Computer Vision I -Geometry Estimation from two Images

Carsten Rother

25/11/2015

Computer Vision I: Image Formation Process

Roadmap for next four lectures

- Appearance-based Matching (sec. 4.1)
- Projective Geometry Basics (sec. 2.1.1-2.1.4)
- Geometry of a Single Camera (sec 2.1.5, 2.1.6)
 - Camera versus Human Perception
 - The Pinhole Camera
 - Lens effects
- Geometry of two Views (sec. 7.2)
 - The Homography (e.g. rotating camera)
 - Camera Calibration (3D to 2D Mapping)
 - The Fundamental and Essential Matrix (two arbitrary images)
- Robust Geometry estimation for two cameras (sec. 6.1.4)
- Multi-View 3D reconstruction (sec. 7.3-7.4)
 - General scenario
 - From Projective to Metric Space
 - Special Cases

In the following we always ask same questions...

- Two-view transformations we look at:
 - Homography *H*: between two views
 - Camera matrix *P* (mapping from 3D to 2D)
 - Fundamental matrix *F* between two un-calibrated views
 - Essential matrix *E* between two calibrated views
- **Derive geometrically**: *H*, *P*, *F*, *E*, i.e. what do they mean?
- Calibration: Take primitives (points, lines, planes, cones,...) to compute *H*, *P*, *F*, *E* :
 - What is the minimal number of points to compute them (this topic is justified when we look at robust methods)
 - If we have many points with noise: what is the best way to computer them: algebraic error versus geometric error?
- Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H, P, F, E?
- What can we do with *H*, *P*, *F*, *E*? (e.g. Panoramic Stitching)

Topic 1: Homography *H*

- Derive geometrically *H*
- Calibration: Take measurements (points) to compute *H*
 - How do we do that with a minimal number of points?
 - How do we do that with many points?
- Can we derive the intrinsic (*K*) an extrinsic (*R*, *C*) parameters from *H*?
- What can we do with *H* ?

Definition Homography

- Definition: A projectivity (or homography) h is an invertible mapping h from P² to P² such that three points x₁, x₂, x₃ lie on the same line if an only if h(x₁), h(x₂), h(x₃) do.
- **Theorem**: A mapping h from P^2 to P^2 is a homography if and only if there exists a non-singular 3×3 matrix H with h(x) = Hx

• In equations:
$$\mathbf{x}' = H\mathbf{x}$$
 $\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$

Transformation matrix H

• *H* has 8 DoF

Homographies in the real world

Homography from a rotating camera - Derivation

Notation: **x** (homogenous 2D), $\tilde{\mathbf{x}}$ (inhomogenous 2D), $\tilde{\mathbf{X}}$ (inhomogenous 3D), \tilde{X} (inhomogenous 3D)

$$K = \begin{bmatrix} f & s & p_x \\ 0 & mf & p_y \\ 0 & 0 & 1 \end{bmatrix}$$
$$x = K R (I_{3\times 3} | -\tilde{C}) X$$

Camera 0: $x_0 = K_0 \widetilde{X}$ (in 3D : $K_0^{-1}x_0 = \widetilde{X}$) Camera 1: $x_1 = K_1 R \widetilde{X}$

Put it toghter: $x_1 = K_1 R K_0^{-1} x_0$ Hence $H = K_1 R K_0^{-1}$ is a homography (general 3x3 matrix) with 8 DoF

How to compute (i.e. calibrate) *H*

- We have $\lambda x' = Hx$
- *H* has 8 DoF
- We get for each pair of matching points (x', x) the 3 equations:
 1) h₁₁x₁ + h₁₂x₂ + h₁₃x₃ = λx'₁
 2) h₂₁x₁ + h₂₂x₂ + h₂₃x₃ = λx'₂
 3) h₃₁x₁ + h₃₂x₂ + h₃₃x₃ = λx₃'
- Eliminate λ (by taking ratios). This gives 2 linear independent equations: Here 1) divide by 2) gives:

$$(x_1x_2', x_2x_2', x_3x_2', -x_1x_1', -x_2x_1', -x_3x_1')(h_{11}, h_{12}, h_{13}, h_{21}, h_{22}, h_{23})^T = 0$$

How to compute/calibrate *H*

- We need a minimum of 4 points to get Ah = 0 with
 A is 8 × 9 matrix, and h is 9 × 1 vector
- Solution for *h* is the right null space of *A*

Often we have many, slightly wrong point-matches

We know how to do: $x^* = argmin_x ||Ax||$ subject to ||x|| = 1

Algorithm:

- 1) Take $m \ge 4$ point matches (x, x')
- 2) Assemble A with Ah = 0
- 3) compute $h^* = argmin_h ||Ah||$ subject to ||h|| = 1, use SVD to do this.

A numerically more stable solution

- Coefficients of an equation system should be in the same order of magnitude, in order to not lose significant digits
- In pixels: $x_a x_b' \sim 1e6$
- Conditioning: scale and shift points to be in [-1..1] (or +/- $\sqrt{2}$)
- A general rule, not only for homography computation
- How to do it:

$$s = \max_{i} (\|x_{i}\|) t = \operatorname{mean}(x_{i})$$
$$T = \begin{bmatrix} \frac{1}{s} & 0 & -\frac{t_{x}}{s} \\ 0 & \frac{1}{s} & -\frac{t_{y}}{s} \\ 0 & 0 & 1 \end{bmatrix}$$
$$u = Tx$$

Algorithm: 1) Take $m \ge 4$ point matches (x, x')2) Compute T, and condition points: $x_n = Tx$; $x_n' = T'x'$ 3) Assemble A with Ah = 04) compute $h^* = argmin_h ||Ah||$ subject to ||h|| = 1, use SVD to do this. 4) Get H of unconditioned points: $T'^{-1}HT$ (Note: T'x' = HTx)

[See HZ page 109]

Motivation for next lecture

Question 1: If a match is completely wrong then $argmin_h ||Ah||$ is a bad idea

Question 2: If a match is slightly wrong then $argmin_h ||Ah||$ might not be perfect. Better might be a geometric error: $argmin_h ||Hx - x'||$

Can we get *K*'s and *R* from *H*?

- Assume we have $H = K_1 R K_0^{-1}$ of a rotating camera, can we get out K_1, R, K_0 ?
- *H* has 8 DoF
- K_1 , R, K_0 have together 13 DoF
- Not directly possible, only with assumptions on *K*. (No application needs such a decomposition)

What can we do with *H*?

• Panoramic stitching with rotating camera (exercise later)

Warp images into a canonical view: x' = Hx

What can we do with *H*?

What can we do with *H*?

• Plane-based augmented realty

The figure appears to stand on the board. For this the mapping between the board and the image plane is needed.

Homography *H*: Summary

• Derive geometrically *H*

- Calibration: Take measurements (points) to compute H
 - Minimum of 4 points. Solution: right null space of Ah = 0
 - Many points. Use SVD to solve $h^* = argmin_h ||Ah||$
- Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H?
 -> hard. Not discussed much
- What can we do with *H* ?
 - -> augmented reality on planes, panoramic stitching

Roadmap for next four lectures

- Appearance-based Matching (sec. 4.1)
- Projective Geometry Basics (sec. 2.1.1-2.1.4)
- Geometry of a Single Camera (sec 2.1.5, 2.1.6)
 - Camera versus Human Perception
 - The Pinhole Camera
 - Lens effects
- Geometry of two Views (sec. 7.2)
 - The Homography (e.g. rotating camera)
 - Camera Calibration (3D to 2D Mapping)
 - The Fundamental and Essential Matrix (two arbitrary images)
- Robust Geometry estimation for two cameras (sec. 6.1.4)
- Multi-View 3D reconstruction (sec. 7.3-7.4)
 - General scenario
 - From Projective to Metric Space
 - Special Cases

Topic 2: Camera Matrix P

- Derive geometrically P
- Calibration: Take measurements (points) to compute P
 - How do we do that with a minimal number of points?
 - How do we do that with many points?
- Can we derive the intrinsic (*K*) an extrinsic (*R*, *C*) parameters from *P*?
- What can we do with *P*?

Geometric Derivation: Camera Matrix (Reminder)

Rotation *R* (3DoF) and translation *C* (3DoF) relative to world coordinate system

How can we compute/calibrate *P*?

Important move in all directions: x, y, z

How can we compute/calibrate *P*?

- We have $\lambda x' = PX$
- *P* has 11 DoF
- We get for each point pair (x', X) 3 equations, but only 2 linear independent once, by taking ration (to get rid of λ)
- We need a minimum of 6 Points to get 12 equations

<u>Algorithm (DLT - Direct Linear Transform):</u>

1) Take $m \ge 6$ points.

2) Condition points X, x' using T, T'

3) Assemble A with Ap = 0 (A is $m \times 12$ and p is vectorized P)

4) compute $p^* = argmin_p ||Ap||$ subject to ||p|| = 1use SVD to do this.

5) Get out unconditioned $P = T'^{-1}PT$ (note T'x' = PTX)

Note: a version with minimal number of points (6) is same as with many points

[See extended version: HZ page 181]

How can we get K,R,C from P

- Assume P is known, can we get out K, R, \tilde{C} ?
- P has 11 DoF
- K, R, C have together 5+3+3=11 DoF (so it is possible)
- How to do it:
- 1) The camera center \tilde{C} is the right nullspace of P

$$PC = K R (\tilde{C} - \tilde{C}) = 0$$

2)
$$P = [KR| - KR\tilde{C}];$$

A = KR

can be done with unique RQ decomposition, where R is uppertriangular matrix and Q a rotation matrix (see HZ page 579)

x = P X

 $x = K R (I_{3\times 3} | -\widetilde{C}) X$

What can we do with *P*?

- Many things can be done with an externally and internally calibrated camera
- Robot navigation, augmented reality, photogrammetry ...

Camera Matrix *P*: Summary

Derive geometrically P

$$\begin{array}{l} x = P X \\ x = K R \left(I_{3 \times 3} \mid -\widetilde{C} \right) X \end{array}$$

- Calibration: Take measurements (points) to compute P
 - 6 or more points. Use SVD to solve $m{p}^* = argmin_h \|Am{p}\|$
- Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H?
 -> yes, use SVD and RQ decomposition
- What can we do with *P* ?
 - -> very many things (robotic, photogrammetry, augmented reality, ...)

Roadmap for next four lectures

- Appearance-based Matching (sec. 4.1)
- Projective Geometry Basics (sec. 2.1.1-2.1.4)
- Geometry of a Single Camera (sec 2.1.5, 2.1.6)
 - Camera versus Human Perception
 - The Pinhole Camera
 - Lens effects
- Geometry of two Views (sec. 7.2)
 - The Homography (e.g. rotating camera)
 - Camera Calibration (3D to 2D Mapping)
 - The Fundamental and Essential Matrix (two arbitrary images)
- Robust Geometry estimation for two cameras (sec. 6.1.4)
- Multi-View 3D reconstruction (sec. 7.3-7.4)
 - General scenario
 - From Projective to Metric Space
 - Special Cases

Topic 3: Fundamental/Essential Matrix F/E

- Derive geometrically F/E
- Calibration: Take measurements (points) to compute F/E
 - How do we do that with a minimal number of points?
 - How do we do that with many points?
- Can we derive the intrinsic (K) an extrinsic (R, C) parameters from F/E?
- What can we do with F/E?

- Find interest points
- Find orientated patches around interest points to capture appearance
- Encode patch appearance in a descriptor
- Find matching patches according to appearance (similar descriptors)
- Verify matching patches according to geometry (later lecture)

3D Geometry

Both cases are equivalent for the following derivations

• Epipole: Image location of the optical center of the other camera. (Can be outside of the visible area)

Epipolar plane: Plane through both camera centers and world point.

• Epipolar line: Constrains the location where a particular point (here p_1) from one view can be found in the other.

- Epipolar lines:
 - Intersect at the epipoles
 - In general not parallel

Example: Converging Cameras

Example: Motion Parallel to Camera

• We will use this idea when it comes to stereo matching

Example: Forward Motion

- Epipoles have same coordinate in both images
- Points move along lines radiating from epipole "focus of expansion"

The maths behind it: Fundamental/Essential Matrix

The maths behind it: Fundamental/Essential Matrix

The 3 vectors are in same plane (co-planar): 1) $\tilde{T} (= \tilde{C}_1 - \tilde{C}_0)$ 2) $\tilde{X} - \tilde{C}_0$ 3) $\tilde{X} - \tilde{C}_1$

Set camera matrix: $x_0 = K_0[I|0] X$ and $x_1 = K_1 R^{-1}[I|-\tilde{C}_1] X$ Hence, $\tilde{C}_0 = 0$; $K_0^{-1}x_0 = \tilde{X}$; $RK_1^{-1}x_1 + \tilde{C}_1 = \tilde{X}$ (note $X = (\tilde{X}, 1)^T$)

The three vectors can be re-writting using x_0, x_1 : 1) \tilde{T} 2) $\tilde{X} - \tilde{C}_0 = \tilde{X} = K_0^{-1} x_0$ 3) $\tilde{X} - \tilde{C}_1 = RK_1^{-1} x_1 + \tilde{C}_1 - \tilde{C}_1 = RK_1^{-1} x_1$

We know that: $(K_0^{-1}x_0)^T[\tilde{T}]_{\times} RK_1^{-1}x_1 = 0$ which gives: $x_0^TK_0^{-T}[\tilde{T}]_{\times} RK_1^{-1}x_1 = 0$

The Maths behind it: Fundamental/Essential Matrix

• In an un-calibrated setting (K's not known):

 $x_0^T K_0^{-T} [\tilde{T}]_{\times} R K_1^{-1} x_1 = 0$

- In short: $x_0^T F x_1 = 0$ where *F* is called the Fundamental Matrix (discovered by Faugeras and Luong 1992, Hartley 1992)
- In an calibrated setting (K's are known):

we use rays: $x_i = K_i^{-1} x_i$ then we get: $x_0^T [\tilde{T}]_{\times} R x_1 = 0$ In short: $x_0^T E x_1 = 0$ where *E* is called the Essential Matrix (discovered by Longuet-Higgins 1981)

Halfway Slide

1 Min Break

Computer Vision I: Image Formation Process

25/11/2015 44

Fundamental Matrix: Properties

- We have $x_0^T F x_1 = 0$ where F is called the Fundamental Matrix
- It is det *F* = 0. Hence F has 7 DoF

Proof: $F = K_0^{-T} [\tilde{T}]_{\times} R K_1^{-1}$ *F* has Rank 2 since $[\tilde{T}]_{\times}$ has Rank 2 (see also last lecture)

$$[\mathbf{x}]_{\times} = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$$

Check: det($[x]_{\times}$) = $x_3(x_30 - x_1x_2) + x_2(x_1x_3 + x_20) = 0$

Fundamental Matrix: Properties

- For any two matching points (i.e. they have the same 3D point) we have: $x_0^T F x_1 = 0$
- Compute epipolar line in camera 1 of a point x_0 : $l_1^T = x_0^T F$ (since $l_1^T x_1 = x_0^T F x_1 = 0$)

• Compute epipolar line in camera 0 of a point x_1 : $l_0 = Fx_1$ (since $x_0^T l_0 = x_0^T Fx_1 = 0$)

Fundamental Matrix: Properties

- For any two matching points (i.e. have the same 3D point) we have: $x_0^T F x_1 = 0$
- Compute e_0 with $e_0^T F = \mathbf{0}^T$ (i.e. left nullspace of F; can be computed with SVD) This is the Epipole e_0 . It is: $e_0^T F x_1 = \mathbf{0}^T x_{1_T} = 0$ for all points x_1 . Hence all lines l_0 for any x_1 : $l_0 = F x_1$ go through e_0^T .

How can we compute F (2-view calibration)?

• Each pair of matching points gives one linear constraint $x^T F x' = 0$ in F. For x, x' we get:

$$\begin{bmatrix} x_{1}x_{1}' & x_{1}x_{2}' & x_{1}x_{3}' & x_{2}x_{1}' & x_{2}x_{2}' & x_{2}x_{3}' & x_{3}x_{1}' & x_{3}x_{2}' & x_{3}x_{3}' \\ & & & & \\ & & & \\ & & & & \\ &$$

(here $x = (x_1, x_2, x_3)^T$)

• Given $m \ge 8$ matching points (x', x) we can compute the F in a simple way.

ГĹ

Method (normalized 8-point algorithm):

- 1) Take $m \ge 8$ points
- 2) Compute *T*, and condition points: x = Tx; x' = T'x'
- 3) Assemble A with Af = 0, here A is of size $m \times 9$, and f vectorized F
- 4) Compute $f^* = argmin_f ||Af||$ subject to ||f|| = 1. Use SVD to do this.
- 5) Get *F* of unconditioned points: $T^T F T'$ (note: $(Tx)^T F T'x' = 0$)
- 4) Make rank(F) = 2

$$s = \max_{i} (\|x_{i}\|) \qquad T = \begin{bmatrix} \frac{1}{s} & 0 & -\frac{t_{x}}{s} \\ 0 & \frac{1}{s} & -\frac{t_{y}}{s} \\ 0 & 0 & 1 \end{bmatrix} \qquad u = Tx$$
$$t = \operatorname{mean}(x_{i})$$

Computer Vision I: Two-View Geometry

[See HZ page 282]

How to make F Rank 2

• (Again) Use SVD:

$$oldsymbol{A} = \left[egin{array}{c|c} u_0 & \cdots & u_{p-1} \end{array}
ight] \left[egin{array}{cc} \sigma_0 & & & \ & \ddots & & \ & & \ddots & \ & & \sigma_{p-1} \end{array}
ight] \left[egin{array}{cc} v_0^T \ \hline v_{p-1}^T \ \hline v_{p-1}^T \end{array}
ight]$$

Set last singular value σ_{p-1} to 0 then A has Rank p-1 and not p (assuming A has originally full Rank)

Proof: diagonal matrix has Rank p-1 hence A has Rank p-1

Can we compute *F* with just 7 points?

Method (7-point algorithm):

1) Take m = 7 points

2) Assemble A with Af = 0, here A is of size 7 \times 9, and f vectorized F

3) Compute 2D right null space: F_1 and F_2 from last two rows in V^T (use the SVD decomposition: $A = UDV^T$)

4) Choose: $F = \alpha F_1 + (1 - \alpha)F_2$ (see comments next slide)

5) Determine $\alpha's$ (either 1 or 3 solutions for α) by using the constraint: det $(\alpha F_1 + (1 - \alpha)F_2) = 0$.(see comments next slide)

- Note an 8th point would determine which of these 3 solutions is the correct one.
- We will see later that the 7-point algorithm is the best choice for the robust case.

Comments to previous slide

Step 4) Choose: $F = \alpha F_1 + (1 - \alpha)F_2$

- The full null-space is given by: $F = \alpha F_1 + \beta F_2$. We can say that some norm of F has a fixed value.
- We are free to say that we want: $\|\alpha F_1 + \beta F_2\| \ge 1$ (here F_1 , F_2 are in vectorised form. Note that this is the same as having F_1 , F_2 in matrix form and using the Frobenius norm for matrices)
- It is: $\alpha ||F_1|| + \beta ||F_2|| = ||\alpha F_1|| + ||\beta F_2|| \ge ||\alpha F_1 + \beta F_2||$ (triangulation inequality)
- Hence we want: $\alpha \|F_1\| + \beta \|F_2\| \ge 1$
- Hence we want: $\alpha + \beta \ge 1$ (since F_1 , F_2 are rows in V^T)
- Hence we can choose: $\beta = 1 \alpha$

Comments to previous slide

Step 5) Compute det($\alpha F_1 + (1 - \alpha)F_2$) = 0

$$\left| \begin{array}{c} \left(\begin{array}{c} a & b & c \\ d & e & f \\ g & h & i \end{array} \right) + \left(\begin{array}{c} A - d \end{array} \right) \left(\begin{array}{c} a' & b' & c' \\ d' & e' & f' \\ g' & h' & i' \end{array} \right) \right| = \left| \begin{array}{c} da + (A - d)a' & & \\ & & & \\ \end{array} \right| \\ = \left(da + (A - d)a' \right) \left| \begin{array}{c} de + (A - d)e' & df + (A - d)f' \\ dh + (A - d)h' & di + (A - d)i' \end{array} \right| + \\ \end{array} \right| + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)h' & di + (A - d)i' \right) + \\ \end{array} \right| + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ \end{array} \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ \end{array} \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ \end{array} \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ \end{array} \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(di + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ \\ = \left(da + (A - d)a' \right) \left(de + (A - d)e' \right) \left(de + (A - d)i \right) + \\ \\ = \left(da + (A - d)a' \right) \left(de + (A - d)a' \right) \left(de + (A - d)i \right) + \\ \\ = \left(da + (A -$$

(This is a cubic polynomial equation for α which has one or three real-value solutions for α)

Can we get $K's, R, \tilde{T}$ from F?

- Assume we have $F = x_0^T K_0^{-T} [\tilde{T}]_{\times} R K_1^{-1}$ Can we get out K_1, R, K_0, \tilde{T} ?
- *F* has 7 DoF
- K_1 , R, K_0 , T have together 16 DoF
- Not directly possible. Only with assumptions such as:
 - External constraints
 - Camera does not change over several frames

(This is an challanging topic (more than 10 years of research!) called auto-calibration or self-calibration. We look at it in detail in next lecture.)

Coming back to Essential Matrix

• In a calibrated setting (*K*'s are known):

we use rays: $x_i = K_i^{-1} x_i$ then we get: $x_0^T [\tilde{T}]_{\times} R x_1 = 0$ In short: $x_0^T E x_1 = 0$ where *E* is called the Essential Matrix

- **E** has 5 DoF, since \tilde{T} has 3DoF, R 3DoF (note overall scale of \tilde{T} is unknown)
- E has also Rank 2

How to compute *E*

- We have: $x_0^T E x_1 = 0$
- Given $m \ge 8$ matching run 8-point algorithm (as for F)
- Given m = 7 run 7-point algorithm and get 1 or 3 solutions
- Given m = 5 run 5-point algorithm to get up to 10 solutions. This is the minimal case since E has 5 DoF.
- <u>5-point algorithm history:</u>
 - Kruppa, "Zur Ermittlung eines Objektes aus zwei Perspektiven mit innere Orientierung," Sitz.-Ber. Akad. Wiss., Wien, Math.-Naturw. Kl., Abt. IIa, (122):1939-1948, 1913. found 11 solutions
 - M. Demazure, "Sur deux problemes de reconstruction," Technical Report Rep. 882, INRIA, Les Chesnay, France, 1988

showed that only 10 valid solutions exist

 D. Nister, "An Efficient Solution to the Five-Point Relative Pose Problem," IEEE Conference on Computer Vision and Pattern Recognition, Volume 2, pp. 195-202, 2003 fast method which gives out 10 solutions of a 10 degree polynomial

Can we get R, \tilde{T} from E?

- Assume we have $E = [\tilde{T}]_{\times} R$, can we get out R, \tilde{T} ?
- E has 5 DoF
- R, \tilde{T} have together 6 DoF
- Yes: We can get \widetilde{T} up to scale, and a unique R

How to get a unique \tilde{T} , R?

1) Compute \widetilde{T}

Note: *E* has rank 2, and \tilde{T} is in the left nullspace of *E* since $\tilde{T}^t[\tilde{T}]_{\times} = (0,0,0)$ This means that an SVD of *E* must look like:

$$E = UDV^{T} = \begin{bmatrix} u_{0} & u_{1} & \tilde{T} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{0} \\ v_{1}^{T} \\ v_{2}^{T} \end{bmatrix}$$

This fixes the norm of \tilde{T} to 1, and correct sign $(+/-\tilde{T})$ is done in step 3

2) Compute 4 possible solutions for R

 $R_{1,2} = +/-UR_{90^o}^T V^T; R_{3,4} = +/-UR_{-90^o}^T V^T \text{ (see derivation HZ page 259; Szeliski page 310)}$ where $E = UDV^T, R_{90} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, R_{-90} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

3) Derive the unique solution for R and sign for \widetilde{T} :

- 1) det(R) = 1
- 2) Reconstruct a 3D point and choose the solution where it lies in front of the two cameras. (In robust case: Take solution where most (\geq 5) points lie in front of the cameras)

Visualization of the 4 solutions for R, \tilde{T}

The property that points must lie in front of the camera is known as Chirality (Hartley 1998)

What can we do with *F*, *E*?

- F/E encode the geometry of 2 cameras
- Can be used to find matching points (dense or sparse) between two views (we use this a lot in later lecture on stereo matching!)
- F/E encodes the essential information to do 3D reconstruction

Computer Vision I: Robust Two-View Geometry

25/11/2015 60

Fundamental and Essential Matrix: Summary

- Derive geometrically *F*, *E* :
 - *F* for un-calibrated cameras
 - *E* for calibrated cameras

- Calibration: Take measurements (points) to compute *F*, *E*
 - *F* minimum of 7 points -> 1 or 3 real solutions.
 - F many points -> least square solution with SVD
 - *E* minimum of 5 points -> 10 solutions
 - *E* many points -> least square solution with SVD
- Can we derive the intrinsic (K) an extrinsic (R, T) parameters from F, E?
 -> F next lecture
 - -> E yes can be done (translation up to scale)
- What can we do with *F*, *E* ?
 - -> essential tool for 3D reconstruction

Motivation for next lecture

Question 1: If a match is completely wrong then $argmin_h ||Ah||$ is a bad idea

Question 2: If a match is slightly wrong then $argmin_h ||Ah||$ might not be perfect. Better might be a geometric error: $argmin_h ||Hx - x'||$

