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Roadmap for next four lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4) 

• Multi-View 3D reconstruction (sec. 7.3-7.4)
• General scenario
• From Projective to Metric Space
• Special Cases
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Objective

• Input: Two images which have some common scene geometry.
Assume the common scene part is textured. 

Goal: Match interest points of the common scene geometry

• Matching of objects which are texture-less is harder (later lecture)
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Examples: Appearance-based matching
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Applications
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• 3D reconstruction: • Augmented Realty:

• Panoramic Stitching: • Robotics

Camera re-localization

Grasping known objects



Matching Points between two Images
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v

• Find interest points 

• Find orientated patches around interest points to capture appearance

• Encode patch appearance in a descriptor

• Find matching patches according to appearance (similar descriptors)

• Verify matching patches according to geometry (later lecture)



Matching Points between two Images
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v

• Find interest points 

• Find orientated patches around interest points to capture appearance

• Encode patch appearance in a descriptor

• Find matching patches according to appearance (similar descriptors)

• Verify matching patches according to geometry (later lecture)



Reminder: Harris Corner Detector
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Based on so-called auto-correlation function:

3. Harris measure:

Compute:

1.

2.

4. Take those points (after non-max suppression) with high H value



Matching Points between two Images
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v

• Find interest points 

• Find orientated patches around interest points to capture appearance

• Encode patch appearance in a descriptor

• Find matching patches according to appearance (similar descriptors)

• Verify matching patches according to geometry (later lecture)



How to deal with orientation
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Orientate with image gradient: 



Choose a patch around each point
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How to deal with scale?



Choose a patch around each point
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How to deal with scale?



Choose a patch around each point
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How to deal with scale?



Reminder: Edge detection via image gradient
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Final result with canny edge detector

Result of
(using small sigma for Gaussian) 

( (𝐷𝑥 ∗ 𝐺) ∗ 𝐼 , (𝐷𝑦 ∗ 𝐺) ∗ 𝐼)

Image

Image gradient:
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Result of
(using large sigma for Gaussian) 



Alterative Edge Detector via LoG Operator 
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Find zero-crossing

• To find an edge we first smooth

• is called the LoG (Laplacian of Gaussian operator)

• 1D example: • 2D example 
(Mexican hat):
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Alterative: Edge detection with LoG Filter
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Called Laplacian of Gaussian (LoG)
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Scale selection (illustration)
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𝛻2 𝐺(𝜎) ∗ 𝐼 =
𝜕2 (𝐺(𝜎) ∗ 𝐼)

𝜕𝑥2
+
𝜕2 (𝐺(𝜎) ∗ 𝐼)

𝜕𝑦2

𝒇 is Laplacian of Gaussian (LoG) operator.
Measures an average edge-ness in all directions

(details on page 191)



Scale selection (illustration)
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Scale selection (illustration)
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Scale selection (illustration)
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Scale selection (illustration)
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We could match up these curves and find unique corresponding points



Scale selection (illustration)
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Simpler: Find maxima of the curve



Matching Points between two Images
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v

• Find interest points 

• Find orientated patches around interest points to capture appearance

• Encode patch appearance in a descriptor

• Find matching patches according to appearance (similar descriptors)

• Verify matching patches according to geometry



v

SIFT features (Scale Invariant Feature Transform)
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[Lowe 2004]

• 4*4=16 cells 
• Each cell has an 8-bin histogram 
• In total: 16*8 values, i.e. 128D vector

64 pixels

6
4

 p
ix

el
s

A cell has 16x16 pixels 
(here 8x8 for illustration only)

(blue circle shows center weighting)



SIFT feature is very popular
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• Fast to compute

• Can handle large changes in viewpoint well (up to 60𝑜 out-of-plane rotation)

• Can handle photometric changes (even day versus night)



Many other feature descriptors

• MOPS [Brown, Szeliski and Winder 2005]

• SURF [Herbert Bay et al. 2006]

• DAISY [Tola, Lepetit, Fua 2010]

• Shape Context

• Deep Learning

• …
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DAISY



Matching Points between two Images
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v

• Find interest points 

• Find orientated patches around interest points to capture appearance

• Encode patch appearance in a descriptor

• Find matching patches according to appearance (similar descriptors)

• Verify matching patches according to geometry (later lecture)



Find matching patches fast
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N patches
(e.g. N = 1000)

Goal:
1) Find for each patch in left image the closest in right image 
2) Accept all those matches where descriptors are similar enough 

N patches
(e.g. N = 1000)

Methods:
• Naïve: 𝑁2 tests (e.g. 1 Million)
• Hashing 
• KD-tree; on average NlogN tests 

(e.g. ~10,000)

Patch

(Hashing
Function)

Index for 
patch DB



Matching Points between two Images
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v

• Find interest points 

• Find orientated patches around interest points to capture appearance

• Encode patch appearance in a descriptor

• Find matching patches according to appearance (similar descriptors)

• Verify matching patches according to geometry (later lecture)



Roadmap for next four lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4) 

• Multi-View 3D reconstruction (sec. 7.3-7.4)
• General scenario
• From Projective to Metric Space
• Special Cases
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Some Basics

• Real coordinate space 𝑅2 example: 1
2

• Real coordinate space 𝑅3 example:
1
3
2

• Operations we need are: 

scalar product:

𝒙 𝒚 = 𝒙𝒕 𝒚 = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 where 𝒙 = 
𝑥1
𝑥2
𝑥3

cross/vector product: 𝒙 × 𝒚 = 𝒙 × 𝒚

05/11/2015Computer Vision I: Image Formation Process 31

𝒙 × =   

0 −𝑥3 𝑥2
𝑥3 0 −𝑥1
−𝑥2 𝑥1 0



Euclidean Space

• Euclidean Space 𝑅2 and 𝑅3 have angles and distances defined 
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𝒙 = 𝒙 𝒙

• Angle defined as:

Θ

𝑥

𝑦

𝑥 − 𝑦

𝑜𝑟𝑖𝑔𝑖𝑛

• Length of the vector 𝒙:

• Distance of two vectors:

𝜃 = arccos
𝒙 𝒚

𝒙 𝒚



Projective Space

• 2D Point in a real coordinate space: 

1
2

∈ 𝑅2 has 2 DoF (degrees of freedom) 

• 3D Point in a real coordinate space: 
1
3
2

∈ 𝑅3 has 3 DoF

• Definition:  A point in 2-dimensional projective space 𝑃2 is defined as

𝑝 =
𝑥
𝑦
𝑤

∈ 𝑃2, such that all vectors 
𝑘𝑥
𝑘𝑦
𝑘𝑤

∀ 𝑘 ≠ 0

define the same point 𝑝 in 𝑃2 (equivalent classes)

• Sometimes written as: 
1
2
1

~
2
4
2

• We write as: 
1
2
1

=
2
4
2

∈ 𝑃2
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Projective Space - Visualization

A point in 𝑃2 is a ray in 𝑅3 that goes through the origin:
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All rays go through (0,0,0) 
define a point in 𝑃2

Plane w=0 

Plane w=1 

w-axis
𝑥
𝑦
𝑤

𝑥
𝑦
0

Definition:  A point in 2-dimensional projective space 𝑃2 is defined as

𝑝 =
𝑥
𝑦
𝑤

∈ 𝑃2, such that all vectors 
𝑘𝑥
𝑘𝑦
𝑘𝑤

∀ 𝑘 ≠ 0

define the same point 𝑝 in 𝑃2 (equivalent classes)



Projective Space
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• All points in 𝑃2 are given by: 𝑅3 \
0
0
0

• A point 
𝑥
𝑦
𝑤

∈ 𝑃2 has 2 DoF (3 elements but norm of vector can be set to 1)

All rays go through (0,0,0) 
define a point in 𝑃2

Plane w=0 

Plane w=1 

w-axis
𝑥
𝑦
𝑤

𝑥
𝑦
0



From 𝑅2 to 𝑃2 and back
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𝑥
𝑦
𝑤

∈ 𝑃2 𝑥/𝑤

𝑦/𝑤
∈ 𝑅2

𝑓𝑜𝑟 𝑤 ≠ 0

𝑝 =
𝑥

𝑦
∈ 𝑅2 𝑝 =

𝑥
𝑦
1

∈ 𝑃2

• From 𝑅2 to 𝑃2: 

• From 𝑃2 to 𝑅2: 

- a point in inhomogeneous coordinates
- we soemtimes write 𝑝 for inhomogeneous 
coordinates

- a point in homogeneous coordinates
~

what does it mean if w=0? 

We can do this transformation with all primitives (points, lines, planes)

~



From 𝑅2 to 𝑃2 and back: Example
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𝑝 =
𝑥

𝑦
∈ 𝑅2 𝑝 =

𝑥
𝑦
1

∈ 𝑃2

• From 𝑅2 to 𝑃2: 

- a point in inhomogeneous coordinates - a point in homogeneous coordinates

𝑝 =
3

2
∈ 𝑅2 𝑝 =

3
2
1

=
4.5
3
1.5

=
6
4
2

∈ 𝑃2
𝑝 =

6/2

4/2
∈ 𝑅2

(6,4,2) 

Plane w=0 

Plane w=1 (Space 𝑹𝟐) 

w-axis

(3,2,1) 

~

~ ~



Halfway

3 Minutes Break
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Things we would like to have and do
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Primitives:
• Points in 2D/3D
• Lines in 2D/3D
• Planes in 3D
• Conic in 2D; Quadric in 3D

Transformations:
• Rotation
• Translation
• Projective
• ….

Operations with Primitives:
• Intersection
• Tangent

We look at these operations in: 𝑅2/𝑅3, 𝑃2/𝑃3



Why bother about 𝑃2? 

• All Primitives, operations and transformations are defined in 𝑅2 and 𝑃2

• Advantage of 𝑃2:

• Many transformation and operations are written more compactly 
(e.g. linear transformations)

• We will introduce new special “primitives” that are useful when 
dealing with “parallelism”     
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Two parallel lines in 𝑅2

In 𝑃2 they meet in a „point at inifinty“
This example will come
later in detail.



Points at infinity
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Points with coordinate 
𝑥
𝑦
0

are ideal points or points at infinity

All rays go through (0,0,0) 
define a point in 𝑃2

Plane w=0 

Plane w=1 

w-axis

𝑥
𝑦
0

∈ 𝑃2 Not defined in 𝑅2 since 𝑤 = 0

𝑥
𝑦
0

𝑥
𝑦
𝑤



Lines in 𝑅2

• For Lines in coordinate space 𝑅2 we can write

𝑙 = (𝑛𝑥, 𝑛𝑦, 𝑑) with 𝑛 = 𝑛𝑥, 𝑛𝑦
𝑡

is normal vector and ||𝑛|| = 1

• A line has 2 DoF

• A point (𝑥, 𝑦) lies on 𝑙 if:

𝑛𝑥 𝑥 + 𝑛𝑦 𝑦 + 𝑑 = 0

• Normal can also be encoded 

with an angle 𝜃:
𝑛 = cos 𝜃 , sin 𝜃 𝑡
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Lines in 𝑃2

• Points in 𝑃2: 𝒙 = (𝑥, 𝑦, 𝑤)

• Lines in 𝑃2: 𝒍 = (𝑎, 𝑏, 𝑐)

(again equivalent class: 𝑎, 𝑏, 𝑐 = 𝑘𝑎, 𝑘𝑏, 𝑘𝑐 ∀ 𝑘 ≠ 0 )

Hence also 2 DoF

• All points 𝑥, 𝑦, 𝑤 on the line (𝑎, 𝑏, 𝑐) satisfy:   𝑎𝑥 + 𝑏𝑦 + 𝑐𝑤 = 0
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this is the equation of a plane in 𝑅3 with
normal (a,b,c) going through (0,0,0) 

“think of each line being 
represented by a vector (𝑎, 𝑏, 𝑐)”



Converting Lines between 𝑃2 and 𝑅2

• Points in 𝑃2: 𝒙 = (𝑥, 𝑦, 𝑤)

• Lines in 𝑃2: 𝒍 = (𝑎, 𝑏, 𝑐)

From 𝑃2 to 𝑅2:

𝒍 = (𝑘𝑎, 𝑘𝑏, 𝑘𝑐) chose 𝑘 such that ||(𝑘𝑎, 𝑘𝑏)|| = 1

From 𝑅2 to 𝑃2:

𝒍 = 𝑛𝑥, 𝑛𝑦, 𝑑 is already a line in 𝑃2
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Line at Infininty 
• There is a “special” line, called line at infinity: (0,0,1)

• All points at infinity 𝑥, 𝑦, 0 lie on the line at infinity (0,0,1):

𝑥 ∗ 0 + 𝑦 ∗ 0 + 0 ∗ 1 = 0
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Plane w=0 

Plane w=1 

w-axis

𝑥
𝑦
0

A point at infinity (w=0) 

0
0
1

vector for line at infinity



A Line is defined by two points in 𝑃2

• The line through two points 𝒙 and 𝒙′ is  given by 𝒍 = 𝒙 × 𝒙’

• Proof:

It is: 𝒙 𝒙 × 𝒙’ = 𝒙′ 𝒙 × 𝒙′ = 𝟎

05/11/2015Computer Vision I: Image Formation Process 46

vectors are
orthogonal

This is the  same as: 𝒙 𝒍 = 𝒙′𝒍 = 𝟎

Hence, the line 𝒍 goes through points 𝒙 and 𝒙′



The Intersection of two lines in 𝑃2

• Intersection of two lines 𝒍 and 𝒍’ is the point 𝒙 = 𝒍 × 𝒍’

• Proof:

It is: 𝒍 𝒍 × 𝒍’ = 𝒍′ 𝒍 × 𝒍’ = 𝟎
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vectors are
orthogonal

This is the same as: 𝒍𝒙 = 𝒍′𝒙 = 𝟎

Hence, the point 𝒙 lies on the lines 𝒍 and 𝒍′

Note the „Theorem“ and Proofs have been very similiar, we only
interchanged meaning of points and lines



Duality of points and lines

• Note 𝒍𝒙 = 𝒙𝒍 = 𝟎 (𝒙 and 𝒍 are “interchangeable”)

• Duality Theorem: To any theorem of 2D projective geometry there 
corresponds a dual theorem which may be derived by 
interchanging the roles of points and lines in the original theorem.  
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The intersection of two lines 𝒍 and 𝒍’ is the point 𝒙 = 𝒍 × 𝒍’

The line through two points 𝒙 and 𝒙′ is the line 𝒍 = 𝒙 × 𝒙’



Parallel lines meet in a point at Infinity
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𝒍’

𝒍

𝒍 =
1
0
1

; 𝒍′ =
2
0
1

𝒍 × 𝒍′=  
0 −1 0
1 0 −1
0 1 0

2
0
1

=
0
1
0

Point at 
infinty

In 𝑅2 (Plane 𝑤 = 1)

𝑥

𝑦

intersection𝒍 𝒍’

(-1,0,1)

(-1,1,1)

(-1/2,0,1)

(-1/2,1,1)



2D conic “Kegelschnitt”

• Conics are shapes that arise when a plane intersects a cone

• In compact form: 𝒙𝒕𝑪 𝒙 = 𝟎 where 𝑪 has the form:

• This can be written in inhomogenous coordinates:
𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0

where 𝒙 = (𝑥, 𝑦)

• 𝑪 has 5DoF since unique up to scale:
𝒙𝒕𝑪 𝒙 = 𝑘𝒙𝒕𝑪 𝒙 = 𝒙𝒕𝑘𝑪 𝒙 = 𝟎

• Properties: 𝒍 is tangent to 𝑪 at a point 𝒙 if 𝒍 = 𝑪𝒙
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𝑎 𝑏/2 𝑑/2
𝑏/2 𝑐 𝑒/2
𝑑/2 𝑒/2 𝑓

𝑪 =

~



Example: 2D Conic
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A circle:
𝑥2 + 𝑦2 − 𝑟2 = 0

Parabola:
−𝑥2 + 𝑦 = 0

r

x

y



2D Transformations

2D Transformations in 𝑅2
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Definition:
• Euclidean: translation + rotation
• Similarity (rigid body transform): Euclidean + scaling
• Affine: Similarity + shearing
• Projective: arbitrary linear transform in homogenous coordinates 



2D Transformations of points 

Advantage of homogeneous coordinates (i. e. 𝑃2) 
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• 2D Transformations in homogenous coordinates: 

𝑥
𝑦
1

Transformation 
matrix

𝑎 𝑏 𝑑
𝑒 𝑓 ℎ
𝑖 𝑗 𝑙

𝑥′
𝑦′

𝑤′
=

• Example: translation

𝑥′
𝑦′

= 𝑥
𝑦

+ 𝑡𝑥
𝑡𝑦

𝑥
𝑦
1

1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

𝑥′
𝑦′
1

=

homogeneous coordinates inhomogeneous coordinates



2D Transformations of points
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Here 𝑟𝑖𝑗 is a 2 x 2 rotation matrix with 1 DoF

which can be written as:  
cosΘ −sinΘ
sin Θ cosΘ

[from Hartley Zisserman Page 44]

(two special points on the line at infity )

(of a square)



2D transformations of lines and conics

All points move: 𝒙‘ = 𝑯𝒙 then:

1) Line (defined by points) moves: 
𝒍′= (𝑯−1) 𝒍

2) conic (defined by points) moves: 
𝑪′ = (𝑯−1) 𝑪 𝑯−1

Proof: 

1) Assume 𝒙1 and 𝒙2 lie on 𝒍, and 𝒍′= (𝑯−1) 𝒍 .

Show that 𝒙’1, 𝒙’2 lie on 𝒍’.

𝒙’1
𝑡 𝒍’ = 0 → 𝑯𝒙𝟏

𝑡 𝑯−𝟏 𝑡
𝒍 = 0 →

𝒙1
𝑡𝑯𝒕 𝑯−𝟏 𝒕

𝒍 = 0 → 𝒙1
𝑡 𝑯−𝟏𝑯

𝒕
𝒍 = 0 → 𝒙1

𝑡 𝒍 = 0

2) Homework.
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𝑯
t

t

𝒍 𝒍′

𝒙′
𝒙

!

!

! ! !



Example: Projective Transformation
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Picture from top Affine transformation Picture from the side 
(projective transformation)

1. Circles on the floor are 
circles in the image

2. Squares on the floor are
squares in the image

1. Circles on the floor are 
ellipse in the image

2. Squares on the floor are 
sheared in the image

3. Lines are still parallel

1. Lines converge to a 
vanishing point (not at 
infinity in the image)



In 3D: Points

• 𝒙 = 𝑥, 𝑦, 𝑧 ∈ 𝑅3 has 3 DoF

• With homogeneous coordinates:  𝑥, 𝑦, 𝑧, 1 ∈ 𝑃3

• 𝑃3 is defined as the space 𝑅3 \ (0,0,0,0) such that points 
𝑥, 𝑦, 𝑧, 𝑤 and 𝑘𝑥, 𝑘𝑦, 𝑘𝑧, 𝑘𝑤 are the same for all 𝑘 ≠ 0

• Points: 𝑥, 𝑦, 𝑧, 0 ∈ 𝑃3 are called points at infinity
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In 3D: Planes
• Planes in 𝑅3 are defined by 4 paramters (3 DoF):

• Normal: 𝑛 = 𝑛𝑥, 𝑛𝑦, 𝑛𝑧
• Offset: d

• All points (𝑥, 𝑦, 𝑧) lie on the plane if:

𝑥 𝑛𝑥 + 𝑦 𝑛𝑦 + 𝑧 𝑛𝑧 + 𝑑 = 0

• With homogenous coordinates: 

𝒙 𝜋 = 0, where 𝑥 = (𝑥, 𝑦, 𝑧, 1) and 𝜋 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧 , 𝑑)

• Planes in 𝑃3 are written as: 𝒙 𝜋 = 0

• Points and planes are dual in 𝑃3 (as points and lines have been in 𝑃2)

• Plane at infinity is 𝜋 = (0,0,0,1) since all points at infinity (x,y,z,0) lie on it.
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In 3D: Plane at infinity
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𝑥

𝑦

𝑧

Point at infinityPoint at infinity

line at infinity

All of these elements at infinity lie 
on the plane at infinity



Why is the plane at infinity important (see later)
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Plane at infinity can be used 
to simplify 3D reconstruction 

Plane at infinity is important to 
visualize 3D reconstructions nicely



What is the horizon?
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• The ground plane is special (we stand on it) 
• Horizon is a line at infinity where plane at infinity intersects ground plane 

𝑥

𝑦

𝑧

Ground plane: (0,0,1,0)
Plane at infinity: (0,0,0,1)

Many lines and planes in our real world meet 
at the horizon (since parallel to ground plane)



In 3D: Points at infinity
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• Points at infinity can be real points in a camera 

0
1
0
0

3x4 Camera
Matrix
3D->2D 
projection

3D Point at 
infinty

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙

𝑏
𝑓
1

=

Real point in 
the image



In 3D: Lines

• Unfortunately not a compact form 
(as for points) 

• A simple representation in 𝑅3. 
Define a line via two points 𝑝, 𝑞 ∈ 𝑅3:

𝒓 = 1 − 𝜆 𝒑 + 𝜆 𝒒

• A line has 4 DoF (both points 𝒑, 𝒒 can move arbitrary on the line)

• A more compact, but more complex, way two define a 3D Line is to 
use Plücker coordinates:

𝑳 = 𝒑𝒒𝒕 – 𝒒𝒑𝒕 where det 𝑳 = 0

here 𝑳, 𝒑, 𝒒 are in homogenous coordinates 
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In 3D: Quadrics

• Points 𝑿 on the quadric if: 𝑿𝑻 𝑸 𝑿 = 0

• A quadric 𝑸 is a surface in 𝑃3

• A quadric is a symmetric 4 × 4 matrix with 9 DoF  
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In 3D: Transformation
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(of a cube)



In 3D: Rotations

Rotation 𝑹 in 3D has 3 DoF. It is slightly more complex, and several 
options exist:

1) Euler angles: rotate around, 𝑥, 𝑦, 𝑧-axis in order 
(depends on order, not smooth in parameter space)

2) Axis/angle formulation:
𝑹 𝒏, Θ = 𝑰 + sinΘ 𝒏 × + 1 − cosΘ 𝒏 ×

2

𝒏 is the normal vector (2 DoF) and Θ the angle (1 DoF)

3) Another option is unit quaternions (see book page 40)
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