Computer Vision I - Geometry Estimation from two Images

Carsten Rother

25/11/2015
Roadmap for next four lectures

• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
 • Camera versus Human Perception
 • The Pinhole Camera
 • Lens effects

• Geometry of two Views (sec. 7.2)
 • The Homography (e.g. rotating camera)
 • Camera Calibration (3D to 2D Mapping)
 • The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4)

• Multi-View 3D reconstruction (sec. 7.3-7.4)
 • General scenario
 • From Projective to Metric Space
 • Special Cases
In the following we always ask same questions...

- Two-view transformations we look at:
 - Homography H: between two views
 - Camera matrix P (mapping from 3D to 2D)
 - Fundamental matrix F between two un-calibrated views
 - Essential matrix E between two calibrated views

- Derive geometrically: H, P, F, E, i.e. what do they mean?

- Calibration: Take primitives (points, lines, planes, cones,...) to compute H, P, F, E:
 - What is the minimal number of points to compute them (this topic is justified when we look at robust methods)
 - If we have many points with noise: what is the best way to compute them: algebraic error versus geometric error?

- Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H, P, F, E?

- What can we do with H, P, F, E? (e.g. Panoramic Stitching)
Topic 1: Homography H

• Derive geometrically H

• Calibration: Take measurements (points) to compute H
 • How do we do that with a minimal number of points?
 • How do we do that with many points?

• Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H?

• What can we do with H?
Definition: A projectivity (or homography) \(h \) is an invertible mapping \(h \) from \(P^2 \) to \(P^2 \) such that three points \(x_1, x_2, x_3 \) lie on the same line if and only if \(h(x_1), h(x_2), h(x_3) \) do.

Theorem: A mapping \(h \) from \(P^2 \) to \(P^2 \) is a homography if and only if there exists a non-singular \(3 \times 3 \) matrix \(H \) with \(h(x) = Hx \)

In equations: \(x' = Hx \)

\[
\begin{pmatrix}
 x' \\
 y' \\
 1
\end{pmatrix} =
\begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 h_{31} & h_{32} & h_{33}
\end{bmatrix}
\begin{pmatrix}
 x \\
 y \\
 1
\end{pmatrix}
\]

Transformation matrix \(H \)

- \(H \) has 8 DoF
Homographies in the real world

\[
\begin{pmatrix}
 x' \\
 y' \\
 1
\end{pmatrix} =
\begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 h_{31} & h_{32} & h_{33}
\end{bmatrix}
\begin{pmatrix}
 x \\
 y \\
 1
\end{pmatrix}
\]

Transformation matrix \(H \)

- Image 1
- Image 2
- Rotating camera
- Mapping via a plane
- Cast shadow
Homography from a rotating camera - Derivation

Notation: \(x \) (homogenous 2D), \(\tilde{x} \) (inhomogenous 2D), \(X \) (homogenous 3D), \(\tilde{X} \) (inhomogenous 3D)

\[
K = \begin{bmatrix}
f & s & p_x \\ 0 & mf & p_y \\ 0 & 0 & 1
\end{bmatrix}
\]

\[
x = KR (I_{3 \times 3} | -C) X
\]

Camera 0: \(x_0 = K_0 \tilde{X} \) (in 3D: \(K_0^{-1} x_0 = \tilde{X} \))
Camera 1: \(x_1 = K_1 R \tilde{X} \)

Put it togther: \(x_1 = K_1 RK_0^{-1} x_0 \)
Hence \(H = K_1 RK_0^{-1} \) is a homography (general 3x3 matrix) with 8 DoF
How to compute (i.e. calibrate) H

• We have $\lambda x' = Hx$

• H has 8 DoF

• We get for each pair of matching points (x', x) the 3 equations:

 1) $h_{11}x_1 + h_{12}x_2 + h_{13}x_3 = \lambda x_1'$
 2) $h_{21}x_1 + h_{22}x_2 + h_{23}x_3 = \lambda x_2'$
 3) $h_{31}x_1 + h_{32}x_2 + h_{33}x_3 = \lambda x_3'$

• Eliminate λ (by taking ratios). This gives 2 linear independent equations:
 Here 1) divide by 2) gives:

$$\begin{pmatrix} x_1'x_2', x_2'x_2', x_3'x_2', -x_1x_1', -x_2x_1', -x_3x_1' \end{pmatrix} \begin{pmatrix} h_{11}, h_{12}, h_{13}, h_{21}, h_{22}, h_{23} \end{pmatrix}^T = 0$$
How to compute/calibrate H

- Put it together:

\[
\begin{bmatrix}
 x_1 x_2' & x_2 x_2' & x_3 x_2' & -x_1 x_1' & -x_2 x_1' & -x_3 x_1' & 0 & 0 & 0 \\
 0 & 0 & 0 & x_1 x_3' & x_2 x_3' & x_3 x_3' & -x_1 x_2' & -x_2 x_2' & -x_3 x_2'
\end{bmatrix}
\begin{bmatrix}
h_{11} \\
h_{12} \\
h_{13} \\
h_{21} \\
h_{22} \\
h_{23} \\
h_{31} \\
h_{32} \\
h_{33}
\end{bmatrix} = 0
\]

- We need a minimum of 4 points to get $A h = 0$ with A is 8×9 matrix, and h is 9×1 vector

- Solution for h is the right null space of A
Often we have many, slightly wrong point-matches

We know how to do: $x^* = \arg\min_x \|Ax\| \text{ subject to } \|x\| = 1$

Algorithm:
1) Take $m \geq 4$ point matches (x, x')
2) Assemble A with $Ah = 0$
3) compute $h^* = \arg\min_h \|Ah\| \text{ subject to } \|h\| = 1$, use SVD to do this.
A numerically more stable solution

- Coefficients of an equation system should be in the same order of magnitude, in order to not lose significant digits

- In pixels: \(x_a x_b' \sim 1e6 \)

- Conditioning: scale and shift points to be in \([-1..1]\) (or +/- \(\sqrt{2}\))

- A general rule, not only for homography computation

- How to do it:

\[
\begin{align*}
 s &= \max_i (\|x_i\|) \\
 t &= \text{mean}(x_i) \\
 T &= \begin{bmatrix}
 \frac{1}{s} & 0 & -\frac{t_x}{s} \\
 0 & \frac{1}{s} & -\frac{t_y}{s} \\
 0 & 0 & 1
 \end{bmatrix} \\
 u &= Tx
\end{align*}
\]
A more numerically stable solution

Algorithm:
1) Take \(m \geq 4 \) point matches \((x, x')\)
2) Compute \(T \), and condition points: \(x_n = Tx; x'_n = T'x' \)
3) Assemble \(A \) with \(Ah = 0 \)
4) compute \(h^* = \arg\min_h \|Ah\| \) subject to \(\|h\| = 1 \)
 use SVD to do this.
4) Get \(H \) of unconditioned points: \(T'^{-1}HT \) (Note: \(T'x' = HTx \))

[See HZ page 109]
Motivation for next lecture

Question 1: If a match is completely wrong then $\arg\min_h \|Ah\|$ is a bad idea.

Question 2: If a match is slightly wrong then $\arg\min_h \|Ah\|$ might not be perfect. Better might be a geometric error: $\arg\min_h \|Hx - x'|$
Can we get K’s and R from H?

• Assume we have $H = K_1RK_0^{-1}$ of a rotating camera, can we get out K_1, R, K_0?

• H has 8 DoF

• K_1, R, K_0 have together 13 DoF

• Not directly possible, only with assumptions on K. (No application needs such a decomposition)
What can we do with H?

• Panoramic stitching with rotating camera (exercise later)

Warp images into a canonical view: $x' = Hx$
What can we do with H?
What can we do with H?

- Plane-based augmented reality

The figure appears to stand on the board. For this the mapping between the board and the image plane is needed.
Homography H: Summary

• Derive geometrically H

• Calibration: Take measurements (points) to compute H
 • Minimum of 4 points. Solution: right null space of $Ah = 0$
 • Many points. Use SVD to solve $h^* = \arg\min_h ||Ah||$

• Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H?
 -> hard. Not discussed much

• What can we do with H?
 -> augmented reality on planes, panoramic stitching
Roadmap for next four lectures

- Appearance-based Matching (sec. 4.1)

- Projective Geometry - Basics (sec. 2.1.1-2.1.4)

- Geometry of a Single Camera (sec 2.1.5, 2.1.6)
 - Camera versus Human Perception
 - The Pinhole Camera
 - Lens effects

- Geometry of two Views (sec. 7.2)
 - The Homography (e.g. rotating camera)
 - Camera Calibration (3D to 2D Mapping)
 - The Fundamental and Essential Matrix (two arbitrary images)

- Robust Geometry estimation for two cameras (sec. 6.1.4)

- Multi-View 3D reconstruction (sec. 7.3-7.4)
 - General scenario
 - From Projective to Metric Space
 - Special Cases
Topic 2: Camera Matrix P

• Derive geometrically P

• Calibration: Take measurements (points) to compute P
 • How do we do that with a minimal number of points?
 • How do we do that with many points?

• Can we derive the intrinsic (K) an extrinsic (R, C) parameters from P?

• What can we do with P?
Geometric Derivation: Camera Matrix *(Reminder)*

- Camera matrix P has 11 DoF

- **Intrinsic parameters**
 - Principal point coordinates (p_x, p_y)
 - Focal length f
 - Pixel magnification factors m
 - Skew (non-rectangular pixels) s

- **Extrinsic parameters**
 - Rotation R (3DoF) and translation \tilde{C} (3DoF) relative to world coordinate system

\[
x = P X
\]

\[
x = KR (I_{3\times3} | -\tilde{C}) X
\]

\[
K = \begin{bmatrix}
f & s & p_x \\
0 & mf & p_y \\
0 & 0 & 1
\end{bmatrix}
\]
How can we compute/calibrate P?

$\begin{align*}
\mathbf{x} &= \mathbf{P}\mathbf{X} \\
\mathbf{x} &= \mathbf{K}\mathbf{R} (I_{3\times3} | -\tilde{C}) \mathbf{X}
\end{align*}$

Important move in all directions: x, y, z
How can we compute/calibrate P?

- We have $\lambda x' = PX$
- P has 11 DoF
- We get for each point pair (x', X) 3 equations, but only 2 linear independent once, by taking ration (to get rid of λ)
- We need a minimum of 6 Points to get 12 equations

Algorithm (DLT - Direct Linear Transform):
1) Take $m \geq 6$ points.
2) Condition points X, x' using T, T'
3) Assemble A with $Ap = 0$ (A is $m \times 12$ and p is vectorized P)
4) compute $p^* = \text{argmin}_p \|Ap\|$ subject to $\|p\| = 1$
 use SVD to do this.
5) Get out unconditioned $P = T'^{-1}PT$ (note $T'x' = PTX$)

Note: a version with minimal number of points (6) is same as with many points

[See extended version: HZ page 181]
How can we get \(K, R, \tilde{C} \) from \(P \)

- Assume \(P \) is known, can we get out \(K, R, \tilde{C} \)?
- \(P \) has 11 DoF
- \(K, R, \tilde{C} \) have together \(5+3+3=11 \) DoF
 (so it is possible)

- **How to do it:**
 1) The camera center \(\tilde{C} \) is the right nullspace of \(P \)

 \[
 PC = KR (\tilde{C} - \tilde{C}) = 0
 \]
 2) \(P = [KR| - KR\tilde{C}]; \)

\[
x = P X \\
x = KR (I_{3\times3} | - \tilde{C}) X
\]

\(A = KR \)

- can be done with unique \(RQ \) decomposition, where \(R \) is upper-triangular matrix and \(Q \) a rotation matrix (see HZ page 579)
What can we do with P?

- Many things can be done with an externally and internally calibrated camera
- Robot navigation, augmented reality, photogrammetry ...
Camera Matrix P: Summary

• Derive geometrically P

- Calibration: Take measurements (points) to compute P
 • 6 or more points. Use SVD to solve $p^* = \arg\min_h \|Ap\|$

• Can we derive the intrinsic (K) an extrinsic (R, C) parameters from H?
 -> yes, use SVD and RQ decomposition

• What can we do with P?
 -> very many things (robotic, photogrammetry, augmented reality, ...)

\[x = P X \]
\[x = K R (I_{3\times3} | -\tilde{C}) X \]
Roadmap for next four lectures

- Appearance-based Matching (sec. 4.1)

- Projective Geometry - Basics (sec. 2.1.1-2.1.4)

- Geometry of a Single Camera (sec 2.1.5, 2.1.6)
 - Camera versus Human Perception
 - The Pinhole Camera
 - Lens effects

- Geometry of two Views (sec. 7.2)
 - The Homography (e.g. rotating camera)
 - Camera Calibration (3D to 2D Mapping)
 - The Fundamental and Essential Matrix (two arbitrary images)

- Robust Geometry estimation for two cameras (sec. 6.1.4)

- Multi-View 3D reconstruction (sec. 7.3-7.4)
 - General scenario
 - From Projective to Metric Space
 - Special Cases
Topic 3: Fundamental/Essential Matrix F/E

• Derive geometrically F/E

• Calibration: Take measurements (points) to compute F/E
 • How do we do that with a minimal number of points?
 • How do we do that with many points?

• Can we derive the intrinsic (K) an extrinsic (R, C) parameters from F/E?

• What can we do with F/E?
Reminder: Matching two Images

• Find interest points
• Find orientated patches around interest points to capture appearance
• Encode patch appearance in a descriptor
• Find matching patches according to appearance (similar descriptors)
• Verify matching patches according to geometry (later lecture)

We will discover in next slides:
Seven 3D points defines how other 3D points match between 2 views!
Both cases are equivalent for the following derivations.
Epipolar Geometry

Point in the world

O_1

Camera 1
Epipolar Geometry

Diagram showing a point P_1 in one view and its corresponding epipolar line in another view.
Epipolar Geometry
• **Epipole**: Image location of the optical center of the other camera. (Can be outside of the visible area)
Epipolar Geometry

Epipolar plane: Plane through both camera centers and world point.
• **Epipolar line**: Constrains the location where a particular point (here p_1) from one view can be found in the other.
• **Epipolar lines:**
 • Intersect at the epipoles
 • In general not parallel
Example: Converging Cameras
Example: Motion Parallel to Camera

- We will use this idea when it comes to stereo matching
Example: Forward Motion

- Epipoles have same coordinate in both images
- Points move along lines radiating from epipole
 “focus of expansion”
The maths behind it: Fundamental/Essential Matrix

derivation on black board

\[(R, \tilde{T}) \]
The maths behind it: Fundamental/Essential Matrix

The 3 vectors are in same plane (co-planar):
1) $\tilde{T} (= \tilde{C}_1 - \tilde{C}_0)$
2) $\tilde{X} - \tilde{C}_0$
3) $\tilde{X} - \tilde{C}_1$

Set camera matrix: $x_0 = K_0[I|0] X$ and $x_1 = K_1 R^{-1} [I| - \tilde{C}_1] X$
Hence, $\tilde{C}_0 = 0$; $K_0^{-1} x_0 = \tilde{X}$; $RK_1^{-1} x_1 + \tilde{C}_1 = \tilde{X}$ (note $X = (\tilde{X}, 1)^T$)

The three vectors can be re-writting using x_0, x_1:
1) \tilde{T}
2) $\tilde{X} - \tilde{C}_0 = \tilde{X} = K_0^{-1} x_0$
3) $\tilde{X} - \tilde{C}_1 = RK_1^{-1} x_1 + \tilde{C}_1 - \tilde{C}_1 = RK_1^{-1} x_1$

We know that:
$(K_0^{-1} x_0)^T [\tilde{T}] \times RK_1^{-1} x_1 = 0$ which gives: $x_0^T K_0^{-T} [\tilde{T}] \times RK_1^{-1} x_1 = 0$
The Maths behind it: Fundamental/Essential Matrix

• In an un-calibrated setting (K’s not known):
\[x_0^T K_0^{-T} [\tilde{T}] \times RK_1^{-1} x_1 = 0 \]

• In short: $x_0^T F x_1 = 0$ where F is called the Fundamental Matrix
 (discovered by Faugeras and Luong 1992, Hartley 1992)

• In an calibrated setting (K’s are known):
we use rays: $x_i = K_i^{-1} x_i$
then we get: $x_0^T [\tilde{T}] \times Rx_1 = 0$
In short: $x_0^T E x_1 = 0$ where E is called the Essential Matrix
 (discovered by Longuet-Higgins 1981)
1 Min Break
Fundamental Matrix: Properties

• We have \(x_0^T F x_1 = 0 \) where \(F \) is called the **Fundamental Matrix**

• It is \(\det F = 0 \). Hence \(F \) has **7 DoF**

Proof:

\[
F = K_0^{-T} [\tilde{T}]_\times R K_1^{-1}
\]

\(F \) has Rank 2 since \([\tilde{T}]_\times \) has Rank 2 (see also last lecture)

\[
[x]_\times = \begin{bmatrix}
0 & -x_3 & x_2 \\
x_3 & 0 & -x_1 \\
-x_2 & x_1 & 0
\end{bmatrix}
\]

Check: \(\det([x]_\times) = x_3 (x_3 0 - x_1 x_2) + x_2 (x_1 x_3 + x_2 0) = 0 \)
Fundamental Matrix: Properties

• For any two matching points (i.e. they have the same 3D point) we have: \(x_0^T F x_1 = 0 \)

• Compute **epipolar line** in camera 1 of a point \(x_0 \):
 \[l_1^T = x_0^T F \] (since \(l_1^T x_1 = x_0^T F x_1 = 0 \))

• Compute **epipolar line** in camera 0 of a point \(x_1 \):
 \[l_0 = F x_1 \] (since \(x_0^T l_0 = x_0^T F x_1 = 0 \))
Fundamental Matrix: Properties

- For any two matching points (i.e. have the same 3D point) we have:
 \[x_0^T F x_1 = 0 \]

- Compute \(e_0 \) with \(e_0^T F = 0^T \) (i.e. left nullspace of \(F \); can be computed with SVD)
 This is the Epipole \(e_0 \). It is: \(e_0^T F x_1 = 0^T x_1 = 0 \) for all points \(x_1 \). Hence all lines \(l_0 \) for any \(x_1 \): \(l_0 = F x_1 \) go through \(e_0 \).

- Epipole \(e_1 \) is right null space of \(F \) (\(F e_1 = 0 \))
How can we compute F (2-view calibration)?

- Each pair of matching points gives one linear constraint $x^T F x' = 0$ in F.
 For x, x' we get:

$$
\begin{bmatrix}
 x_1 \quad x'_1 \\
 x_1 \quad x'_2 \\
 x_1 \quad x'_3 \\
 x_2 \quad x'_1 \\
 x_2 \quad x'_2 \\
 x_2 \quad x'_3 \\
 x_3 \quad x'_1 \\
 x_3 \quad x'_2 \\
 x_3 \quad x'_3
\end{bmatrix}
\begin{bmatrix}
f_{11} \\
 f_{12} \\
 f_{13} \\
 f_{21} \\
 f_{22} \\
 f_{23} \\
 f_{31} \\
 f_{32} \\
 f_{33}
\end{bmatrix}
= 0
$$

(here $x = (x_1, x_2, x_3)^T$)

- Given $m \geq 8$ matching points (x', x) we can compute the F in a simple way.
How can we compute F (2-view calibration)?

Method (normalized 8-point algorithm):

1) Take $m \geq 8$ points
2) Compute T, and condition points: $x = Tx; x' = T'x'$
3) Assemble A with $Af = 0$, here A is of size $m \times 9$, and f vectorized F
4) Compute $f^* = \arg min_f \|Af\|$ subject to $\|f\| = 1$. Use SVD to do this.
5) Get F of unconditioned points: $TT'F$ (note: $(Tx)^T F T'x' = 0$)
4) Make $\text{rank}(F) = 2$

$$s = \max_i (\|x_i\|) \quad t = \text{mean}(x_i)$$

$$T = \begin{bmatrix}
\frac{1}{s} & 0 & -\frac{t_x}{s} \\
0 & \frac{1}{s} & -\frac{t_y}{s} \\
0 & 0 & 1
\end{bmatrix} \quad u = Tx$$

[See HZ page 282]
How to make F Rank 2

• (Again) Use SVD:

\[
A = \begin{bmatrix}
 u_0 & \cdots & u_{p-1}
\end{bmatrix}
\begin{bmatrix}
 \sigma_0 & & \\
 & \ddots & \\
 & & \sigma_{p-1}
\end{bmatrix}
\begin{bmatrix}
 v_0^T \\
 \vdots \\
 v_{p-1}^T
\end{bmatrix}
\]

Set last singular value σ_{p-1} to 0 then A has Rank $p - 1$ and not p (assuming A has originally full Rank)

Proof: diagonal matrix has Rank $p - 1$ hence A has Rank $p - 1$
Can we compute F with just 7 points?

Method (7-point algorithm):

1) Take $m = 7$ points

2) Assemble A with $Af = 0$, here A is of size 7×9, and f vectorized F

3) Compute 2D right null space: F_1 and F_2 from last two rows in V^T

 (use the SVD decomposition: $A = UDV^T$)

4) Choose: $F = \alpha F_1 + (1 - \alpha)F_2$ (see comments next slide)

5) Determine α's (either 1 or 3 solutions for α) by using the constraint:

 $\det(\alpha F_1 + (1 - \alpha)F_2) = 0$ (see comments next slide)

- Note an 8th point would determine which of these 3 solutions is the correct one.
- We will see later that the 7-point algorithm is the best choice for the robust case.
Step 4) Choose: $F = \alpha F_1 + (1 - \alpha)F_2$

- The full null-space is given by: $F = \alpha F_1 + \beta F_2$. We can say that some norm of F has a fixed value.
- We are free to say that we want: $\|\alpha F_1 + \beta F_2\| \geq 1$
 (here F_1, F_2 are in vectorised form. Note that this is the same as having F_1, F_2 in matrix form and using the Frobenius norm for matrices)
- It is: $\alpha \|F_1\| + \beta \|F_2\| = \|\alpha F_1\| + \|\beta F_2\| \geq \|\alpha F_1 + \beta F_2\|$
 (triangulation inequality)
- Hence we want: $\alpha \|F_1\| + \beta \|F_2\| \geq 1$
- Hence we want: $\alpha + \beta \geq 1$ (since F_1, F_2 are rows in V^T)
- Hence we can choose: $\beta = 1 - \alpha$
Step 5) Compute \(\det(\alpha F_1 + (1 - \alpha)F_2) = 0 \)

\[
\begin{vmatrix}
\frac{d}{a' h' i'} + (1 - d) \frac{d'}{a' h' i'} \end{vmatrix} = \begin{vmatrix}
\frac{d a + (1 - d) a'}{a} \\
\frac{d e + (1 - d) e'}{a} \\
\frac{d f + (1 - d) f'}{a} \\
\frac{d h + (1 - d) h'}{a} \\
\frac{d i + (1 - d) i'}{a}
\end{vmatrix}
\]

\[
= (d a + (1 - d) a') \left(\frac{d e + (1 - d) e'}{a} \left(\frac{d f + (1 - d) f'}{a} \left(\frac{d h + (1 - d) h'}{a} \left(\frac{d i + (1 - d) i'}{a} \right) \right) \right) \right) + "similar\ terms"
\]

\[
= k d^3 + l d^2 + m d + n
\]

(This is a cubic polynomial equation for \(\alpha \) which has one or three real-value solutions for \(\alpha \))
Can we get $K’s, R, \tilde{T}$ from F?

- Assume we have
 \[F = x_0^T K_0^{-T} [\tilde{T}] \times R K_1^{-1} \]

 Can we get out K_1, R, K_0, \tilde{T}?

- F has 7 DoF

- K_1, R, K_0, T have together 16 DoF

- Not directly possible. Only with assumptions such as:

 - External constraints

 - Camera does not change over several frames

 (This is an challenging topic (more than 10 years of research!) called auto-calibration or self-calibration. We look at it in detail in next lecture.)
Coming back to Essential Matrix

• In a calibrated setting (K’s are known):
 we use rays: $x_i = K_i^{-1}x_i$
 then we get: $x_0^T [\tilde{T}]_x R x_1 = 0$

In short: $x_0^T E x_1 = 0$ where E is called the Essential Matrix

• E has 5 DoF, since \tilde{T} has 3DoF, R 3DoF
 (note overall scale of \tilde{T} is unknown)

• E has also Rank 2
How to compute E

- We have: $x_0^T Ex_1 = 0$
- Given $m \geq 8$ matching run 8-point algorithm (as for F)
- Given $m = 7$ run 7-point algorithm and get 1 or 3 solutions
- Given $m = 5$ run 5-point algorithm to get up to 10 solutions. This is the **minimal case** since E has 5 DoF.

5-point algorithm history:
Can we get R, \tilde{T} from E?

- Assume we have $E = [\tilde{T}] \times R$, can we get out R, \tilde{T}?

- E has 5 DoF

- R, \tilde{T} have together 6 DoF

- Yes: We can get \tilde{T} up to scale, and a unique R
How to get a unique \tilde{T}, R?

1) Compute \tilde{T}

Note: E has rank 2, and \tilde{T} is in the left nullspace of E since $\tilde{T}^t[\tilde{T}]_x = (0,0,0)$

This means that an SVD of E must look like:

$$E = UDV^T = [u_0 \ u_1 \ \tilde{T}] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_0^T \\ v_1^T \\ v_2^T \end{bmatrix}$$

This fixes the norm of \tilde{T} to 1, and correct sign ($+/−\tilde{T}$) is done in step 3

2) Compute 4 possible solutions for R

$$R_{1,2} = +/−UR_{90}^T V^T; \ R_{3,4} = +/−UR_{−90}^T V^T$$ (see derivation HZ page 259; Szeliski page 310)

where $E = UDV^T, R_{90} = \begin{bmatrix} 0 & −1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ R_{−90} = \begin{bmatrix} 0 & 1 & 0 \\ −1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

3) Derive the unique solution for R and sign for \tilde{T}:

1) $\text{det}(R) = 1$

2) Reconstruct a 3D point and choose the solution where it lies in front of the two cameras. (In robust case: Take solution where most (≥ 5) points lie in front of the cameras)
Visualization of the 4 solutions for R, \tilde{T}

This is the correct solution, since point is in front of cameras!

The property that points must lie in front of the camera is known as Chirality (Hartley 1998)
What can we do with F, E?

- F/E encode the geometry of 2 cameras
- Can be used to find matching points (dense or sparse) between two views (we use this a lot in later lecture on stereo matching!)
- F/E encodes the essential information to do 3D reconstruction
Fundamental and Essential Matrix: Summary

• Derive geometrically F, E:
 - F for un-calibrated cameras
 - E for calibrated cameras

• Calibration: Take measurements (points) to compute F, E:
 - F minimum of 7 points -> 1 or 3 real solutions.
 - F many points -> least square solution with SVD
 - E minimum of 5 points -> 10 solutions
 - E many points -> least square solution with SVD

• Can we derive the intrinsic (K) an extrinsic (R, T) parameters from F, E?
 - F next lecture
 - E yes can be done (translation up to scale)

• What can we do with F, E?
 - essential tool for 3D reconstruction

25/11/2015
Question 1: If a match is completely wrong then $\arg\min_h \|Ah\|$ is a bad idea.

Question 2: If a match is slightly wrong then $\arg\min_h \|Ah\|$ might not be perfect. Better might be a geometric error: $\arg\min_h \|Hx - x'\|$.