Combine Flash and No-Flash



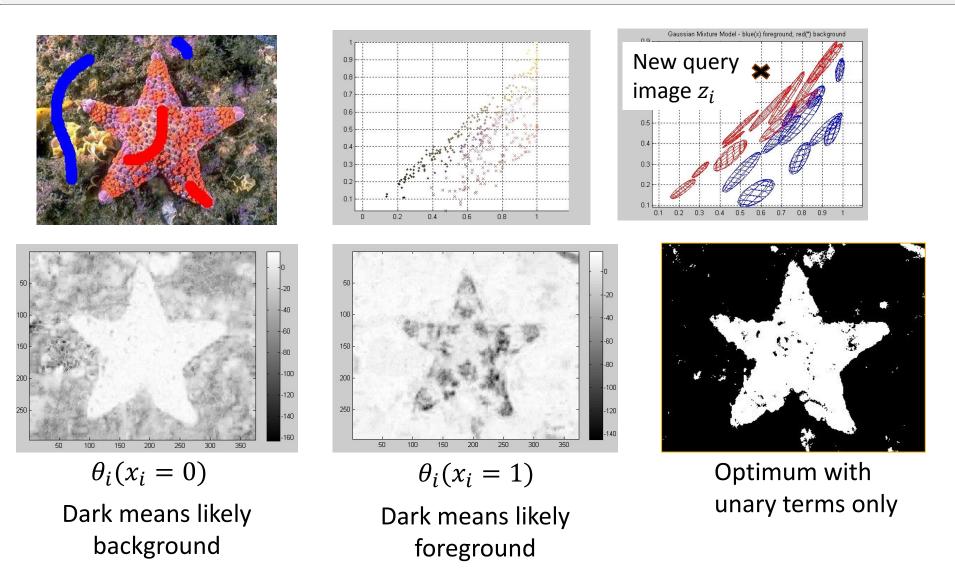
Reminder: Model versus Algorithm

Example: Interactive Image Segmentation

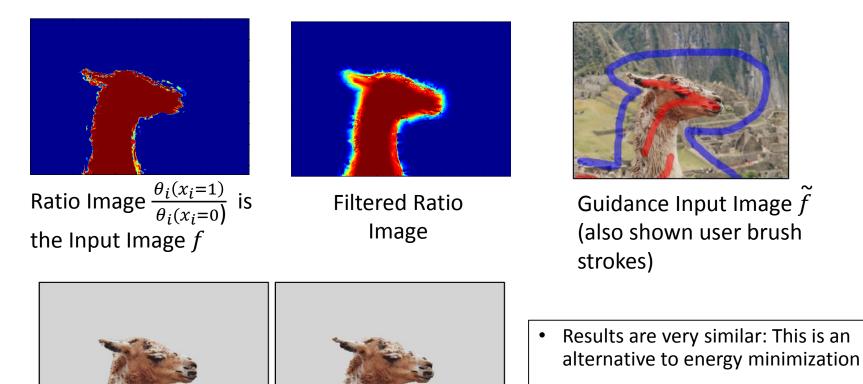
Given **z**; derive binary **x**:

Model: Energy function $E(x) = \sum_{i} \theta_{i}(x_{i}) + \sum_{i,j} \theta_{ij}(x_{i}, x_{j})$ Algorithm to minimization: $x^{*} = argmin_{x} E(x)$

Filtering for Binary Segmentation



Filtering for Binary Segmentation



• This can also be done for stereo, etc.

[C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, Fast Cost-Volume Filtering for Visual Correspondence and Beyond, CVPR 11]

Cost Volume filtering

(Winner takes all Result)

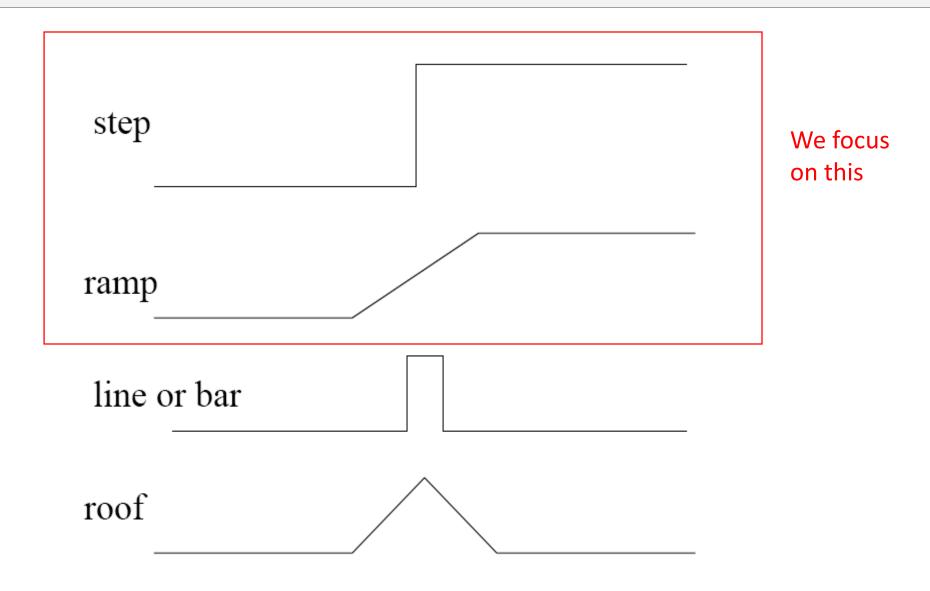
Computer Vision I: Basics of Image Processing

Energy minimization

Roadmap: Basics of Digital Image Processing

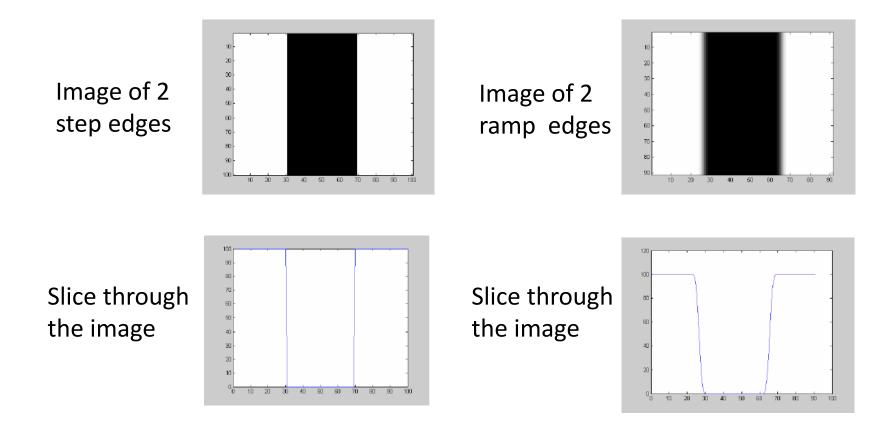
- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
 - Linear filtering
 - Non-linear filtering
- Edges detection (ch. 4.2)
- Interest Point detection (ch. 4.1.1)

Idealized edge types

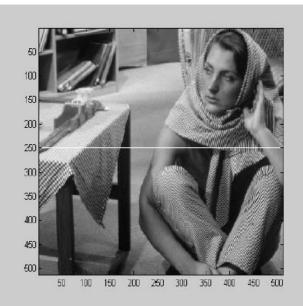


What are edges ?

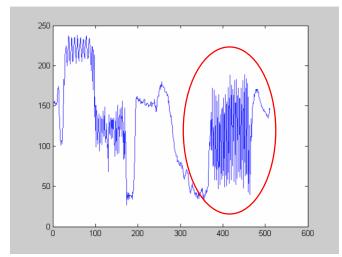
- Corresponds to fast changes in the image
- The magnitude of the derivative is large



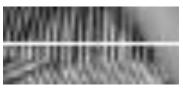
What are fast changes in the image?



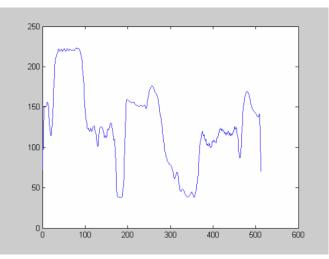
Image



Scanline 250



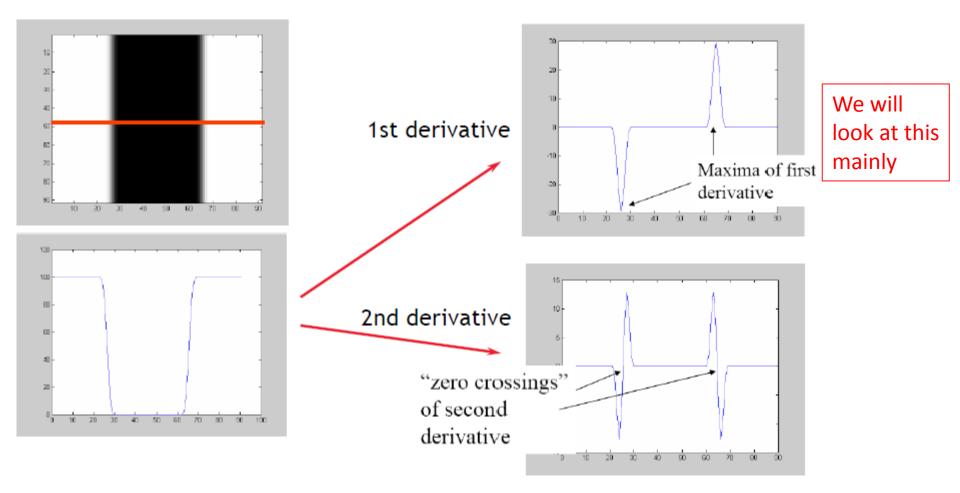
Texture or many edges?



Edges defined after smoothing

Scanline 250 smoothed with Gausian

Edges and Derivatives



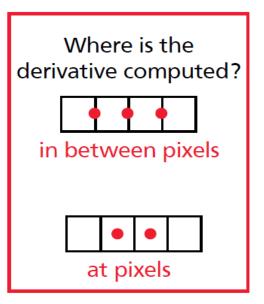
Edge filters in 1D

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x)$$

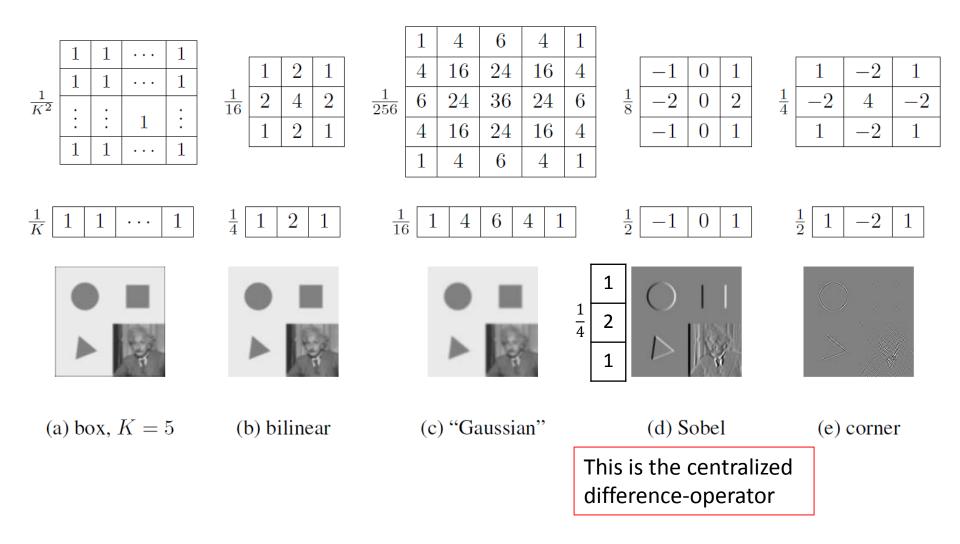
We can implement this as a linear filter:

Forward differences: 1/

Central differences: 1



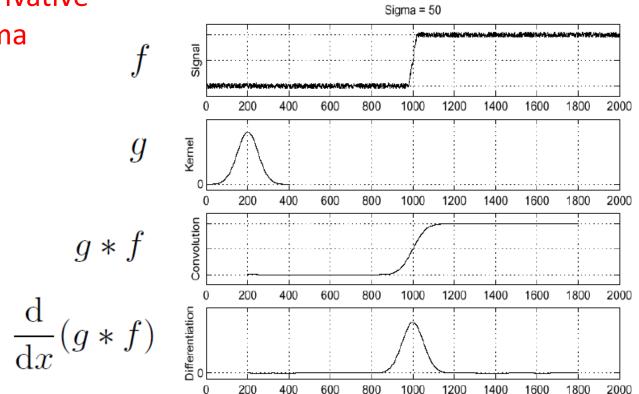
Reminder: Seperable Filters



Edge Filter in 1D: Example

Based on 1st derivative

- Smooth with Gaussian to filter out noise
- Calculate derivative
- Find its optima

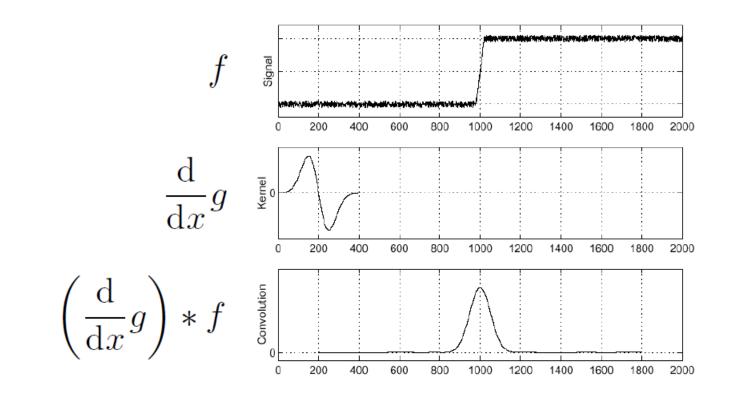


Edge Filtering in 1D

Simplification: (saves one operation)

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(g*f\right) = \left(\frac{\mathrm{d}}{\mathrm{d}x}g\right)*f$$

Derivative of Gaussian

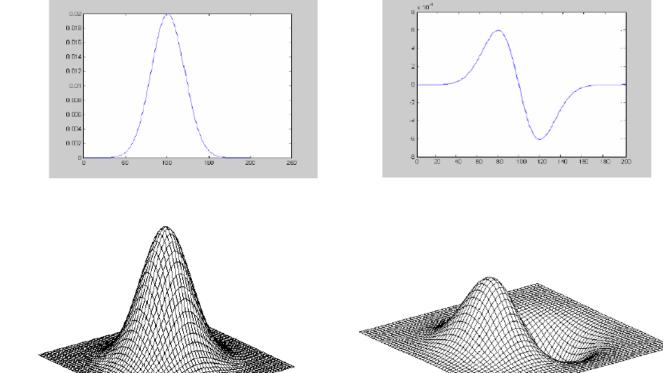


Edge Filtering in 2D

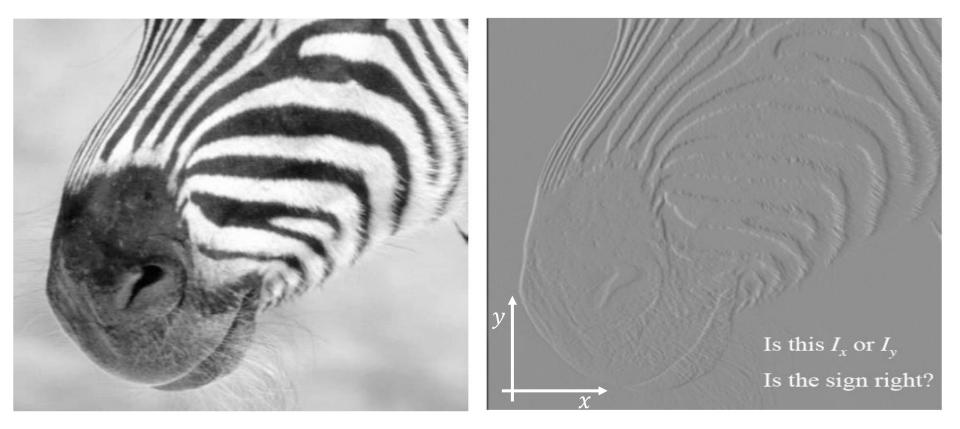
• Derivative in x-direction: $D_x * (G * I) = (D_x * G) * I$

• in 1D:

• in 2D:



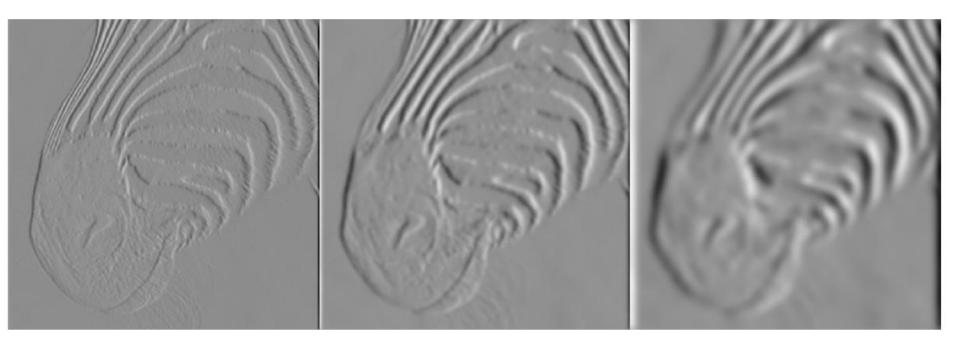
Edge Filter in 2D: Example



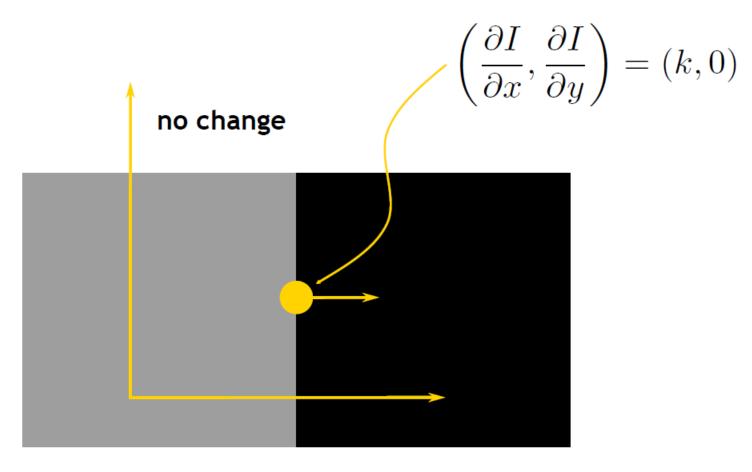
Edge Filter in 2D

S

x-derivatives with different Gaussian smoothing

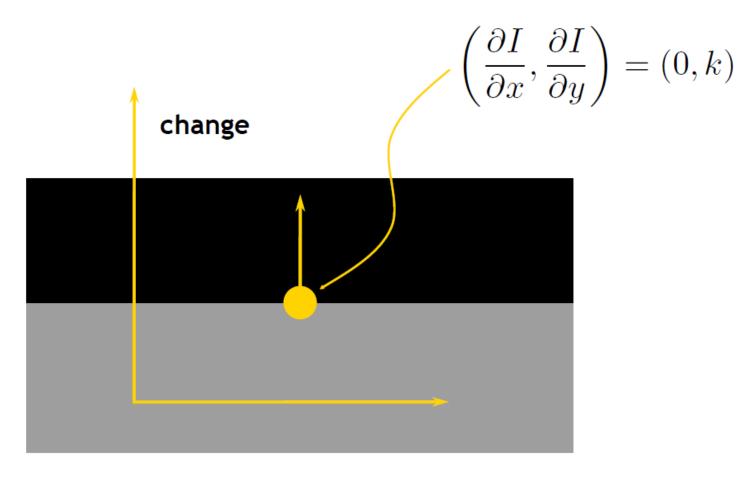


What is a gradient



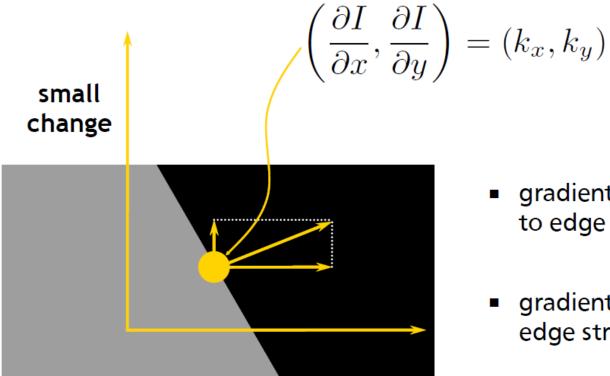
change

What is a gradient



no change

What is a gradient



large change

- gradient direction is perpendicular to edge
- gradient magnitude measures edge strength

What is a Gradient

• the gradient is:

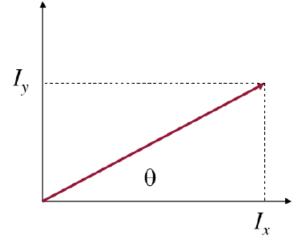
$$\nabla I = (I_x, I_y) = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right)$$

• the magnitude of the gradient is:

$$||\nabla I|| = \sqrt{I_x^2 + I_y^2}$$

• the direction of the gradient is:

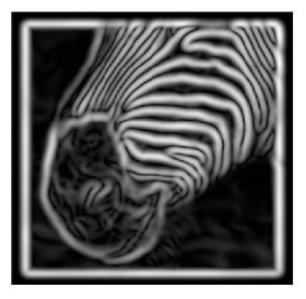
$$\theta = \operatorname{atan}(I_y, I_x)$$



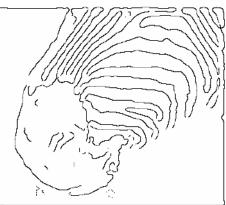
Example – Gradient magnitude image



First smoothed with Gaussian



First smoothed with broad Gaussian



In Image Processing Lecture we look at how to get edge chains?

3 minutes break

Computer Vision I: Basics of Image Processing

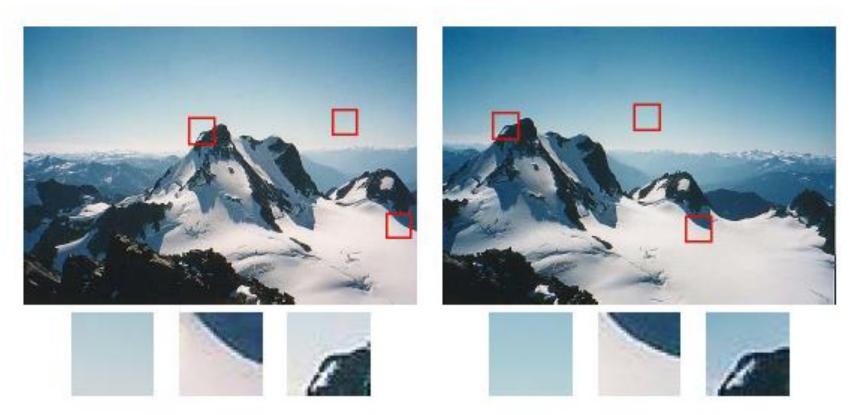
30/10/2015 44

Roadmap: Basics of Digital Image Processing

- What is an Image?
- Point operators (ch. 3.1)
- Filtering: (ch. 3.2, ch 3.3, ch. 3.4)
 - Linear filtering
 - Non-linear filtering
- Edges detection (ch. 4.2)
- Interest Point detection (ch. 4.1.1)

What region should we try to match?

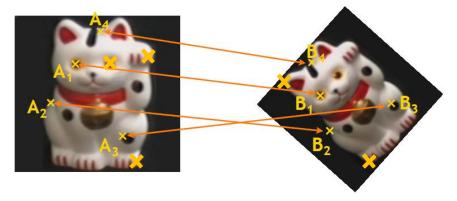
We want to find a few regions where this image pair matches (applications later)



Look for a region that is unique, i.e. not ambiguous

Goal: Interest Point Detection

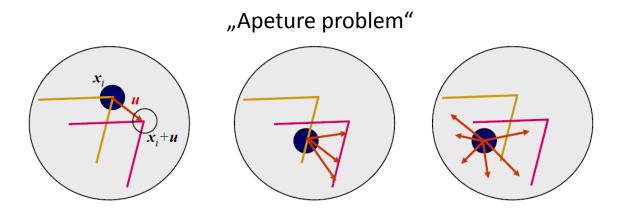
• Goal: predict a few "interest points" in order to remove redundant data efficiently



Should be invariant against:

- a. Geometric transformation scaling, rotation, translation, affine transformation, projective transformation etc.
- b. Color transformation additive (lightning change), multiplicative (contrast), linear (both), monotone etc.;
- c. Discretization (e.g. spatial resolution, focus);

Points versus Lines

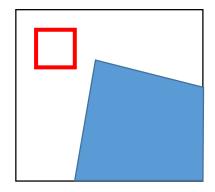


Lines are not as good as points

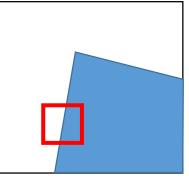
Harris Corner Detector – Basic Idea

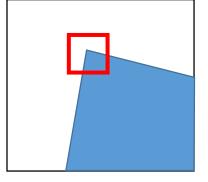
Local measure of **feature uniqueness**:

Shifting the window in any direction: How does it change?



"flat" region: no change in all directions



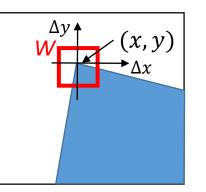


"edge": no change along the edge direction "corner": significant change in all directions

[Szeliski and Seitz]

How similar is a local window with its neighbor?

Auto-correlation function:



$$c(x, y, \Delta x, \Delta y) = \sum_{(u,v)\in W(x,y)} w(u,v) \left(I(u,v) - I(u + \Delta x, v + \Delta y) \right)^2$$

W(x, y) is a small window around (x, y)

w(u, v) is a convolution kernel and used to decrease the influence of pixels far from (x, y), e.g. with Gaussian $\exp\left[-\frac{(u-x)^2+(v-y)^2}{2\sigma^2}\right]$ For simplicity we use for now w(u, v) = 1.

$$c(x, y, \Delta x, \Delta y) = \sum_{(u,v) \in W(x,y)} \left(I(u,v) - I(u + \Delta x, v + \Delta y) \right)^2$$

One is interested in **properties** of $c(x, y, \Delta x, \Delta y)$ at each position (x, y)We could evaluate $c(x, y, \Delta x, \Delta y)$ for all discrete shifts $\Delta x, \Delta y = +/-1$. But we would like to do smaller shifts and have a fast method.

Let us look at a linear approximation of $I(u+\Delta x, v+\Delta y)$, i.e. the Taylor expansion around (u, v)

$$I(u + \Delta x, v + \Delta y) = I(u, v) + \frac{\partial I(u, v)}{\partial x} \Delta x + \frac{\partial I(u, v)}{\partial y} \Delta y + \epsilon(\Delta x, \Delta y)$$

$$\approx I(u, v) + [I_x(u, v), I_y(u, v)] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

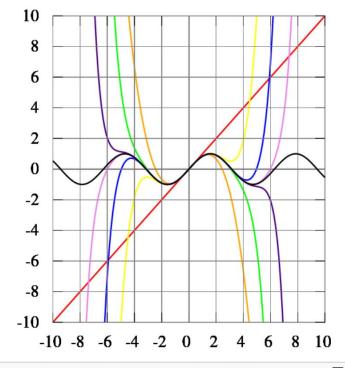
Gradient at (u, v)

Reminder: Taylor Expansion

A function f(x) is approximated by:

$$f(x) \approx \sum_{n} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

The approximation is most accurate at point a



As the degree of the Taylor polynomial rises, it approaches the correct function. This image shows sin(x) and its Taylor approximations, polynomials of degree **1**, **3**, **5**, **7**, **9**, **11** and **13**.

Put it together:

$$c(x, y, \Delta x, \Delta y) = \sum_{(u,v) \in W(x,y)} \left(I(u,v) - I(u + \Delta x, v + \Delta y) \right)^{2}$$

$$\approx \sum_{(u,v) \in W(x,y)} \left(\left[I_{x}(u,v), I_{y}(u,v) \right] \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} \right)^{2}$$

$$= \left[\Delta x, \Delta y \right] Q(x,y) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

Q is call the Structure Tensor

with

$$Q(x,y) = \left[\begin{array}{cc} \sum_{W} I_x(u,v)^2 & \sum_{W} I_x(u,v)I_y(u,v) \\ \sum_{W} I_x(u,v)I_y(u,v) & \sum_{W} I_y(u,v)^2 \end{array}\right] = \left[\begin{array}{cc} A & B \\ B & C \end{array}\right]$$

We compute this at any image location (x, y)

The auto-correlation function

$$c(x, y, \Delta x, \Delta y) \approx [\Delta x, \Delta y] Q(x, y) \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

Function *c* is (after approximation) a **quadratic** function in Δx and Δy

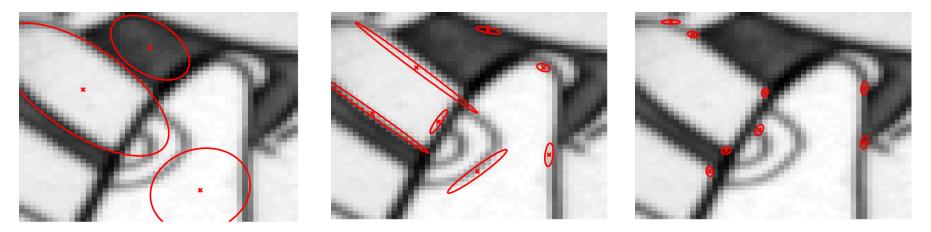
- Isolines are ellipses (Q(x, y) is symmetric and positive definite)
- Eigenvector x_1 with (larger) Eigenvalue λ_1 is the direction of fastest change in function c
- Eigenvector x_2 with (smaller) Eigenvalue λ_2 is direction of slowest change in function c

$$\Delta x$$

$$\Delta x$$

$$\Delta y$$
Function c
Note $c = 0$ for $\Delta x = \Delta y = 0$

Some examples – isolines for $c(x, y, \Delta x, \Delta y) = 1$:

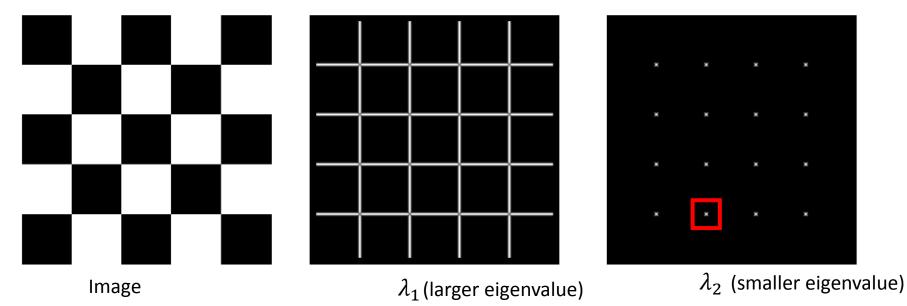


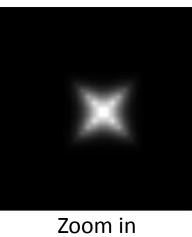
(a) Flat

(b) Edges

(c) Corners

- a. Homogenous regions: both λ -s are small
- b. Edges: one λ is small the other one is large
- c. Corners: both λ -s are large (this is what we are looking for!)



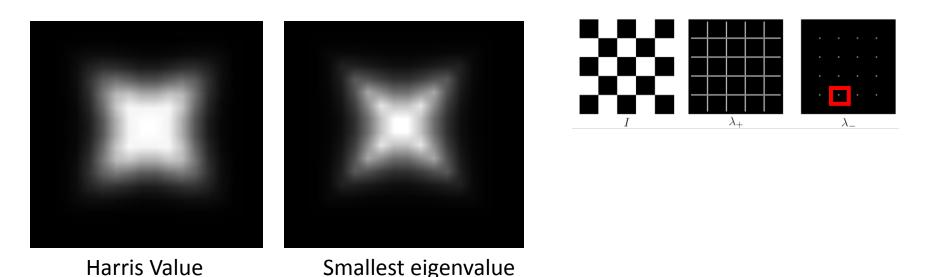


"Cornerness" is a characteristic of Q(x, y)

 $\lambda_1 \lambda_2 = \det Q(x, y) = AC - B^2, \quad \lambda_1 + \lambda_2 = \operatorname{trace} Q(x, y) = A + C$

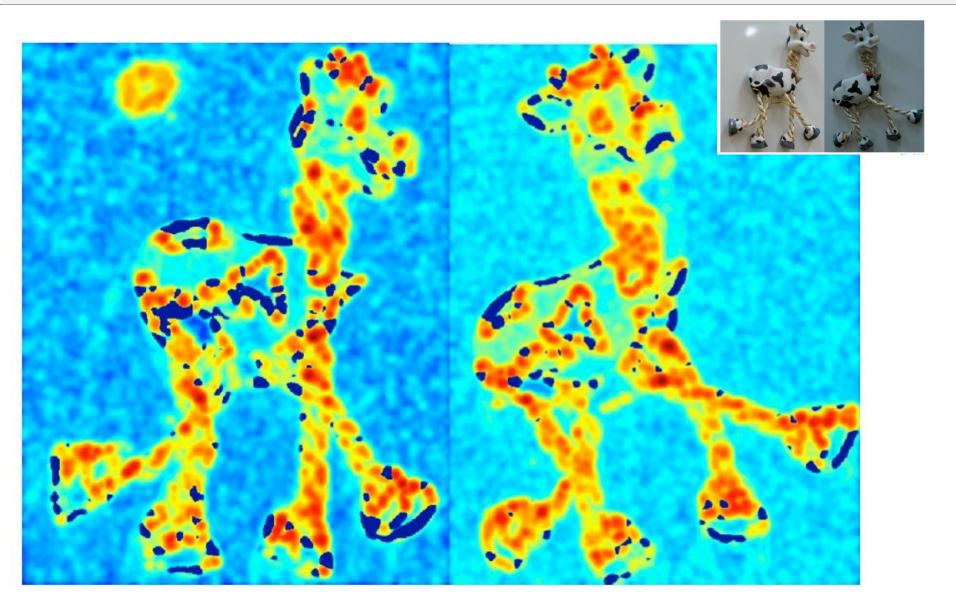
Proposition by Harris: $H = \lambda_1 \lambda_2 - 0.04(\lambda_1 + \lambda_2)^2$

Downweights edges where $\lambda_1 \gg \lambda_2$

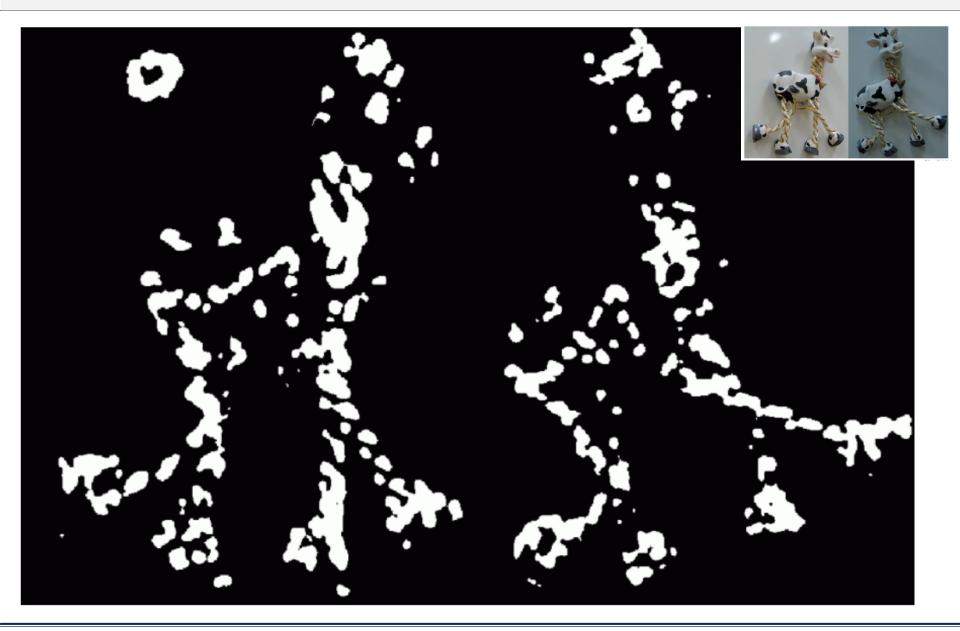


Harris Corners - Example

H-score (red-high, blue - low)



Threshold (H-score > value)



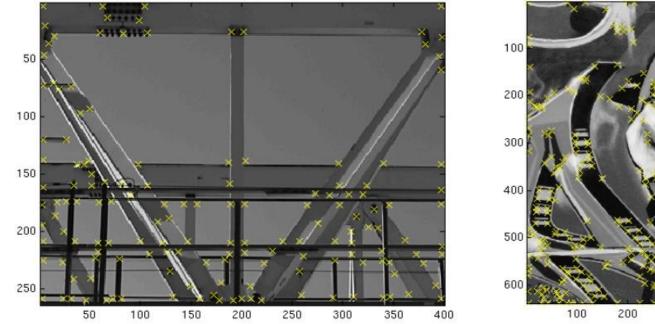
Non-maximum suppression

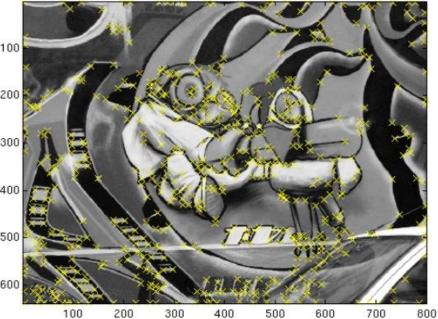
(all points are set to 0 for which a higher H-score in a window-neighborhood exists)

Harris Corners in Red

Computer Vision: Algorithms and Applications --

Other examples





Maximally stable "extremal regions"

- Invariant to affine transformation of gray-values
- Both small and large structures are detected

There is a large body of literature on detectors and descriptors (later lecture)

A comparison paper (e.g. what is the most robust corner detectors):

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir: A Comparison of Affine Region Detectors (IJCV 2006)

