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Roadmap for next four lectures

* Appearance-based Matching (sec. 4.1)

* Projective Geometry - Basics (sec. 2.1.1-2.1.4)

* Geometry of a Single Camera (sec 2.1.5, 2.1.6)
* Camera versus Human Perception
* The Pinhole Camera
* Lens effects

* Geometry of two Views (sec. 7.2)
 The Homography (e.g. rotating camera)
* Camera Calibration (3D to 2D Mapping)
* The Fundamental and Essential Matrix (two arbitrary images)

* Robust Geometry estimation for two cameras (sec. 6.1.4)

* Multi-View 3D reconstruction (sec. 7.3-7.4)
* General scenario
* From Projective to Metric Space
e Special Cases
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In the following we always ask same questions...

* Two-view transformations we look at:
* Homography H: between two views
e Camera matrix P (mapping from 3D to 2D)
 Fundamental matrix I between two un-calibrated views
* Essential matrix E between two calibrated views

Derive geometrically: H, P, F, E, i.e. what do they mean?

Calibration: Take primitiveslgpoints, lines, planes, cones,...)
to compute H,P,F,E .

* What is the minimal number of points to compute them
(this topic is justified when we look at robust methods)

* |f we have many points with noise: what is the best way to computer them:
algebraic error versus geometric error?

Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H,P,F,E?

What can we do with H, P, F, E? (e.g. Panoramic Stitching)
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Topic 1: Homography H

* Derive geometrically H

e Calibration: Take measurements (points) to compute H
* How do we do that with a minimal number of points?
* How do we do that with many points?

e Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H?

e What can we do with H ?
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Definition Homography

» Definition: A projectivity (or homography) h is an invertible mapping h from
P? to P? such that three points xy, x5, X3 lie on the same line if an only if
h(x1), h(xz), h(x3) do.

* Theorem: A mapping h from P? to P? is a homography if and only if there
exists a non-singular 3 X 3 matrix H with h(x) = Hx

x' hiy hiz has X

* In equatlons X, — Hx y, = h21 hzz h23 :)1]

1 h31 h32 h33

Transformation matrix H

e H has 8 DoF




Homographies in the real world

Image 2 Image 1
v

. hin hip has|

y'| = |ha1 hyy hys <31]>

1 h3; hsp; hss

Transformation matrix H

»X

image 2

Rotating camera

o imagel

Mapping via a plane
Image 1

Image 2

Cast shadow

planar surface \
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Homography from a rotating camera - Derivation

Notation: x (homogenous 2D), X (inhomogenous 2D),
X (homogenous 3D), X(inhomogenous 3D)

fos s
K=l0 mf  py

0 O 1
x = KR(I3x3| —O)X ‘ -
‘mmgc | \\‘l
Camera 0: xO - KO & (ln 3D : Kalxo = ﬁ) — \/ L\‘\\ llnmg‘& 2
Cameral:x; =K{RX ~

S

Put it toghter: x; = K1RK51x0
Hence H = K1RK61 is @ homography (general 3x3 matrix) with 8 DoF

)
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How to compute (i.e. calibrate) H

e We have Ax' = Hx

e H has 8 DoF

* We get for each pair of matching points (x', x) the 3 equations:

1) h11x1 + hlzxz + h13X3 = /’lxi
2) h21x1 + hzzxz + h23x3 = AXé
3) h31x1 + h32X2 + h33X3 = Ax3’
* Eliminate A (by taking ratios). This gives 2 linear independent

equations:
Here 1) divide by 2) gives:

! ! ! ! ! ! T _
(x1x2: X2X2,X3X2, —X1Xq, —X2X1, —x3x1)(h11, Riz, hi3, ha1, hoo, ho3)' =0
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How to compute/calibrate H

_ (h11
* Putit together: his
his
(X1X5 XoXp X3Xy; —X1X{ —XpX1 —XgX{ 0 0 0 1 |hy,
0 0 0 X1X3  XoXg  X3Xg @ —X1Xy —XyX3 —X3X3| |hyo =0
' has3
h31
h3z
133
 We need a minimum of 4 points to get Ah = 0 with
A is 8 X 9 matrix, and h is 9 X 1 vector
e Solution for h is the right null space of A
(?“JLD Computer Vision I: Two-View Geometry 25/11/2015 9



Often we have many, slightly wrong point-matches

We know how to do: x* = argmin,||Ax|| subjectto ||x|]| =1

Algorithm:

1) Take m = 4 point matches (x, x")

2) Assemble A withAh = 0

3) compute h* = argming||Ah|| subjectto ||h|| = 1,
use SVD to do this.
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A numerically more stable solution

e Coefficients of an equation system should be in the same order of
magnitude, in order to not lose significant digits

* Inpixels: x,x;,’ ~ 1eb6
* Conditioning: scale and shift points to be in [-1..1] (or +/- V2)
A general rule, not only for homography computation

e How to doit:

s = max(||z;]) s U _t? |
i T=|0 1 _& u="Tx

t = mean(x;) ) 0 1

|
¥'4]

% Y
@
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A more numerically stable solution

Algorithm:
1) Take m = 4 point matches (x, x")
2) Compute T, and condition points: x,, = Tx; x,,;” = T'x’
3) Assemble A with Ah = 0
4) compute h* = argminy||Ah|| subjectto ||h]| = 1,
use SVD to do this.
4) Get H of unconditioned points: T'"*HT (Note: T'x’ = HTx)

[See HZ page 109]
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Motivation for next lecture

Question 1: If a match is completely wrong then argminy||Ah|| is a bad idea

Question 2: If a match is slightly wrong then argminy,||Ah|| might not be perfect.
Better might be a geometric error: argminy||Hx — x'||

G‘gLD Computer Vision |: Two-View Geometry 25/11/2015 13



Can we get K’s and R from H?

* Assume we have H = K;RK;, 1of a rotating camera,
can we getout K, R, K, ?

 H has 8 DoF
* K{, R, K, have together 13 DoF

* Not directly possible, only with assumptions on K.
(No application needs such a decomposition)
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What can we do with H?

e Panoramic stitching with rotating camera (exercise later)

e £
— i
=T
g 1
AR
> ".‘_ » ‘: . \: “N
.‘ e o ® ‘-a‘
' -
Warp images into a canonical view: x' = Hx
\:"LD Computer Vision I: Two-View Geometry 25/11/2015 15



What can we do with H?

&LD
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What can we do with H?

* Plane-based augmented realty

PLANAR INDOOR

SCENE

The figure appears to
stand on the board.
For this the mapping
between the board
and the image plane is
needed.

[Graz University]




Homography H: Summary

* Derive geometrically H

e Calibration: Take measurements (points) to compute H
* Minimum of 4 points. Solution: right null space of Ah =0
« Many points. Use SVD to solve h* = argminy||Ah||

e Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H?
-> hard. Not discussed much

* What can we do with H ?
-> augmented reality on planes, panoramic stitching




Roadmap for next four lectures

* Appearance-based Matching (sec. 4.1)

* Projective Geometry - Basics (sec. 2.1.1-2.1.4)

* Geometry of a Single Camera (sec 2.1.5, 2.1.6)
* Camera versus Human Perception
* The Pinhole Camera
* Lens effects

* Geometry of two Views (sec. 7.2)
* The Homography (e.g. rotating camera)
e Camera Calibration (3D to 2D Mapping)
* The Fundamental and Essential Matrix (two arbitrary images)

* Robust Geometry estimation for two cameras (sec. 6.1.4)

* Multi-View 3D reconstruction (sec. 7.3-7.4)
* General scenario
* From Projective to Metric Space
e Special Cases

N
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Topic 2: Camera Matrix P

* Derive geometrically P

e Calibration: Take measurements (points) to compute P
* How do we do that with a minimal number of points?
* How do we do that with many points?

e Can we derive the intrinsic (K) an extrinsic (R, C) parameters from P?

e What can we do with P?
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Geometric Derivation: Camera Matrix (Reminder)

|
e Camera matrix P has 11 DoF o X
i ’ |
* |Intrinsic parameters oy " principal ax
+ Principal point coordinates (p,,p,) O
* Focal length [ x =PX
* Pixel magnification factors m x = KR(I3x3| —OX
e Skew (non-rectangular pixels) s f s Dx
K =10 mf p,
o 0 1

e Extrinsic parameters

e Rotation R (3DoF) and translation C (3DoF) relative to world
coordinate system

{:O‘B“%;fLD Computer Vision I: Image Formation Process 25/11/2015 21



How can we compute/calibrate P?

X

/ x =PX
/ x = KR(I3x3| —0) X

Calibration pattern P?

Important move in all directions: x,y, z

G‘??’LD Computer Vision |: Two-View Geometry 25/11/2015 22



How can we compute/calibrate P?

 We have Ax' = PX
e Phas 11 DoF

* We get for each point pair (x’, X) 3 equations, but only 2 linear
independent once, by taking ration (to get rid of 1)

* We need a minimum of 6 Points to get 12 equations

Algorithm (DLT - Direct Linear Transform):
1) Take m = 6 points.
2) Condition points X, x" using T, T’
3) Assemble A with Ap = 0 (A is m X 12 and p is vectorized P)
4) compute p* = argmin,||Ap|| subjectto [|P|| =1
use SVD to do this.
5) Get out unconditioned P = T'~1PT (note T’x’ = P TX)

Note: a version with minimal number of points (6) is same as with many points

[See extended version: HZ page 181]




How can we get K,R,C from P

e Assume P is known, can we get out K, R, 5? x =PX

e Phas 11 DoF x=KR(I33| —0)X

e K, R,E have together 5+3+3=11 DoF
(so it is possible)

e How to do it:

1) The camera center C is the right nullspace of P
PC=KR(C—-0C)=0
2) P =[KR| — KRC];

A = KR
can be done with unique RQ decomposition, where R is upper-
triangular matrix and Q a rotation matrix (see HZ page 579)

Y
o,
ey
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What can we do with P?

* Many things can be done with an externally and internally
calibrated camera

* Robot navigation, augmented reality, photogrammetry ...

)
-
<g:§
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Camera Matrix P: Summary

* Derive geometrically P

x =PX N
_T -""Z.. X = KR(13X3| _C)X

e Calibration: Take measurements (points) to compute P
* 6 or more points. Use SVD to solve p* = argmin||Ap||

e Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H?
-> yes, use SVD and RQ decomposition

e What can we do with P ?

-> very many things (robotic, photogrammetry, augmented reality, ...)




Roadmap for next four lectures

* Appearance-based Matching (sec. 4.1)

* Projective Geometry - Basics (sec. 2.1.1-2.1.4)

* Geometry of a Single Camera (sec 2.1.5, 2.1.6)
* Camera versus Human Perception
* The Pinhole Camera
* Lens effects

* Geometry of two Views (sec. 7.2)
* The Homography (e.g. rotating camera)
* Camera Calibration (3D to 2D Mapping)
* The Fundamental and Essential Matrix (two arbitrary images)

* Robust Geometry estimation for two cameras (sec. 6.1.4)

* Multi-View 3D reconstruction (sec. 7.3-7.4)
* General scenario
* From Projective to Metric Space
e Special Cases

N
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Topic 3: Fundamental/Essential Matrix F /E

* Derive geometrically F/E

* Calibration: Take measurements (points) to compute F /E
* How do we do that with a minimal number of points?
* How do we do that with many points?

* Can we derive the intrinsic (K) an extrinsic (R, C) parameters from F /E?

* What can we do with F/E?

Y
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Reminder: Matching two Images

Find interest points

Find orientated patches around interest points to capture appearance

Encode patch appearance in a descriptor

Find matching patches according to appearance (similar descriptors)

Verify matching patches according to geometry (later lecture)

We will discover in next slides:
Seven 3D points defines how other 3D
points match between 2 views!

Feature descriptors

\_O“LD Computer Vision I: Image Formation Process 25/11/2015 29



3D Geometry

Non-moving scene Rigidly (6D) moving scene
P
~a p’
P1 - "
O @ O

Both cases are equivalent for the following derivations
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Epipolar Geometry

P pointin the world

O1 .

Camera 1

\_OWLD Computer Vision I: Two-View Geometry 25/11/2015 31



P1
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Epipolar Geometry

P1 P2
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Epipolar Geometry

P
P1 P2
; Z €1 baseline €o s
on — =\ 0o
epipoles

« Epipole: Image location of the optical center of the other camera.
(Can be outside of the visible area)
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Epipolar Geometry

P epipolar plane

epipolar lines

Epipolar plane: Plane through both camera centers and world point.
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Epipolar Geometry

P, P epipolar plane

epipolar lines

» Epipolar line: Constrains the location where a particular point (here p,) from
one view can be found in the other.
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Epipolar Geometry

P13 A
$

— Pt B t‘._:.':
O 1

« Epipolar lines:
* Intersect at the epipoles
* In general not parallel

)
-
<g:§
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Example: Converging Cameras
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Example: Motion Parallel to Camera

/ / ,
e at gy
infinity VS . i . _ 5 / infinity
‘_.

e

«  We will use this idea when it comes to stereo matching
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« Epipoles have same coordinate in both images
« Points move along lines radiating from epipole
“focus of expansion”

é_VLD Computer Vision I: Two-View Geometry 25/11/2015 40



The maths behind it: Fundamental/Essential Matrix

derivation on black board

X

epipolar plane

epipolar
lines

(R, T)

G‘gLD Computer Vision I: Robst Two-View Geometry 25/11/2015

41



The maths behind it: Fundamental/Essential Matrix

The 3 vectors are in same plane (co-planar):
DT (=G - Co)

2) X CO

3) X - 61

Set camera matrix: x, = K,[I|0] X and x; = KyR™[I|-C,] X
Hence, Co = 0; K3 'xy = X; RK{ 'x; + C; = X (note X = (X, 1)7T)

The three vectors can be re-writting using xg, X1 :
1) T _

2) X Co = X = KO Xo _ .

3) X —C, = RK{x; + C;, —C; = RK{1x,

We know that:
(K5 1xo)T[T]x RK{1x, =0 which gives: xTK;T[T] RK1x, =0

{:‘VLD Computer Vision I: Two-View Geometry 25/11/2015



The Maths behind it: Fundamental/Essential Matrix

* In an un-calibrated setting (K’s not known):
xg K5 T [T1x RKT *x1 = 0

 Inshort: x) Fx; = 0 where Fis called the Fundamental Matrix
(discovered by Faugeras and Luong 1992, Hartley 1992)

* In an calibrated setting (K’s are known):

We use rays: X; = Kl-_lxi
then we get: xZ[T]x Rx; =0
In short: x) Ex; = 0 where E is called the Essential Matrix

(discovered by Longuet-Higgins 1981)

% Y
@
125:
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1 Min Break
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Fundamental Matrix: Properties

« We have x) Fx; = 0 where Fis called the Fundamental Matrix

e ltisdet F =0. Hence F has 7 DoF

Proof: F = K;T[T]x RK{*.
F has Rank 2 since [T]« has Rank 2 (see also last lecture)

0 —X3 X9
[x]x =] x3 0 —X1

—Xs  Xq 0

Check: det([x]x) = x3(x30 — x1x5) + x5 (x1x3 + x,0) =0

)
-
<g:§
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Fundamental Matrix: Properties

* For any two matching points (i.e. they have the same 3D point)
we have: x) Fx; = 0

. Compute epipolar line in camera 1 of a point xj: X
I =xIF (sincellx; = x Fx; =0) T
camera l

 Compute epipolar Iine in camera 0 of a point x:
lo = Fx; (sincexily=x Fx; =0)

epipolar plane

epipolar
lines

Camera Ox\—“\“\: L’/’)

(R.1) Camera l
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Fundamental Matrix: Properties

. For any two matching points (i.e. have the same 3D point) we have:
xgFx; =0

* Compute ey with e T'F = 07 (i.e. left nullspace of F; can be computed

with SVD)
This is the Epipole e,. Itis: el Fx; = 07x; = 0 for all points x;. Hence all

lines [y for any x4: [, = Fx; go through e, .

eO /////l/o )
ﬂ/\ , ~
; X X
l 0 01
camera l camera l

epipolar plane

* Epipole e; is right null space of F (Fe; = 0)

epipolar
lines

Camera l

(R,T)
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How can we compute F (2-view calibration) ?

* Each pair of matching points gives one linear constraint x' Fx' = 0in F.
For x, x" we get:
[ f11]
f12
B !/ !/ !/ ! !/ ! !/ !/ I f13
X1X1 Xq1Xp X1X3 XpXq1 XX, XpX3 X3X1 X3Xp X3Xg3 f21
f2] 0
f23
f31
f32
—f33—

(here x = (x1,25,x3)7)

e Given m = 8 matching points (x’, x) we can compute the F in a simple way.




How can we compute F (2-view calibration) ?

Method (normalized 8-point algorithm):
1) Take m = 8 points
2) Compute T, and condition points: x = Tx; x’ = T'x’
3) Assemble A with Af = 0, here Aisofsizem X 9, and f vectorized F
4) Compute f* = argming||Af]|| subjectto ||f]| = 1.
Use SVD to do this.
5) Get F of unconditioned points: TTFT' (note: (Tx)"F T'x’ = 0)
4) Make rank(F) = 2

i . = 0 —=
s = max(||x; s - s
z (1) T = { 0 1 } u="Tx

t = mean(x;)
[See HZ page 282]




How to make FF Rank 2

* (Again) Use SVD:

{T[j : T

.:4. = [y | Up—1

Set last singular value g;,_; to 0 then A has Rankp — 1 and not p
(assuming A has originally full Rank)

Proof: diagonal matrix has Rank p — 1 hence A has Rankp — 1

)
-
<g§§
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Can we compute F with just 7 points?

Method (7-point algorithm):
1) Take m = 7 points
2) Assemble A with Af = 0, here Aisofsize 7 X9, and f vectorized F
3) Compute 2D right null space: F; and F, from last two rows in VT
(use the SVD decomposition: A = UDVT)

4) Choose: F = aF; + (1 — a)F, (see comments next slide)

5) Determine a's (either 1 or 3 solutions for a) by using the constraint:
det(aF; + (1 — a)F,) = 0.(see comments next slide)

* Note an 8™ point would determine which of these 3 solutions is the correct one.
* We will see later that the 7-point algorithm is the best choice for the robust case.

Y
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Comments to previous slide

Step 4) Choose: F = aF; + (1 — a)F,
* The full null-space is given by: F = aF; + [F,. We can say that some
norm of F has a fixed value.

* We are free to say that we want: ||aF; + F|| = 1
(here F;, F, are in vectorised form. Note that this is the same as having
F;, F5 in matrix form and using the Frobenius norm for matrices)

o ltis: al||Fi|| + BlIF2ll = [laFill + [[BF2|| = |laFy + BE,||
(triangulation inequality)

* Hence we want: a||F.|| + BI|Fz]| = 1
e Hence we want: a + 8 > 1 (since Fy, F, are rows in V7T)
* Hence we canchoose: f =1—a«a

Y
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Comments to previous slide

Step 5) Compute det(aF; + (1 — @)F,) =

[ G2 ) ccalf )

: o lle « (2-l)e! ol £+ {432
= (o(m«(-/l--ol\a) )
oI s GadJl o] o fndhli

oL a = (/"0”""

=

S

1)

s g

“‘{’ ¥ 5 ¢ et b VLQWLSH

f)

(DZ at (-4 cﬂ (ou*[/?«gl\{l\(ol P4 [ﬂ'ul)'.) p "V ad g Lot e s

L ol t LOLZ* i oL 4 1

f

(This is a cubic polynomial equation for @ which has one or three real-value
solutions for a)
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Can we get K's, R, T from F?

e Assume we have F = ngO_T[i"]x RK;1

Can we get out K1, R, K, T ?
e [ has 7 DoF
* K{,R, Ky, T have together 16 DoF

* Not directly possible. Only with assumptions such as:
* External constraints
 Camera does not change over several frames

(This is an challanging topic (more than 10 years of research!) called
auto-calibration or self-calibration. We look at it in detail in next lecture.)
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Coming back to Essential Matrix

* In a calibrated setting (K’s are known):
we use rays: x; = Ki_lxi
then we get: x[T]x Rx; =0

In short: x) Ex; = 0 where E is called the Essential Matrix

e E has 5 DoF, since T has 3DoF, R 3DoF
(note overall scale of T is unknown)

X

' has also Rank 2

epipolar plane

epipolar
lines

{?‘QJLD Computer Vision |: Robust Two-View Geometry 25/11/2015 55



How to compute E

We have: xJEx; = 0

Given m = 8 matching run 8-point algorithm (as for F)

Given m = 7 run 7-point algorithm and get 1 or 3 solutions

Given m = 5 run 5-point algorithm to get up to 10 solutions.
This is the minimal case since E has 5 DoF.

5-point algorithm history:

* Kruppa, “Zur Ermittlung eines Objektes aus zwei Perspektiven mit innere
Orientierung,” Sitz.-Ber. Akad. Wiss., Wien, Math.-Naturw. KI., Abt. lla, (122):1939-
1948, 1913.
found 11 solutions

M. Demazure, “Sur deux problemes de reconstruction,” Technical Report Rep. 882,
INRIA, Les Chesnay, France, 1988

showed that only 10 valid solutions exist

* D. Nister, “An Efficient Solution to the Five-Point Relative Pose Problem,” IEEE Conference
on Computer Vision and Pattern Recognition, Volume 2, pp. 195-202, 2003

fast method which gives out 10 solutions of a 10 degree polynomial

&LD



Can we get R, T from E?

. Assume we have E = [T], R, can we get outR,T ?
* Ehas5 DoF
* R, T have together 6 DoF

* Yes: We can get T up to scale, and a unique R

X

epipolar plane

epipolar
lines
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How to get a unique T, R?

1) Compute T N

Note: E has rank 2, and T is in the left nullspace of E since Tt[T],= (0,0,0)
This means that an SVD of E must look like:

11 o oy[vo]
E=UDVT = [uy, u; T]|l0 1 oOf|v!
0 0 0l]|pr]

This fixes the norm of T to 1, and correct sign (+/—7") is done in step 3
2) Compute 4 possible solutions for R

R1,2 =+/—UR£00VT,‘ R3,4 :+/—URZ900VT (see derivation HZ page 259; Szeliski page 310)

0O —1 0 0O 1 0
where E =UDVT,Rgp =1 0 0|, R.go=|—-1 0 O
O 0 O O 0 O

3) Derive the unique solution for R and sign for T:
1) det(R) =1

2) Reconstruct a 3D point and choose the solution where it lies in front of

the two cameras. (In robust case: Take solution where most (= 5) points
lie in front of the cameras)

Sy
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Visualization of the 4 solutions for R, T

[ ]
I// N
I s
. /" .

A /
¥ e ———
\, > /
/ 7N /\
/ ) : ] 4
~ A ~ /

L /
e /
B
(a) (b) 4 »
This is the correct solution, since .
point is in front of cameras! P
/ /
/ /'//
/ o ,_
- ST . o ~
/A T >( B’ /B’ —T A
/ - "
/ ~
// //
/ //
f e B
ko (c) (d)

The property that points must lie in front of the camera is known as Chirality (Hartley 1998)
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What can we do with F, E?

* ['/E encode the geometry of 2 cameras

e Can be used to find matching points (dense or sparse) between
two views (we use this a lot in later lecture on stereo matching!)

* F/E encodes the essential information to do 3D reconstruction
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Fundamental and Essential Matrix: Summary

e Derive geometrically F, E : 7 " |

* F for un-calibrated cameras ATET

» E for calibrated cameras
 Calibration: Take measurements (points) to compute F, E
 F minimum of 7 points -> 1 or 3 real solutions.
* F many points -> least square solution with SVD
* E minimum of 5 points -> 10 solutions
* F many points -> least square solution with SVD

e Can we derive the intrinsic (K) an extrinsic (R, T) parameters from F, E?
-> F next lecture
-> E yes can be done (translation up to scale)

e What can we do with F,E ?
-> essential tool for 3D reconstruction
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Motivation for next lecture

Question 1: If a match is completely wrong then argminy||Ah|| is a bad idea

Question 2: If a match is slightly wrong then argminy,||Ah|| might not be perfect.
Better might be a geometric error: argminy||Hx — x'||

G‘gLD Computer Vision |: Two-View Geometry 25/11/2015 62



