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Roadmap for next four lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4) 

• Multi-View 3D reconstruction (sec. 7.3-7.4)
• General scenario
• From Projective to Metric Space
• Special Cases

25/11/2015 2Computer Vision I: Image Formation Process



In the following we always ask same questions…
• Two-view transformations we look at: 

• Homography 𝐻: between two views
• Camera matrix 𝑃 (mapping from 3D to 2D)
• Fundamental matrix 𝐹 between two un-calibrated views
• Essential matrix 𝐸 between two calibrated views

• Derive geometrically: 𝐻, 𝑃, 𝐹, 𝐸, i.e. what do they mean?

• Calibration: Take primitives (points, lines, planes, cones,…) 
to compute 𝐻, 𝑃, 𝐹, 𝐸 :

• What is the minimal number of points to compute them 
(this topic is justified when we look at robust methods)

• If we have many points with noise: what is the best way to computer them: 
algebraic error versus geometric error?

• Can we derive the intrinsic (𝐾) an extrinsic (𝑅, 𝐶) parameters from 𝐻, 𝑃, 𝐹, 𝐸?

• What can we do with 𝐻, 𝑃, 𝐹, 𝐸? (e.g. Panoramic Stitching)
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Topic 1: Homography 𝐻

• Derive geometrically 𝐻

• Calibration: Take measurements (points) to compute 𝐻

• How do we do that with a minimal number of points?

• How do we do that with many points?

• Can we derive the intrinsic (𝐾) an extrinsic (𝑅, 𝐶) parameters from 𝐻?

• What can we do with 𝐻 ?
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Definition Homography
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• Definition: A projectivity (or homography) ℎ is an invertible mapping ℎ from 
𝑃2 to  𝑃2 such that three points 𝑥1, 𝑥2, 𝑥3 lie on the same line if an only if 
ℎ(𝑥1), ℎ(𝑥2), ℎ(𝑥3) do.

• Theorem: A mapping ℎ from 𝑃2 to  𝑃2 is a homography if and only if there 
exists a non-singular 3 × 3 matrix 𝐻 with ℎ(𝑥) = 𝐻𝑥

• In equations: x′ = 𝐻𝑥

• 𝐻 has 8 DoF

𝑥
𝑦
1

Transformation matrix 𝐻

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

𝑥′
𝑦′
1

=



Homographies in the real world
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𝑥
𝑦
1

Transformation matrix 𝐻

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

𝑥′
𝑦′
1

=

Cast shadowRotating camera

Mapping via a plane

Image 1Image 2

Image 1

Image 2



Notation: x (homogenous 2D), x (inhomogenous 2D), 
𝑿 (homogenous 3D), 𝑿(inhomogenous 3D) 

Homography from a rotating camera - Derivation

25/11/2015Computer Vision I: Image Formation Process 7

Put it toghter:  𝒙𝟏 = 𝑲𝟏𝑹𝑲𝟎
−𝟏𝒙𝟎

Hence 𝑯 = 𝑲𝟏𝑹𝑲𝟎
−𝟏 is a homography (general 3x3 matrix) with 8 DoF     

~

𝑲 =
𝑓 𝑠 𝑝𝑥
0 𝑚𝑓 𝑝𝑦
0 0 1

𝒙 = 𝑲 𝑹 (𝑰𝟑×𝟑 | − 𝑪) 𝑿

Camera 0: 𝒙𝟎 = 𝑲𝟎 𝑿 (in 3D ∶ 𝑲𝟎
−𝟏𝒙𝟎 = 𝑿)

Camera 1: 𝒙𝟏 = 𝑲𝟏 𝑹 𝑿

~

~

~

~

~



How to compute (i.e. calibrate) 𝐻

• We have 𝜆𝑥′ = 𝐻𝑥

• 𝐻 has 8 DoF

• We get for each pair of matching points (𝑥′, 𝑥) the 3 equations:

1) ℎ11𝑥1 + ℎ12𝑥2 + ℎ13𝑥3 = 𝜆𝑥1
′

2) ℎ21𝑥1 + ℎ22𝑥2 + ℎ23𝑥3 = 𝜆𝑥2
′

• Eliminate 𝜆 (by taking ratios). This gives 2 linear independent 
equations:
Here 1) divide by 2) gives:
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3) ℎ31𝑥1 + ℎ32𝑥2 + ℎ33𝑥3 = 𝜆𝑥3′

𝑥1𝑥2
′ , 𝑥2𝑥2

′ , 𝑥3𝑥2
′ , −𝑥1𝑥1

′ , −𝑥2𝑥1
′ , −𝑥3𝑥1

′ ℎ11, ℎ12, ℎ13, ℎ21, ℎ22, ℎ23
𝑇 = 0



How to compute/calibrate 𝐻
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ℎ11
ℎ12
ℎ13
ℎ21
ℎ22
ℎ23
ℎ31
ℎ32
ℎ33

= 0

• Put it together:

• We need a minimum of 4 points to get 𝐴ℎ = 0 with 
𝐴 𝑖𝑠 8 × 9 matrix, and ℎ 𝑖𝑠 9 × 1 vector 

• Solution for ℎ is the right null space of 𝐴

𝑥1𝑥2
′ 𝑥2𝑥2

′ 𝑥3𝑥2
′ −𝑥1𝑥1

′ −𝑥2𝑥1
′ −𝑥3𝑥1

′ 0 0 0

0 0 0 𝑥1𝑥3
′ 𝑥2𝑥3

′ 𝑥3𝑥3
′ −𝑥1𝑥2

′ −𝑥2𝑥2
′ −𝑥3𝑥2

′

.

.

.



Often we have many, slightly wrong point-matches
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image

Algorithm: 
1) Take 𝑚 ≥ 4 point matches (𝑥, 𝑥’)
2) Assemble  𝐴 with 𝐴𝒉 = 𝟎
3) compute 𝒉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉 subject to 𝒉 = 𝟏,

use SVD to do this. 

We know how to do: 𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒙 𝐴𝒙 subject to 𝒙 = 𝟏



A numerically more stable solution
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• Coefficients of an equation system should be in the same order of
magnitude, in order to not lose significant digits

• In pixels: 𝑥𝑎𝑥𝑏 ’ ~ 1𝑒6

• Conditioning: scale and shift points to be in [-1..1] (or +/- √2 )

• A general rule, not only for homography computation

• How to do it:



A more numerically stable solution
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Algorithm: 
1) Take 𝑚 ≥ 4 point matches (𝑥, 𝑥’)
2) Compute 𝑇, and condition points: 𝑥𝑛 = 𝑇𝑥; 𝑥𝑛’ = 𝑇’𝑥’
3) Assemble  𝐴 with 𝐴𝒉 = 0
4) compute 𝒉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉 subject to 𝒉 = 𝟏,

use SVD to do this. 
4) Get 𝐻 of unconditioned points: 𝑇′−1𝐻𝑇 (Note: 𝑇′𝑥′ = 𝐻𝑇𝑥) 

[See HZ page 109] 



Motivation for next lecture
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Question 1: If a match is completely wrong then                                is a bad idea

Question 2: If a match is slightly wrong then                             might not be perfect.
Better might be a geometric error:

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉
𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝑯𝑥 − 𝑥′



Can we get 𝐾’𝑠 and 𝑅 from 𝐻?

• Assume we have 𝐻 = 𝐾1𝑅𝐾0
−1of a rotating camera, 

can we get out 𝐾1, 𝑅, 𝐾0 ?

• 𝐻 has 8 DoF

• 𝐾1, 𝑅, 𝐾0 have together 13 DoF

• Not directly possible, only with assumptions on 𝐾. 
(No application needs such a decomposition)
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What can we do with 𝐻?

• Panoramic stitching with rotating camera (exercise later)
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Warp images into a canonical view: 𝑥′ = 𝐻𝑥



What can we do with 𝐻?
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What can we do with 𝐻?

• Plane-based augmented realty 
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[Graz University]

The figure appears to 
stand on the board. 
For this the mapping 
between the board 
and the image plane is 
needed.



Homography 𝐻: Summary
• Derive geometrically 𝐻

• Calibration: Take measurements (points) to compute 𝐻
• Minimum of 4 points. Solution: right null space of 𝐴ℎ = 0
• Many points. Use SVD to solve 𝒉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

• Can we derive the intrinsic (𝐾) an extrinsic (𝑅, 𝐶) parameters from 𝐻?
-> hard. Not discussed much

• What can we do with 𝐻 ?

-> augmented reality on planes, panoramic stitching
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Roadmap for next four lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4) 

• Multi-View 3D reconstruction (sec. 7.3-7.4)
• General scenario
• From Projective to Metric Space
• Special Cases
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Topic 2: Camera Matrix P

• Derive geometrically 𝑃

• Calibration: Take measurements (points) to compute 𝑃

• How do we do that with a minimal number of points?

• How do we do that with many points?

• Can we derive the intrinsic (𝐾) an extrinsic (𝑅, 𝐶) parameters from 𝑃?

• What can we do with 𝑃?
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Geometric Derivation: Camera Matrix (Reminder)
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• Camera matrix P has 11 DoF

• Intrinsic parameters

• Principal point coordinates (𝑝𝑥, 𝑝𝑦)

• Focal length 𝑓

• Pixel magnification factors 𝑚

• Skew (non-rectangular pixels) 𝑠

• Extrinsic parameters

• Rotation 𝑹 (3DoF) and translation 𝐂 (3DoF) relative to world 
coordinate system

𝒙 = 𝑲 𝑹 (𝑰𝟑×𝟑 | − 𝑪) 𝑿~

~

𝑲 =
𝑓 𝑠 𝑝𝑥
0 𝑚𝑓 𝑝𝑦
0 0 1

𝒙 = 𝑷 𝑿



How can we compute/calibrate 𝑃?

25/11/2015Computer Vision I: Two-View Geometry 22

𝒙 = 𝑲 𝑹 (𝑰𝟑×𝟑 | − 𝑪) 𝑿

𝒙 = 𝑷 𝑿

Important move in all directions: 𝑥, 𝑦, 𝑧

Calibration pattern

~



How can we compute/calibrate 𝑃?

• We have 𝜆𝑥′ = 𝑃𝑋

• 𝑃 has 11 DoF

• We get for each point pair (𝑥′, 𝑋) 3 equations, but only 2 linear 
independent once, by taking ration (to get rid of 𝜆)

• We need a minimum of 6 Points to get 12 equations  
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Algorithm (DLT - Direct Linear Transform): 
1) Take 𝑚 ≥ 6 points.  
2) Condition points 𝑋, 𝑥′ using 𝑇, 𝑇′
3) Assemble  𝐴 with 𝐴𝑝 = 0 (𝐴 𝑖𝑠 𝑚 × 12 and 𝑝 is vectorized 𝑃) 
4) compute 𝑝∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝 𝐴𝑝 subject to 𝑝 = 1

use SVD to do this. 
5) Get out unconditioned 𝑃 = 𝑇′−1𝑃𝑇 (note 𝑇’𝑥’ = 𝑃 𝑇𝑋)

[See extended version: HZ page 181] 

Note: a version with minimal number of points (6) is same as with many points 



• Assume 𝑃 is known, can we get out 𝐾, 𝑅, 𝐶?

• P has 11 DoF

• 𝐾, 𝑅, 𝐶 have together  5+3+3=11 DoF
(so it is possible)

• How to do it:

1) The camera center 𝐶 is the right nullspace of P

𝑃𝐶 = 𝐾 𝑅 (𝐶 − 𝐶) = 0

2) 𝑃 = [𝐾𝑅| − 𝐾𝑅𝐶];

𝐴 = 𝐾𝑅
can be done with unique 𝑅𝑄 decomposition, where 𝑅 is upper-
triangular matrix and 𝑄 a rotation matrix (see HZ page 579) 

How can we get K,R,C from P
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𝒙 = 𝑲 𝑹 (𝑰𝟑×𝟑 | − 𝑪) 𝑿~
𝒙 = 𝑷 𝑿

~

~

~

~

~

~

~



What can we do with 𝑃?

• Many things can be done with an externally and internally 
calibrated camera

• Robot navigation, augmented reality, photogrammetry …
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camera

Manipulator  



Camera Matrix 𝑃: Summary

• Derive geometrically 𝑃

• Calibration: Take measurements (points) to compute 𝑃

• 6 or more points. Use SVD to solve 𝒑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒑

• Can we derive the intrinsic (𝐾) an extrinsic (𝑅, 𝐶) parameters from 𝐻?
-> yes, use SVD and RQ decomposition

• What can we do with 𝑃 ?

-> very many things (robotic, photogrammetry, augmented reality, …)
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𝒙 = 𝑲 𝑹 (𝑰𝟑×𝟑 | − 𝑪) 𝑿~
𝒙 = 𝑷 𝑿



Roadmap for next four lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4) 

• Multi-View 3D reconstruction (sec. 7.3-7.4)
• General scenario
• From Projective to Metric Space
• Special Cases
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Topic 3: Fundamental/Essential Matrix 𝐹/𝐸

• Derive geometrically 𝐹/𝐸

• Calibration: Take measurements (points) to compute 𝐹/𝐸

• How do we do that with a minimal number of points?

• How do we do that with many points?

• Can we derive the intrinsic (𝐾) an extrinsic (𝑅, 𝐶) parameters from 𝐹/𝐸?

• What can we do with 𝐹/𝐸?
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Reminder: Matching two Images
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v

• Find interest points 

• Find orientated patches around interest points to capture appearance

• Encode patch appearance in a descriptor

• Find matching patches according to appearance (similar descriptors)

• Verify matching patches according to geometry (later lecture)

We will discover in next slides:
Seven 3D points defines how other 3D 
points match between 2 views!



3D Geometry
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Non-moving scene

𝑃’

Rigidly (6D) moving scene

Both cases are equivalent for the following derivations



Epipolar Geometry
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Epipolar Geometry
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Epipolar Geometry
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Epipolar Geometry
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• Epipole: Image location of the optical center of the other camera.

(Can be outside of the visible area)



Epipolar Geometry
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Epipolar plane: Plane through both camera centers and world point.



Epipolar Geometry
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• Epipolar line: Constrains the location where a particular point (here 𝑝1) from 

one view can be found in the other.



Epipolar Geometry
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• Epipolar lines:
• Intersect at the epipoles

• In general not parallel



Example: Converging Cameras
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Example: Motion Parallel to Camera
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• We will use this idea when it comes to stereo matching



Example: Forward Motion
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• Epipoles have same coordinate in both images

• Points move along lines radiating from epipole
“focus of expansion”



The maths behind it: Fundamental/Essential Matrix

derivation on black board
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𝑋

(𝑅, 𝑇)

~

~
Camera 0 Camera 1



The maths behind it: Fundamental/Essential Matrix
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The 3 vectors are in same plane (co-planar): 
1) 𝑇 (= 𝐶1 − 𝐶0)
2) 𝑋 − 𝐶0
3) 𝑋 − 𝐶1

Set camera matrix: 𝑥0 = 𝐾0 𝐼 0 𝑋 and 𝑥1 = 𝐾1𝑅
−1 𝐼 −𝐶1 𝑋

Hence, 𝐶0 = 0; 𝐾0
−1𝑥0 = 𝑋; 𝑅𝐾1

−1𝑥1 + 𝐶1 = 𝑋 (note 𝑋 = 𝑋, 1 𝑇)

The three vectors can be re-writting using 𝑥0, 𝑥1:  
1) T
2) 𝑋 − 𝐶0 = 𝑋 = 𝐾0

−1𝑥0
3) 𝑋 − 𝐶1 = 𝑅𝐾1

−1𝑥1 + 𝐶1 − 𝐶1 = 𝑅𝐾1
−1𝑥1

We know that:
𝐾0
−1𝑥0

𝑇 𝑇 × 𝑅𝐾1
−1𝑥1 = 0 which gives:  𝑥0

𝑇𝐾0
−𝑇 𝑇 × 𝑅𝐾1

−1𝑥1 = 0 

~ ~ ~

~ ~

~~

~

~

~ ~

~ ~

𝑋~

~

~~

~

~

~ ~~ ~

~



The Maths behind it: Fundamental/Essential Matrix

• In an un-calibrated setting (𝐾’𝑠 not known):

𝑥0
𝑇𝐾0

−𝑇 𝑇 × 𝑅𝐾1
−1𝑥1 = 0 

• In short: 𝑥0
𝑇𝐹𝑥1 = 0 where F is called the Fundamental Matrix

(discovered by Faugeras and Luong 1992, Hartley 1992)

• In an calibrated setting (𝐾’s are known):

we use rays: 𝑥𝑖 = 𝐾𝑖
−1𝑥𝑖

then we get: 𝑥0
𝑇 𝑇 × 𝑅𝑥1 = 0 

In short: 𝑥0
𝑇𝐸𝑥1 = 0 where E is called the Essential Matrix

(discovered by Longuet-Higgins 1981)
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~

~



Halfway Slide

1 Min Break
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Fundamental  Matrix: Properties

• We have 𝑥0
𝑇𝐹𝑥1 = 0 where F is called the Fundamental Matrix

• It is det 𝐹 = 0. Hence F has 7 DoF

Proof: 𝐹 = 𝐾0
−𝑇 𝑇 × 𝑅𝐾1

−1

𝐹 has Rank  2 since 𝑇 × has Rank 2 (see also last lecture)
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~

Check: det( 𝑥 ×) = 𝑥3 𝑥30 − 𝑥1𝑥2 + 𝑥2 𝑥1𝑥3 + 𝑥20 = 0

𝒙 × = 

0 −𝑥3 𝑥2
𝑥3 0 −𝑥1
−𝑥2 𝑥1 0

~



Fundamental  Matrix: Properties

• For any two matching points (i.e. they have the same 3D point) 
we have: 𝑥0

𝑇𝐹𝑥1 = 0

• Compute epipolar line in camera 1 of a point 𝑥0:  
𝑙1
𝑇 = 𝑥0

𝑇𝐹 (since 𝑙1
𝑇𝑥1 = 𝑥0

𝑇𝐹𝑥1 = 0)

• Compute epipolar line in camera 0 of a point 𝑥1:  
𝑙0 = 𝐹𝑥1 (since 𝑥0

𝑇𝑙0 = 𝑥0
𝑇𝐹𝑥1 = 0)
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Camera 0
Camera 1

camera 1 

𝑙1

𝑥1



𝑋

(𝑅, 𝑇)~

~

Fundamental  Matrix: Properties
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Camera 0
Camera 1

• For any two matching points (i.e. have the same 3D point) we have: 
𝑥0
𝑇𝐹𝑥1 = 0

• Compute 𝑒0 with 𝑒0
𝑇𝐹 = 𝟎𝑇 (i.e. left nullspace of 𝐹; can be computed

with SVD) 
This is the Epipole 𝑒0. It is: 𝑒0

𝑇𝐹𝑥1 = 𝟎𝑇𝑥1 = 0 for all points 𝑥1. Hence all 
lines 𝑙0 for any 𝑥1: 𝑙0 = 𝐹𝑥1 go through 𝑒0

𝑇 .

• Epipole 𝑒1 is right null space of 𝐹 (𝐹𝑒1 = 0)

camera 1 

𝑙0
𝑒0

camera 1 

𝑥1

𝑙′0
𝑥′1



How can we compute 𝐹 (2-view calibration) ?

25/11/2015Computer Vision I: Two-View Geometry 48

• Each pair of matching points gives one linear constraint 𝑥𝑇𝐹𝑥′ = 0 in 𝐹. 
For 𝑥, 𝑥′ we get: 

• Given 𝑚 ≥ 8 matching points (𝑥′, 𝑥) we can compute the 𝐹 in a simple way.

𝑓11
𝑓12
𝑓13
𝑓21
𝑓22
𝑓23
𝑓31
𝑓32
𝑓33

= 0
𝑥1𝑥1

′ 𝑥1𝑥2
′ 𝑥1𝑥3

′ 𝑥2𝑥1
′ 𝑥2𝑥2

′ 𝑥2𝑥3
′ 𝑥3𝑥1

′ 𝑥3𝑥2
′ 𝑥3𝑥3

′

.

.

.

( here 𝑥 = 𝑥1, 𝑥2, 𝑥3
𝑇 )



How can we compute 𝐹 (2-view calibration) ?

Method (normalized 8-point algorithm):

1) Take 𝑚 ≥ 8 points

2) Compute 𝑇, and condition points: 𝑥 = 𝑇𝑥; 𝑥’ = 𝑇’𝑥’

3) Assemble  𝐴 with 𝐴𝑓 = 0, here 𝐴 is of size 𝑚 × 9, and 𝑓 vectorized 𝐹

4) Compute 𝑓∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 𝐴𝑓 subject to 𝑓 = 1.

Use SVD to do this. 

5)    Get 𝐹 of unconditioned points: 𝑇𝑇𝐹𝑇′ (note:  (𝑇𝑥)𝑇𝐹 𝑇′𝑥′ = 0)

4)    Make 𝑟𝑎𝑛𝑘 𝐹 = 2
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[See HZ page 282] 



How to make 𝐹 Rank 2

• (Again) Use SVD:
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Set last singular value 𝜎𝑝−1 to 0 then 𝐴 has Rank 𝑝 − 1 and not 𝑝

(assuming 𝐴 has originally full Rank)

Proof: diagonal matrix has Rank 𝑝 − 1 hence 𝐴 has Rank 𝑝 − 1



Can we compute 𝐹 with just 7 points?
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Method (7-point algorithm):

1) Take 𝑚 = 7 points  

2) Assemble  𝐴 with 𝐴𝑓 = 0, here 𝐴 is of size 7 × 9, and 𝑓 vectorized 𝐹

3) Compute 2D right null space: 𝐹1 and 𝐹2 from last two rows in 𝑉𝑇

(use the SVD decomposition: 𝐴 = 𝑈𝐷𝑉𝑇)

4) Choose: 𝐹 = 𝛼𝐹1 + 1 − 𝛼 𝐹2 (see comments next slide)

5) Determine 𝛼′𝑠 (either 1 or 3 solutions for 𝛼) by using the constraint: 
det(𝛼𝐹1 + 1 − 𝛼 𝐹2) = 0.(see comments next slide)

• Note an 8th point would determine which of these 3 solutions is the correct one.
• We will see later that the 7-point algorithm is the best choice for the robust case. 



Comments to previous slide

Step 4) Choose: 𝐹 = 𝛼𝐹1 + 1 − 𝛼 𝐹2
• The full null-space is given by: 𝐹 = 𝛼𝐹1 + 𝛽𝐹2. We can say that some

norm of 𝐹 has a fixed value. 

• We are free to say that we want: 𝛼𝐹1 + 𝛽𝐹2 ≥ 1
(here 𝐹1, 𝐹2 are in vectorised form. Note that this is the same as having 
𝐹1, 𝐹2 in matrix form and using the Frobenius norm for matrices) 

• It is: 𝛼 𝐹1 + 𝛽 𝐹2 = 𝛼𝐹1 + 𝛽𝐹2 ≥ 𝛼𝐹1 + 𝛽𝐹2
(triangulation inequality)

• Hence we want: 𝛼 𝐹1 + 𝛽 𝐹2 ≥ 1

• Hence we want: 𝛼 + 𝛽 ≥ 1 (since 𝐹1, 𝐹2 are rows in 𝑉𝑇)

• Hence we can choose: 𝛽 = 1 − 𝛼
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Comments to previous slide
Step 5) Compute det(𝛼𝐹1 + 1 − 𝛼 𝐹2) = 0

25/11/2015Computer Vision I: Image Formation Process 53

(This is a cubic polynomial equation for 𝛼 which has one or three real-value
solutions for 𝛼)   



Can we get 𝐾’𝑠, 𝑅, 𝑇 from 𝐹?

• Assume we have 𝐹 = 𝑥0
𝑇𝐾0

−𝑇 𝑇 × 𝑅𝐾1
−1

Can we get out 𝐾1, 𝑅, 𝐾0, 𝑇 ?

• 𝐹 has 7 DoF

• 𝐾1, 𝑅, 𝐾0, 𝑇 have together 16 DoF

• Not directly possible. Only with assumptions such as:

• External constraints

• Camera does not change over several frames 

(This is an challanging topic (more than 10 years of research!) called 
auto-calibration or self-calibration. We look at it in detail in next lecture.) 
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~

~

~



Coming back to Essential Matrix

• In a calibrated setting (𝐾’s are known):

we use rays: 𝑥𝑖 = 𝐾𝑖
−1𝑥𝑖

then we get: 𝑥0
𝑇 𝑇 × 𝑅𝑥1 = 0 

In short: 𝑥0
𝑇𝐸𝑥1 = 0 where E is called the Essential Matrix

• 𝐸 has 5 DoF, since 𝑇 has 3DoF, 𝑅 3DoF
(note overall scale of 𝑇 is unknown)

• 𝐸 has also Rank 2
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~

~

𝑋

(𝑅, 𝑇)~

~

~



How to compute 𝐸

• We have: 𝑥0
𝑇𝐸𝑥1 = 0

• Given 𝑚 ≥ 8 matching run 8-point algorithm (as for 𝐹) 

• Given 𝑚 = 7 run 7-point algorithm and get 1 or 3 solutions

• Given 𝑚 = 5 run 5-point algorithm to get up to 10 solutions. 
This is the minimal case since 𝐸 has 5 DoF. 

• 5-point algorithm history:
• Kruppa, “Zur Ermittlung eines Objektes aus zwei Perspektiven mit innere

Orientierung,” Sitz.-Ber. Akad. Wiss., Wien, Math.-Naturw. Kl., Abt. IIa, (122):1939-
1948, 1913.
found 11 solutions

• M. Demazure, “Sur deux problemes de reconstruction,” Technical Report Rep. 882, 
INRIA, Les Chesnay, France, 1988
showed that only 10 valid solutions exist

• D. Nister, “An Efficient Solution to the Five-Point Relative Pose Problem,” IEEE Conference 
on Computer Vision and Pattern Recognition, Volume 2, pp. 195-202, 2003

fast method which gives out 10 solutions of a 10 degree polynomial
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Can we get 𝑅, 𝑇 from 𝐸?

• Assume we have 𝐸 = 𝑇 × 𝑅, can we get out 𝑅, 𝑇 ?

• E has 5 DoF

• 𝑅, 𝑇 have together 6 DoF 

• Yes: We can get 𝑇 up to scale, and a unique 𝑅
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~

~

~

~

~

𝑋

(𝑅, 𝑇)~

~



How to get a unique 𝑇, 𝑅?
1) Compute 𝑇

Note: 𝐸 has rank 2, and 𝑇 is in the left nullspace of 𝐸 since
This means that an SVD of 𝐸 must look like:

2) Compute 4 possible solutions for 𝑅

3) Derive the unique solution for 𝑅 and sign for 𝑇:

1) d𝑒𝑡(𝑅) = 1

2) Reconstruct a 3D point and choose the solution where it lies in front of 
the two cameras. (In robust case: Take solution where most (≥ 5) points 
lie in front of the cameras)  
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~

~
~ ~ ~

𝐸 = 𝑈𝐷𝑉𝑇 = 𝒖0 𝒖1 𝑇
1 0 0
0 1 0
0 0 0

𝒗0
𝑇

𝒗1
𝑇

𝒗2
𝑇

~

This fixes the norm of 𝑇 to 1, and correct sign (+/−𝑇) is done in step 3 ~ ~

𝑅1,2 =+/−𝑈𝑅90𝑜
𝑇 𝑉𝑇; 𝑅3,4 =+/−𝑈𝑅−90𝑜

𝑇 𝑉𝑇 (see derivation HZ page 259; Szeliski page 310)

where 𝐸 = 𝑈𝐷𝑉𝑇 , 𝑅90 =
0 −1 0
1 0 0
0 0 0

, 𝑅−90 =
0 1 0
−1 0 0
0 0 0

~

𝑇𝑡 𝑇 ×= (0,0,0)



Visualization of the 4 solutions for 𝑅, 𝑇
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The property that points must lie in front of the camera is known as Chirality (Hartley 1998)

This is the correct solution, since 
point is in front of cameras!

~𝑇 ~−𝑇

~𝑇 ~−𝑇

~



What can we do with 𝐹, 𝐸?

• 𝐹/𝐸 encode the geometry of 2 cameras

• Can be used to find matching points (dense or sparse) between  
two views (we use this a lot in later lecture on stereo matching!) 

• 𝐹/𝐸 encodes the essential information to do 3D reconstruction
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Fundamental and Essential Matrix: Summary
• Derive geometrically 𝐹, 𝐸 ∶

• 𝐹 for un-calibrated cameras
• 𝐸 for calibrated cameras

• Calibration: Take measurements (points) to compute 𝐹, 𝐸
• 𝐹 minimum of 7 points -> 1 or 3 real solutions. 
• 𝐹 many points -> least square solution with SVD
• 𝐸 minimum of 5 points -> 10 solutions
• 𝐸 many points -> least square solution with SVD

• Can we derive the intrinsic (𝐾) an extrinsic (𝑅, 𝑇) parameters from 𝐹, 𝐸?
-> 𝐹 next lecture
-> 𝐸 yes can be done (translation up to scale)

• What can we do with 𝐹, 𝐸 ?

-> essential tool for 3D reconstruction
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Motivation for next lecture
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Question 1: If a match is completely wrong then                                is a bad idea

Question 2: If a match is slightly wrong then                             might not be perfect.
Better might be a geometric error:

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉
𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝑯𝑥 − 𝑥′


