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Roadmap for next four lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4) 

• Multi-View 3D reconstruction (sec. 7.3-7.4)
• General scenario
• From Projective to Metric Space
• Special Cases
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In last lecture we asked (for rotating camera)…
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Question 1: If a match is completely wrong then                                is a bad idea

Question 2: If a match is slightly wrong then                             might not be perfect.
Better might be a geometric error:

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉
𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝑯𝑥 − 𝑥′



Robust model fitting

RANSAC:

Random Sample Consensus: A Paradigm for Model 
Fitting with Applications to Image Analysis and 

Automated Cartography

Martin A. Fischler and Robert C. Bolles (June 1981). 
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[Side credits: Dimitri Schlesinger]



Example Tasks
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Search for a straight line in a clutter of points

i.e. search for parameters    and     for the model 

given a training set 

𝑥

𝑦



Example Tasks
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Estimate the fundamental matrix

i.e. parameters satisfying 

given a training set of correspondent pairs

For Homography of rotating camera  we have:  𝑥𝑙
𝑖𝐻 = 𝑥𝑟

𝑖



Two sources of errors
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1. Noise: the coordinates deviate from the true ones according to 
some “rule” (probability) – the father away the less confident

2. Outliers: the data have nothing in common with the model to be 
estimated

Ignoring outliers can lead to a wrong 
estimation.                                                      
→ The way out: find outliers explicitly, 
estimate the model from inliers only



Task formulation
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Let              be the input space and              be the parameter space.
The training data consist of data points 

Let an evaluation function be given that checks the consistency 
of a point     with a model    .

• Straight line 

• Fundamental matrix

The task is to find the parameter that is consistent with the majority of the data 

points: 𝑦∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦  𝑖 𝑓(𝑥
𝑖 , 𝑦)

𝑓 𝑥1, 𝑥2, 𝑎, 𝑏 =  
0 𝑖𝑓 𝑎𝑥1 + 𝑏𝑥2 − 1 ≤ 𝑡 (𝑒. 𝑔. 0.1)
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓 𝑥𝑙 , 𝑥𝑟, 𝐹 =  
0 𝑖𝑓 𝑥𝑙

𝑡𝐹𝑥𝑟 ≤ 𝑡 (𝑒. 𝑔. 0.1)

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(Inlier)

(Outlier)
𝑥1

𝑥2

(Inlier)

(Outlier)



First Idea: 2D Line estimation
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A naïve approach: enumerate all parameter values
→ know as Hough Transform (very time consuming and not  

possible at all for many free parameters (i.e. high dimensional parameter space)

𝑦∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦  

𝑖

𝑓(𝑥𝑖 , 𝑦)Question: How to compute:

Image with points

Encode all line with 
two parameters (𝑟, Θ)

𝑥

𝑦
𝑟

Θ

Image with just 3 points

Goal: Find “point” in  
the figure where 
most lines meetHough transform

All lines that go through these 3 points
0

100



First Idea: 2D Line estimation

• Observation: The parameter space have very low counts

• Idea: do not try all values but only some of them. Which ones?
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Accumulator space 
number of inliers (sketched)

0 1 0 0 2 1 0 0

2 0 3 0 0 1 0 0

2 3 1 0 2 0 0 1

3 3 3 4 4 1 3 0

3 3 4 3 1 0 1 0

9 10 9 3 1 3 1 0

20 25 4 2 3 0 0

50 35 5 10 5 2 4 4

Θ

𝑟

200

Hough transform



Data-driven Oracle
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An Oracle is a function that predicts a parameter given the minimum amount of 
data points (𝑑-tuple): 

Examples:
• Line can be estimated from 𝑑 = 2 points
• Fundamental matrix from 𝑑 = 7 or 8 points correspondences
• Homography can be computed from 𝑑 = 4 points correspondences

First Idea: Do not enumerate all parameter values but all 𝑑-tuples of data points
That is then 𝑛𝑑 number of tests, e.g. 𝑛2 for lines (with 𝑛 points)
The optimization is performed over a discrete domain.

𝑦∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦  

𝑖

𝑓(𝑥𝑖 , 𝑦)

Second Idea: Do not try all subsets, but sample them randomly



RANSAC
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Basic RANSAC method:  

• Sometimes we get a discrete set of intermediate solutions 𝑦. For example 
for 𝐹-matrix computation from 7 points we have up to 3 solutions. The we 
simply evaluate 𝑓′ 𝑦 for all solutions.   

• How many times do you have to sample in order to reliable estimate the 
true model?

Can be done in parallel!

Repeat many times
select d-tuple, e.g. (𝑥1, 𝑥2) for lines       
compute parameter(s) 𝑦, e.g. line 𝑦 = 𝑔 𝑥1, 𝑥2

evaluate 𝑓′ 𝑦 =  𝑖 𝑓(𝑥
𝑖 , 𝑦)

If 𝑓′ 𝑦 ≤ 𝑓′ 𝑦∗

set 𝑦∗ = 𝑦 and keep value 𝑓′ 𝑦∗

[Random Sample Consensus, Fischler and Bolles 1981]



Convergence

28/11/2015Computer Vision I: Robust Two-View Geometry 13

Observation: it is necessary to sample any -tuple of inliers just once
in order to estimate the model correctly.

Let 𝜀 be the probability of outliers.

The probability to sample  𝑑 inliers is 1 − 𝜀 𝑑 (here 0.82 = 0.64)

The probability of a “wrong”  𝑑-tuple is                           (here 0.36)

The probability to sample 𝑛 times only wrong tuples is
(here 0.3620 = 0.0000000013)

The probability to sample the “right” tuple at least once during the 
process (i.e. to estimate the correct model according to assumptions)

𝜀 ~ 0.2

200

1000 points overall

(here 99.999999866 %)

800



Convergence
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𝑛

𝑝
𝑟𝑜

𝑏
𝑎
𝑏
𝑖𝑡
𝑦

𝜀
(outliers)



Comment
• In our derivation  for 𝑝 = we were slightly optimistic since 

„degenerate“ inliers may give rise to bad lines
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++

• However, these bad lines have little support wrt number of inliers
• We also define later a refinement procedure which can correct such bad lines 



The choice of the oracle is crucial
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Example – the fundamental matrix:

a) 8-point algorithm   
Probability: 70% (𝑛 = 300; 𝜖 = 0.5; 𝑑 = 8)

b)   7-point algorithm
Probability: 90% (𝑛 = 300; 𝜖 = 0.5; 𝑑 = 7)

Number of trials to get p% accuracy (here 99%) 

𝑛 =
log 1 − 𝑝

log(1 − 1 − 𝜀 𝑑)

𝑝 = 1 − 1 − 1 − 𝜀 𝑑 𝑛

𝜀𝑑



The choice of evaluation function is crucial

• Algebraic error: Is a measure that has no geometric meaning

Example:
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For a line: 𝑑 𝑥1, 𝑥2, 𝑎, 𝑏 = 𝑎𝑥1 + 𝑏𝑥2 − 1

For a homograpy: 𝑑 𝑥1, 𝑥2, 𝑎, 𝑏 = |𝑨𝒉|
(where 𝑨 is 1 × 8 matrix derived as above

For 𝐹-matrix: 𝑑 𝑥𝑙 , 𝑥𝑟 , 𝐹 = 𝑥𝑙
𝑡𝐹𝑥𝑟

• Geometric error: Is a measure that considers a distance in image plane

Example: For a line: 𝑑 𝑥1, 𝑥2, 𝑎, 𝑏 = 𝑑( 𝑥1, 𝑥2 , 𝑙 𝑎, 𝑏 )

• Evaluation function: 𝑓 𝑥1, 𝑥2, 𝑎, 𝑏 =  
1 𝑖𝑓 𝑎𝑥1 + 𝑏𝑥2 − 1 ≤ 𝑡 (𝑒. 𝑔. 0.1)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

error 
function

Line: 𝑙 𝑎, 𝑏

Geometric error: for homography
and F-matrix to come

(𝑑 is Euclidean distance 
between point to line) 

𝑥1, 𝑥2

𝑑( 𝑥1, 𝑥2 , 𝑙 𝑎, 𝑏 )



The choice of confidence interval is crucial
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Large confidence,
“right” model,

2 outliers

Large confidence,
“wrong” model,

2 outliers

Small confidence,
Almost all points are outliers 
(independent of the model)

Examples:



Extension: Adaptive number of samples 𝑛

Choose 𝑛 in an adaptive way:

1)   Fix 𝑝 = 99.9% (very large value)

2)   Set 𝑛 = ∞ and 𝜀 = 0.9 (large value for outlier)

3)   During RANSAC adapt 𝑛, 𝜀 :

1) Re-compute 𝜀 from current best solution

𝜀 = outliers / all points

2)   Re-Compute new 𝑛:

𝑛 =
log 1−𝑝

log(1− 1−𝜀 𝑑)
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MSAC (M-Estimator SAmple Consensus)
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If a data point is an inlier the penalty is not 0, but it depends on the 
“distance” to the model.

Example for the fundamental matrix:

becomes

→ the task is to find the model with the minimum average penalty

[P.H.S. Torr und A. Zisserman 1996]

“robust function”

𝑡)

𝑓 𝑥𝑙 , 𝑥𝑟, 𝐹 =  
0 𝑖𝑓 𝑥𝑙

𝑡𝐹𝑥𝑟 ≤ 𝑡 (𝑒. 𝑔. 0.1)

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓 𝑥𝑙 , 𝑥𝑟, 𝐹 =  
𝑥𝑙
𝑡𝐹𝑥𝑟 𝑖𝑓 𝑥𝑙

𝑡𝐹𝑥𝑟 ≤ 𝑡 (𝑒. 𝑔. 0.1)

𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑡



Randomized RANSAC
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Evaluation of a hypothesis    , i.e.                      is often time consuming

Randomized RANSAC:

instead of checking all data points 

1. Sample 𝑚 points from

2. If all of them are good, check all others as before

3. If there is at least one bad point, among 𝑚, reject the hypothesis

It is possible that good hypotheses are rejected. 
However it saves time (bad hypotheses are recognized fast) 
→ one can sample more often 
→ overall often profitable (depends on application).



Refinement after RANSAC

Typical procedure: 

1. RASNAC: compute model 𝑦 in a robust way 

2. Find all inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠

3. Refine model 𝑦 from inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠

4. Go to Step 2. 
(until numbers of inliers or model does not change much) 
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In last lecture we asked (for rotating camera)…
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Question 1: If a match is completly wrong then is a bad idea
Answer: RANSAC with 𝑑 = 4

Question 2: If a match is slighly wrong then might not be perfect.
Better might be a geometric error:

Answer: see next slides

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉
𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝑯𝑥 − 𝑥′



Reminder from last Lecture: Homography for rotating camera
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image

Algorithm: 
1) Take 𝑚 ≥ 4 point matches (𝑥, 𝑥’)
2) Assemble  𝐴 with 𝐴𝒉 = 0
3) compute 𝒉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒉 𝐴𝒉 subject to 𝒉 = 1,

use SVD to do this. 



Refine Hypothesis 𝐻 with inliers
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1. Algebraic error: 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

2.    First geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑(𝑥𝑖
′, 𝐻𝑥𝑖)

This is not symmetric

𝑥𝑖 𝑥𝑖
′𝐻𝑥𝑖

where 𝑑(𝑎, 𝑏) is 2D geometric
distance 𝑎 − 𝑏 2



Refine Hypothesis 𝐻 with inliers
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1. Algebraic error: 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

2.    First geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑(𝑥𝑖
′, 𝐻𝑥𝑖)

where 𝑑(𝑎, 𝑏) is 2D geometric
distance 𝑎 − 𝑏 2

𝑥𝑖 𝑥𝑖
′𝐻𝑥𝑖𝐻−1𝑥′𝑖

3.    Second, symmetric geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑 𝑥𝑖
′, 𝐻𝑥𝑖 + 𝑑 𝑥𝑖 , 𝐻

−1𝑥′𝑖



Refine Hypothesis 𝐻 with inliers
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1. Algebraic error: 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

2.    First geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑(𝑥𝑖
′, 𝐻𝑥𝑖)

where 𝑑(𝑎, 𝑏) is 2D geometric
distance 𝑎 − 𝑏 2

3.    Second, symmetric geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑 𝑥𝑖
′, 𝐻𝑥𝑖 + 𝑑 𝑥𝑖 , 𝐻

−1𝑥′𝑖

4.    Third, optimal geometric error (gold standard error):
{𝐻∗, 𝑥𝑖 , 𝑥′𝑖} = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑖 𝑑(𝑥𝑖 , 𝑥𝑖) + 𝑑(𝑥′𝑖 , 𝑥′𝑖)

𝑥𝑖 𝑥𝑖
′

the true 3D points
𝑋 are searched for

^𝑥𝑖
^

𝑥𝑖
′

𝐻

Comment: This is optimal in the sense that it is the maximum-likelihood (ML) estimation              
under isotropic Gaussian noise assumption for 𝑥 (see page 103 HZ)^

^

^ ^
^

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑖
′ = 𝐻𝑥𝑖

^ ^

𝐻, 𝑥𝑖 , 𝑥′𝑖
^

^ ^



Halfway Slide

1 Min Break
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Full Homography Method (HZ page 123)
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[see details on 
page 114ff in HZ] 

we discussed :
Harries corner
detector

we mentioned :
Kd-tree to make
it fast

This is the optimal 
geometric error

See next slides

This is a geometric
error (for fixed H, 
see next slides). 
Depending on 
runtime one can
choose different 
once.

See next slide



Example
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Input images

~500 interest 
points



Example
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268 
putative 
matches

117 
outliers
found

151
inliers
found

262
inliers
after 
guided 
matching

Guided matching variant: use given 𝐻 and look for new inliers. Here we also 
double the threshold on appearance feature matches to get more inliers.



To have a 95% chance that an inlier is inside the confidence interval, we require:

1. For a 2D line: 𝑑 𝑥, 𝑙 ≤ 𝜎 3.84 = 𝑡

2. For a Homography: 𝑑 𝑥𝑙 , 𝑥𝑟 , 𝐻 ≤ 𝜎 5.99 = 𝑡

3. For an F-matrix: 𝑑 𝑥𝑙 , 𝑥𝑟 , 𝐹 ≤ 𝜎 3.84 = 𝑡

Geometric derivation of confidence interval

28/11/2015Computer Vision I: Image Formation Process 32

Assume Gaussian noise for a point with 𝜎 standard deviation and 0 mean: 

(see page 119 HZ)     



𝑥, 𝑥′^^

𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝑑(𝑥𝑖 , 𝑥𝑖) + 𝑑(𝑥′𝑖 , 𝑥′𝑖)

Methods for 𝐹/𝐸/𝐻 Matrix computation - Summary 

Procedure (as mentioned above): 

1. RASNAC: compute model 𝐹/𝐸/𝐻 in a robust way 

2. Find all inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠 (with potential relaxed criteria)

3. Refine model 𝐹/𝐸/𝐻 from inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠

4. Go to Step 2. 
(until numbers of inliers or model does not change much) 
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1. For a Homography: 𝑑 𝑥, 𝑥′, 𝐻 = min[𝑑 𝑥, 𝑥 + 𝑑 𝑥′, 𝑥′ ] subject to 𝑥′ = 𝐻𝑥^^ ^ ^

2. For an 𝐹/𝐸-matrix: 𝑑 𝑥, 𝑥′, 𝐹/𝐸 = min[𝑑 𝑥, 𝑥 + 𝑑 𝑥′, 𝑥′ ] subject to 𝑥′𝑡𝐹/𝐸𝑥 = 0^^ ^^

We need geometric error for model refinement 𝐹/𝐸/𝐻 :

1. For a Homography: {𝐻∗, 𝑥𝑖 , 𝑥𝑖
′} = 𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝑑(𝑥𝑖 , 𝑥𝑖) + 𝑑(𝑥′𝑖 , 𝑥′𝑖) subject to 𝑥′𝑖 = 𝐻𝑥𝑖

2. For an 𝐹/𝐸-matrix: {𝐹∗/𝐸∗, 𝑥𝑖 , 𝑥𝑖
′}= sbj. to 𝑥′𝑖

𝑡𝐹/𝐸𝑥𝑖 = 0

^^^

𝐻, 𝑥𝑖 , 𝑥′𝑖
^

^𝐹/𝐸, 𝑥𝑖 , 𝑥′𝑖

^

^

^

^^^^

^ ^

^ ^

We need geometric error for a fixed model 𝐹/𝐸/𝐻 (RANSAC):

^𝑥, 𝑥′



A few word on iterative continuous optimization
So far we had linear (least square) optimization  problems:

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐴𝑥

For non-linear (arbitrary) optimization  problems: 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝑓(𝑥)

• Iterative Estimation methods (see Appendix 6 in HZ; page 597ff)

• Gradient Descent Method 
(good to get roughly to solution)

• Newton Methods (e.g. Gauss-Newton): 
second order Method (Hessian). Good to find accurate result

• Levenberg – Marquardt Method:

mix of Newton method and Gradient descent 
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Red Newton’s method; 
green gradient descent



Application: Automatic Panoramic Stitching
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Run Homography search between all pairs of images

An unordered set of images:



Application: Automatic Panoramic Stitching
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... automatically create a panorama



Application: Automatic Panoramic Stitching
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... automatically create a panorama



Application: Automatic Panoramic Stitching
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... automatically create a panorama



Roadmap for next four lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4) 

• Multi-View 3D reconstruction (sec. 7.3-7.4)
• General scenario
• From Projective to Metric Space
• Special Cases
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3D reconstruction: Problem definition
• Given image observations in 𝑚 cameras of 𝑛 static 3D points

• Formally: 𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 for  𝑗 = 1…𝑚; 𝑖 = 1…𝑛

• Important: In practice we do not have all points visible in all views, i.e. the 
number of  𝑥𝑖𝑗 ≤ 𝑚𝑛 (this is captured by the “visibilty matrix”)

• Goal: find all 𝑃𝑗’s and 𝑋𝑖’s  
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Example: “Visibility” matrix



Names: 3D reconstruction
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Sparse Structure from Motion (SfM)
In Robotics it is known as SLAM (Simultaneous Localization and Mapping): 
“Place a robot in an unknown location in an unknown environment and have 
the robot incrementally build a map of this environment while simultaneously 
using the map to compute the vehicle location”

2) Dense Multi-view reconstruction 

1)



Example: Dense Reconstruction
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[KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera, 
Izadi et al ACM Symposium on User Interface Software and Technology, October 2011]



Reconstruction Algorithm
Generic Outline (calibrated and un-calibrated cameras)

1) Compute robust 𝐹/𝐸-matrix between each pair of neighboring views

2) Compute initial reconstruction of consecutive pair of views

3) Compute an initial full 3D reconstruction

4) Bundle-Adjustment to minimize overall geometric error

5) If cameras are not calibrated then perform auto-calibration 
(also known as self-calibration)
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[See page 453 HZ]

Reconstruct in step 2): 𝑃1, 𝑃2 ; (𝑃2, 𝑃3); 𝑃3, 𝑃4 …



Step 2: Compute initial reconstruction of consecutive pair of views
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Input: 
• Calibrated Cameras: 𝐸-matrix, 𝐾,𝐾’, 5+ matching points (𝑥𝑖 , 𝑥′𝑖)
• Un-calibration Cameras: 𝐹-matrices, 7+ matching points (𝑥𝑖 , 𝑥′𝑖)

Output: 𝑃, 𝑃’, 𝑋𝑖′𝑠 such that geometric error: 𝑃𝑋𝑖 𝑡𝑜 𝑥𝑖 and
𝑃′𝑋𝑖 𝑡𝑜 𝑥′𝑖 is small

2-Step Method:
1. Derive 𝑃, 𝑃’
2. Compute 𝑋𝑖′𝑠 (called Triangulation) 



Derive 𝑃, 𝑃’: calibrated case

• We have seen that we can get: 𝑅, 𝑇(up to scale) from 𝐸

• We have set in previous lecture the camera matrices to:
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~
𝑇

~

𝑥0 = 𝐾0 𝐼 0 𝑋 and 𝑥1 = 𝐾1𝑅
−1 𝐼 −𝑇 𝑋

~

We have done this already:

𝑃 𝑃′



Derive 𝑃, 𝑃’: un-calibrated case
• Derivation (blackboard) see HZ page 256

𝑃 = 𝐼3×3 0 ]; 𝑃′ = 𝑒′ ×𝐹 𝑒′]
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Derivation

28/11/2015Computer Vision I: Multi-View 3D reconstruction 47



Derivation
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Compute 𝑋𝑖′𝑠 (Triangulation)
• Input: 𝑥, 𝑥’, 𝑃, 𝑃’

• Output: 𝑋𝑖′𝑠

• Triangulation is also called intersection

• Simple solution for algebraic error:
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1) 𝜆𝑥 = 𝑃 𝑋 and 𝜆′𝑥′ = 𝑃′ 𝑋

2) Eliminate 𝜆 by taking ratios. This gives 2x2 linear-independent equations   
for  4 unknowns: 𝑋 = 𝑋1, 𝑋2, 𝑋3, 𝑋4 , and we want: 𝑋 = 1.
(remember 𝑋 is a homogenous 4D vector, hence scale has to be fixed)

An example ratio is:  
𝑥1

𝑥2
=

𝑝1 𝑋1+𝑝2𝑋2+𝑝3𝑋3+𝑝4𝑋4

𝑝5 𝑋1+𝑝6𝑋2+𝑝7𝑋3+𝑝8𝑋4

3) This gives (as usual) a least square optimization problem: 
𝐴 𝑋 = 0 with 𝑋 = 1 where 𝐴 is of size 4 × 4. 
This  can be solved in closed-form using SVD.

3x4 matrix



Triangulation: Uncertainty
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Large baseline
Smaller uncertainty area

Smaller baseline
Larger uncertainty area

Very small baseline
Very large 

uncertainty area


