Computer Vision I -Robust *Multi-View 3D Reconstruction*

Carsten Rother

28/11/2015

Computer Vision I: Multi-View 3D reconstruction

Roadmap for next four lectures

- Appearance-based Matching (sec. 4.1)
- Projective Geometry Basics (sec. 2.1.1-2.1.4)
- Geometry of a Single Camera (sec 2.1.5, 2.1.6)
 - Camera versus Human Perception
 - The Pinhole Camera
 - Lens effects
- Geometry of two Views (sec. 7.2)
 - The Homography (e.g. rotating camera)
 - Camera Calibration (3D to 2D Mapping)
 - The Fundamental and Essential Matrix (two arbitrary images)
- Robust Geometry estimation for two cameras (sec. 6.1.4)
- Multi-View 3D reconstruction (sec. 7.3-7.4)
 - General scenario
 - From Projective to Metric Space
 - Special Cases

In last lecture we asked (for rotating camera)...



Question 1: If a match is completely wrong then $argmin_h ||Ah||$ is a bad idea

Question 2: If a match is slightly wrong then $argmin_h ||Ah||$ might not be perfect. Better might be a geometric error: $argmin_h ||Hx - x'||$

RANSAC:

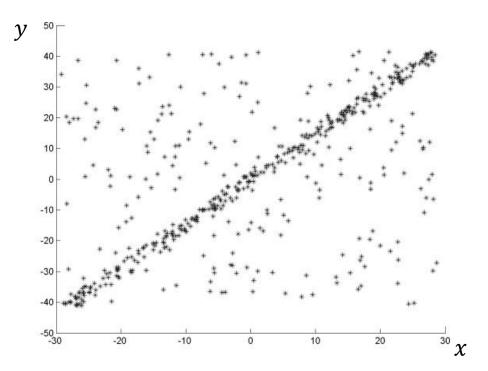
Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography

Martin A. Fischler and Robert C. Bolles (June 1981).

[Side credits: Dimitri Schlesinger]

Example Tasks

Search for a straight line in a clutter of points



i.e. search for parameters *a* and *b* for the model ax + by = 1

given a training set $((x^1, y^1), (x^2, y^2) \dots (x^i, y^i))$

Example Tasks

Estimate the fundamental matrix ${\it F}$

i.e. parameters satisfying

$$\begin{bmatrix} x_{l1}, x_{l2}, 1 \end{bmatrix} \cdot \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \cdot \begin{bmatrix} x_{r1} \\ x_{r2} \\ 1 \end{bmatrix} = 0$$

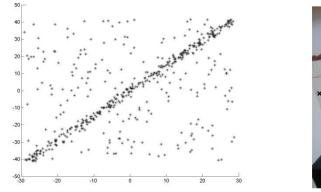
given a training set of correspondent pairs

 $((x_l^1, x_r^1), (x_l^2, x_r^2) \dots (x_l^i, x_r^i))$

For Homography of rotating camera we have: $x_l^i H = x_r^i$

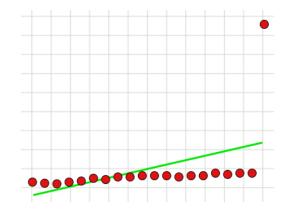
Two sources of errors

- Noise: the coordinates deviate from the true ones according to some "rule" (probability) – the father away the less confident
- **2. Outliers**: the data have nothing in common with the model to be estimated



Ignoring outliers can lead to a wrong estimation.

 \rightarrow The way out: find outliers explicitly, estimate the model from inliers only



Task formulation

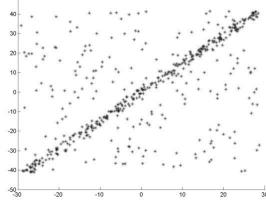
Let $x \in \mathcal{X}$ be the input space and $y \in \mathcal{Y}$ be the parameter space. The training data consist of data points $L = (x^1, x^2 \dots x^i), x^i \in \mathcal{X}$

Let an **evaluation function** $f : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ be given that checks the consistency of a point x with a model y.

• Straight line
$$f(x_1, x_2, a, b) = \begin{cases} 0 & if |ax_1 + bx_2 - 1| \le t (e.g. 0.1) \\ 1 & otherwise (Outlier) \end{cases}$$

• Fundamental matrix $f(x_l, x_r, F) = \begin{cases} 0 & if |x_l^t F x_r| \le t (e.g. 0.1) \\ 1 & otherwise (Outlier) \end{cases}$

The task is to find the parameter that is consistent with the **majority** of the data points: $y^* = argmin_y \sum_i f(x^i, y)$

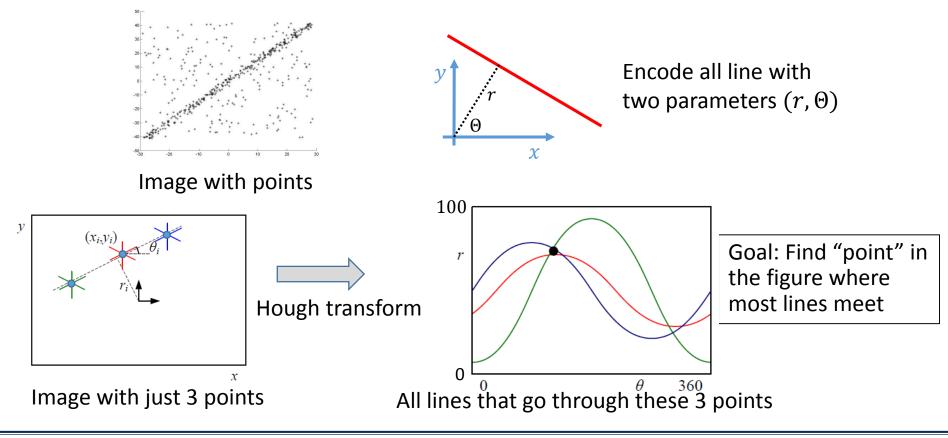


First Idea: 2D Line estimation

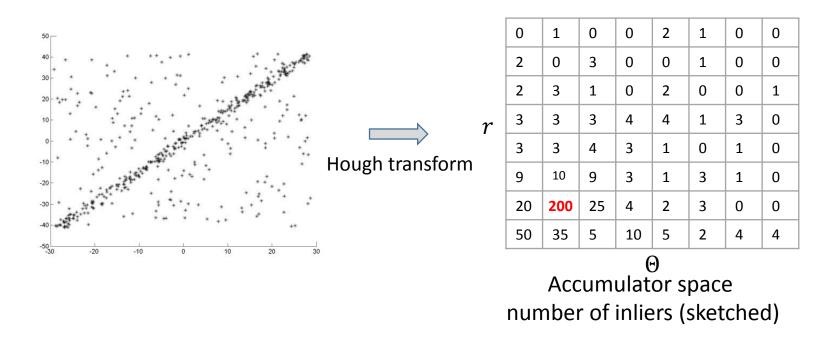
Question: How to compute:
$$y^* = argmin_y \sum_i f(x^i, y)$$

<u>A naïve approach: enumerate all parameter values</u>

→ know as Hough Transform (very time consuming and not possible at all for many free parameters (i.e. high dimensional parameter space)



First Idea: 2D Line estimation



- <u>Observation</u>: The parameter space have very low counts
- Idea: do not try all values but only some of them. Which ones?

Data-driven Oracle

An **Oracle** is a function that predicts a parameter given the minimum amount of data points (*d*-tuple): $g: \mathcal{X}^d \to \mathcal{Y}$

Examples:

- Line can be estimated from d = 2 points
- Fundamental matrix from d = 7 or 8 points correspondences
- Homography can be computed from d = 4 points correspondences

First Idea: Do not enumerate all parameter values but all d-tuples of data points That is then n^d number of tests, e.g. n^2 for lines (with n points) The optimization is performed over a **discrete domain**.

$$y^* = argmin_y \sum_i f(x^i, y)$$

Second Idea: Do not try all subsets, but sample them randomly

RANSAC

Basic RANSAC method:

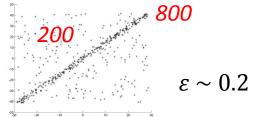
Repeat many times select d-tuple, e.g. (x^1, x^2) for lines compute parameter(s) y, e.g. line $y = g(x^1, x^2)$ evaluate $f'(y) = \sum_i f(x^i, y)$ If $f'(y) \le f'(y^*)$ set $y^* = y$ and keep value $f'(y^*)$

- Sometimes we get a discrete set of intermediate solutions y. For example for F-matrix computation from 7 points we have up to 3 solutions. The we simply evaluate f'(y) for all solutions.
- How many times do you have to sample in order to reliable estimate the true model?

Convergence

<u>Observation:</u> it is necessary to sample **any** d -tuple of inliers just **once** in order to estimate the model correctly.

Let ε be the probability of outliers.



1000 points overall

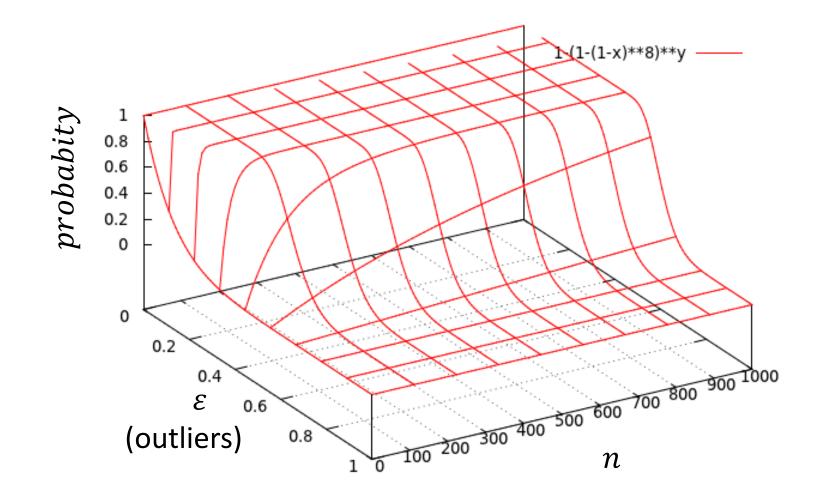
The probability to sample d inliers is $(1 - \varepsilon)^d$ (here $0.8^2 = 0.64$)

The probability of a "wrong" d-tuple is $1 - (1 - \varepsilon)^d$ (here 0.36)

The probability to sample *n* times only wrong tuples is $(1 - (1 - \varepsilon)^d)^n$. (here $0.36^{20} = 0.000000013$)

The probability to sample the "right" tuple at least once during the process (i.e. to estimate the correct model according to assumptions) $1 - (1 - (1 - \varepsilon)^d)^n$ (here 99.99999866%)

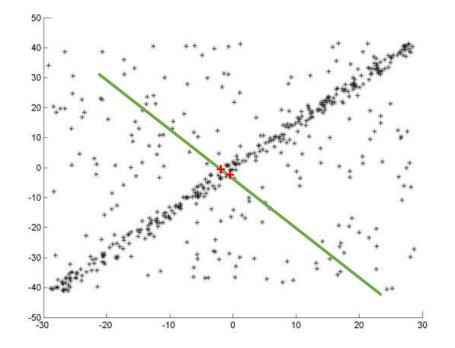
Convergence



$$1 - (1 - (1 - \varepsilon)^d)^n, d = 8, \varepsilon \in [0, 1], n = 1 \dots 1000$$

Comment

• In our derivation for $p = 1 - (1 - (1 - \varepsilon)^d)^n$ we were slightly optimistic since "degenerate" inliers may give rise to bad lines



- However, these bad lines have little support wrt number of inliers
- We also define later a refinement procedure which can correct such bad lines

The choice of the **oracle** is crucial

Example – the fundamental matrix:

- a) 8-point algorithm Probability: 70% (n = 300; $\epsilon = 0.5$; d = 8)
- b) 7-point algorithm Probability: 90% (n = 300; $\epsilon = 0.5$; d = 7)

Number of trials to get p% accuracy (here 99%)

$$p = 1 - \left(1 - (1 - \varepsilon)^d\right)^n$$
$$n = \frac{\log(1 - p)}{\log(1 - (1 - \varepsilon)^d)}$$

d	proportion of outliers ${\cal E}$						
	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	П	17
3	3	4	7	9	П	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

The choice of **evaluation function** is crucial

- Evaluation function: $f(x_1, x_2, a, b) = \begin{cases} 1 & if |ax_1 + bx_2 1| \le t \ (e. g. 0.1) \\ 0 & otherwise \end{cases}$
- Algebraic error: Is a measure that has no geometric meaning function Example: For a line: $d(x_1, x_2, a, b) = |ax_1 + bx_2 - 1|$ For a homograpy: $d(x_1, x_2, a, b) = |Ah|$ (where A is 1×8 matrix derived as above For F-matrix: $d(x_l, x_r, F) = |x_l^t F x_r|$
- **Geometric error**: Is a measure that considers a distance in image plane Example: For a line: $d(x_1, x_2, a, b) = d((x_1, x_2), l(a, b))$

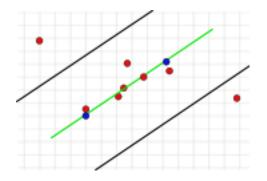
Line: l(a, b) $d((x_1, x_2), l(a, b))$ (x_1, x_2)

(*d* is Euclidean distance between point to line)

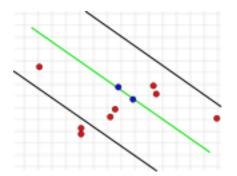
Geometric error: for homography and F-matrix to come

The choice of **confidence interval** is crucial

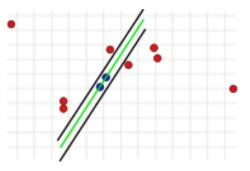
Examples:



Large confidence, "right" model, 2 outliers



Large confidence, "wrong" model, 2 outliers



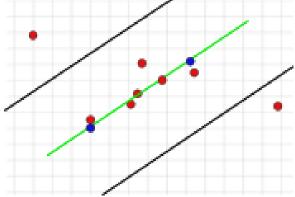
Small confidence, Almost all points are outliers (independent of the model)

Extension: Adaptive number of samples n

Choose *n* in an adaptive way:

- 1) Fix p = 99.9% (very large value)
- 2) Set $n = \infty$ and $\varepsilon = 0.9$ (large value for outlier)
- 3) During RANSAC adapt n, ε :
 - 1) Re-compute ε from current best solution ε = outliers / all points
 - 2) Re-Compute new *n*:

$$n = \frac{\log(1-p)}{\log(1-(1-\varepsilon)^d)}$$



MSAC (M-Estimator SAmple Consensus)

If a data point is an inlier the penalty is not 0, but it depends on the "distance" to the model.

Example for the fundamental matrix:

$$f(x_l, x_r, F) = \begin{cases} 0 & if |x_l^t F x_r| \le t \ (e. g. 0.1) \\ 1 & otherwise \end{cases}$$

becomes

$$f(x_l, x_r, F) = \begin{cases} |x_l^t F x_r| & if |x_l^t F x_r| \le t \ (e. g. 0.1) \\ t & otherwise \end{cases}$$
 "robust function"

 \rightarrow the task is to find the model with the minimum average penalty

$$f(x_l, x_r, F) = \min(|x_l^t F x_r|, t)$$
$$y^* = \arg\min_y \sum_i f(x^i, y)$$

[P.H.S. Torr und A. Zisserman 1996]

Randomized RANSAC

Evaluation of a hypothesis y, i.e. $\sum_i f(x^i, y)$ often time consuming

Randomized RANSAC:

instead of checking all data points $x^i \in L$

- 1. Sample m points from L
- 2. If all of them are good, check all others as before
- 3. If there is at least one bad point, among m, reject the hypothesis

It is possible that good hypotheses are rejected. However it saves time (bad hypotheses are recognized fast) \rightarrow one can sample more often

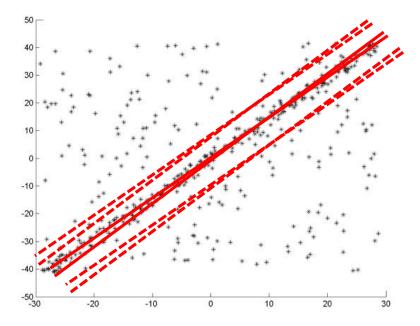
 \rightarrow overall often profitable (depends on application).

Refinement after RANSAC

Typical procedure:

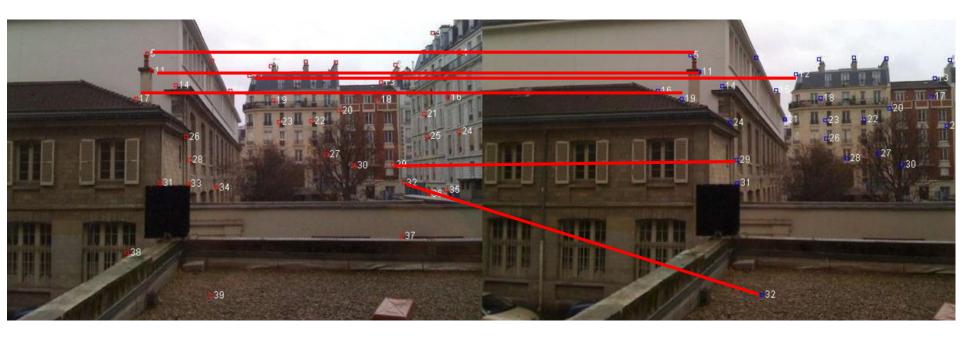
- 1. RASNAC: compute model y in a robust way
- 2. Find all inliers *x*_{inliers}
- 3. Refine model y from inliers $x_{inliers}$
- 4. Go to Step 2.

(until numbers of inliers or model does not change much)



Computer Vision I: Image Formation Process

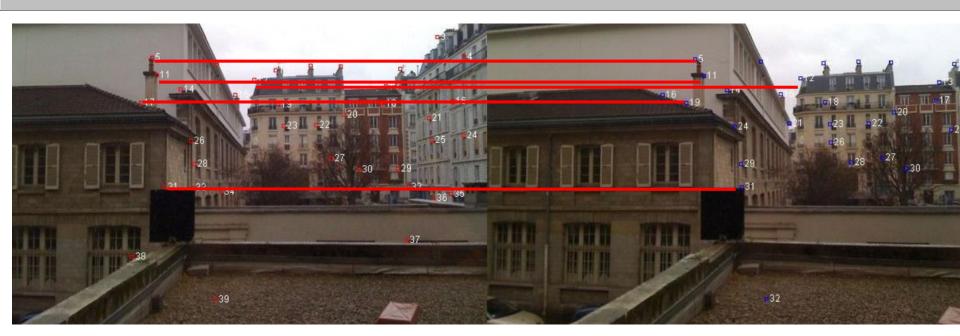
In last lecture we asked (for rotating camera)...



Question 1: If a match is completly wrong then $argmin_h ||Ah||$ is a bad idea Answer: RANSAC with d = 4

Question 2: If a match is slighly wrong then $argmin_h ||Ah||$ might not be perfect. Better might be a geometric error: $argmin_h ||Hx - x'||$ Answer: see next slides

Reminder from last Lecture: Homography for rotating camera



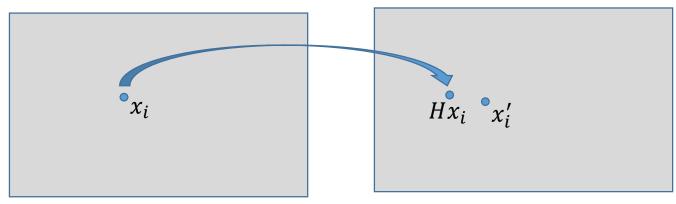
$$\begin{array}{l} \underline{Algorithm:}\\ 1) \mbox{ Take } m \geq 4 \mbox{ point matches } (x,x')\\ 2) \mbox{ Assemble } A \mbox{ with } A {m h} \ = \ 0\\ 3) \mbox{ compute } {m h}^* = argmin_{{m h}} \|A{m h}\| \mbox{ subject to } \|{m h}\| = 1,\\ \mbox{ use SVD to do this.} \end{array}$$

Refine Hypothesis *H* with inliers

1. Algebraic error: $argmin_h ||Ah||$

where d(a, b) is 2D geometric distance $||a - b||^2$

2. First geometric error: $H^* = argmin_H \sum_i d(x'_i, Hx_i)$



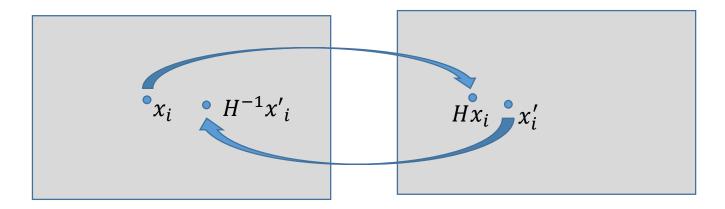
This is not symmetric

Refine Hypothesis *H* with inliers

1. Algebraic error: $argmin_h ||Ah||$

where d(a, b) is 2D geometric distance $||a - b||^2$

- 2. First geometric error: $H^* = argmin_H \sum_i d(x'_i, Hx_i)$
- 3. Second, symmetric geometric error: $H^* = argmin_H \sum_i d(x'_i, Hx_i) + d(x_i, H^{-1}x'_i)$

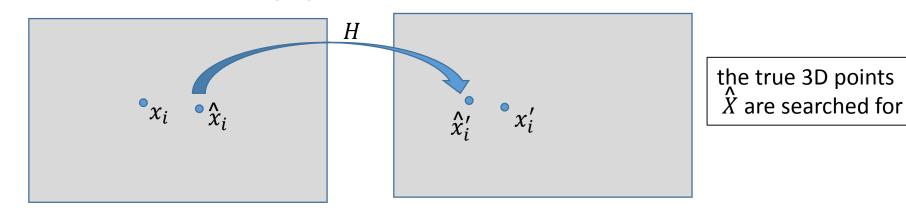


Refine Hypothesis H with inliers

1. Algebraic error: $argmin_h ||Ah||$

where d(a, b) is 2D geometric distance $||a - b||^2$

- 2. First geometric error: $H^* = argmin_H \sum_i d(x'_i, Hx_i)$
- 3. Second, symmetric geometric error: $H^* = argmin_H \sum_i d(x'_i, Hx_i) + d(x_i, H^{-1}x'_i)$
- 4. Third, optimal geometric error (gold standard error): $\{H^*, \hat{x}_i, \hat{x}'_i\} = \underset{H, \hat{x}_i, \hat{x}'_i}{argmin} \sum_i d(x_i, \hat{x}_i) + d(x'_i, \hat{x}'_i) \qquad subject \ to \ \hat{x}'_i = H \hat{x}_i$



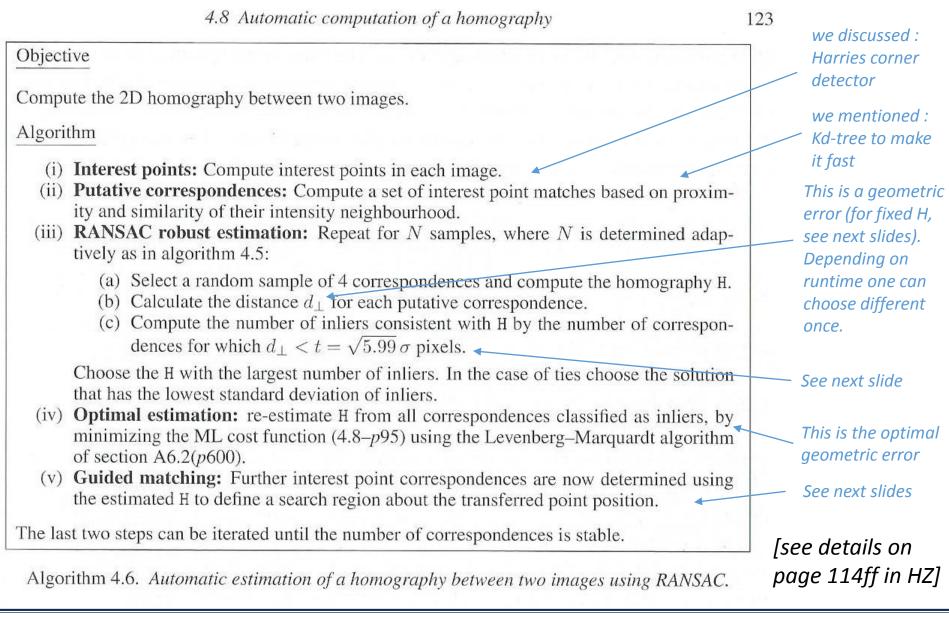
<u>Comment:</u> This is optimal in the sense that it is the maximum-likelihood (ML) estimation under isotropic Gaussian noise assumption for \hat{x} (see page 103 HZ)

Halfway Slide

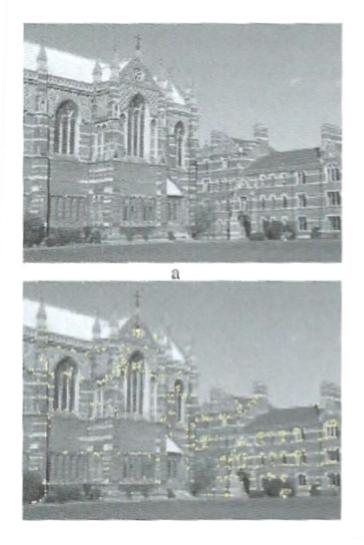
1 Min Break

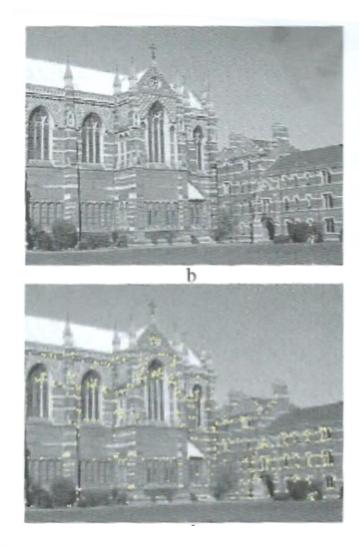
Computer Vision I: Image Formation Process

Full Homography Method (HZ page 123)



Example





Input images

~500 interest points

Example

268 putative matches e 151 inliers found

117 outliers found

262 inliers after guided matching

<u>Guided matching variant:</u> use given H and look for new inliers. Here we also double the threshold on appearance feature matches to get more inliers.

Geometric derivation of confidence interval

Assume Gaussian noise for a point with σ standard deviation and 0 mean:

To have a 95% chance that an inlier is inside the confidence interval, we require:

- 1. For a 2D line: $d(x, l) \le \sigma \sqrt{3.84} = t$
- 2. For a Homography: $d(x_l, x_r, H) \le \sigma \sqrt{5.99} = t$
- 3. For an F-matrix: $d(x_l, x_r, F) \le \sigma \sqrt{3.84} = t$

(see page 119 HZ)

Methods for F/E/H Matrix computation - Summary

Procedure (as mentioned above):

- 1. RASNAC: compute model F/E/H in a robust way
- 2. Find all inliers $x_{inliers}$ (with potential relaxed criteria)
- 3. Refine model F/E/H from inliers $x_{inliers}$

4. Go to Step 2. (until numbers of inliers or model does not change much)

We need geometric error for a *fixed* model *F/E/H* (RANSAC):

1. For a Homography: $d(x, x', H) = \min_{\hat{x}, \hat{x}'} [d(x, \hat{x}) + d(x', \hat{x}')]$ subject to $\hat{x}' = H\hat{x}$ 2. For an F/E-matrix: $d(x, x', F/E) = \min_{\hat{x}, \hat{x}'} [d(x, \hat{x}) + d(x', \hat{x}')]$ subject to $\hat{x}'^{t}F/E\hat{x} = 0$

We need geometric error for *model refinement* F/E/H :

1. For a Homography:
$$\{H^*, \hat{x}_i, \hat{x}'_i\} = \underset{H, \hat{x}_i, \hat{x}'_i}{argmin} \sum_i d(x_i, \hat{x}_i) + d(x'_i, \hat{x}'_i) \text{ subject to } \hat{x}'_i = H\hat{x}_i$$

2. For an F/E -matrix: $\{F^*/E^*, \hat{x}_i, \hat{x}'_i\} = \underset{F/E, \hat{x}_i, \hat{x}'_i}{argmin} \sum_i d(x_i, \hat{x}_i) + d(x'_i, \hat{x}'_i) \text{ sbj. to } \hat{x}'_i F/E\hat{x}_i = 0$

 $\hat{x}'_i \quad x'_i$

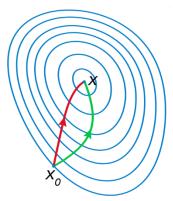
 $^{\circ}x_i \circ ^{\circ}x_i$

A few word on iterative continuous optimization

So far we had linear (least square) optimization problems: $x^* = argmin_x ||Ax||$

For non-linear (arbitrary) optimization problems:

 $x^* = argmin_x f(x)$

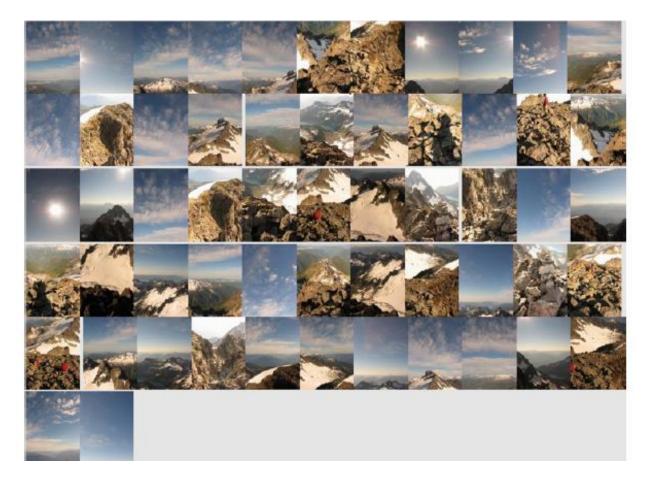


Red Newton's method; green gradient descent

- Iterative Estimation methods (see Appendix 6 in HZ; page 597ff)
 - Gradient Descent Method (good to get roughly to solution)
 - Newton Methods (e.g. Gauss-Newton): second order Method (Hessian). Good to find accurate result
 - Levenberg Marquardt Method: mix of Newton method and Gradient descent

Application: Automatic Panoramic Stitching

An unordered set of images:



Run Homography search between all pairs of images

Application: Automatic Panoramic Stitching

... automatically create a panorama

Application: Automatic Panoramic Stitching

... automatically create a panorama

Computer Vision I: Robust Two-View Geometry

Application: Automatic Panoramic Stitching

... automatically create a panorama

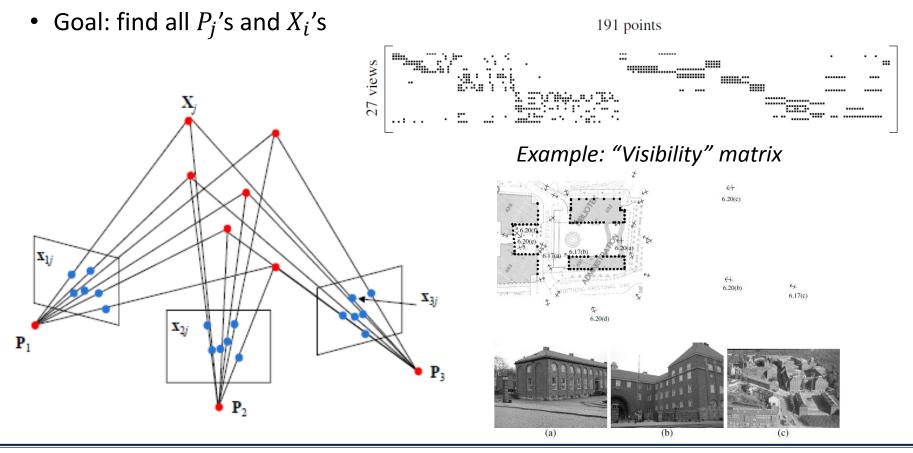
Computer Vision I: Robust Two-View Geometry

Roadmap for next four lectures

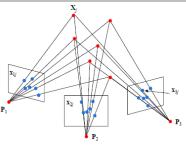
- Appearance-based Matching (sec. 4.1)
- Projective Geometry Basics (sec. 2.1.1-2.1.4)
- Geometry of a Single Camera (sec 2.1.5, 2.1.6)
 - Camera versus Human Perception
 - The Pinhole Camera
 - Lens effects
- Geometry of two Views (sec. 7.2)
 - The Homography (e.g. rotating camera)
 - Camera Calibration (3D to 2D Mapping)
 - The Fundamental and Essential Matrix (two arbitrary images)
- Robust Geometry estimation for two cameras (sec. 6.1.4)
- Multi-View 3D reconstruction (sec. 7.3-7.4)
 - General scenario
 - From Projective to Metric Space
 - Special Cases

3D reconstruction: Problem definition

- Given image observations in *m* cameras of *n* static 3D points
- Formally: $x_{ij} = P_j X_i$ for j = 1 ... m; i = 1 ... n
- Important: In practice we do not have all points visible in all views, i.e. the number of $x_{ij} \le mn$ (this is captured by the "visibility matrix")



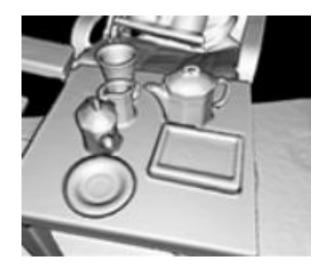
Names: 3D reconstruction



1) Sparse Structure from Motion (SfM)

In Robotics it is known as SLAM (Simultaneous Localization and Mapping): "Place a robot in an unknown location in an unknown environment and have the robot incrementally build a map of this environment while simultaneously using the map to compute the vehicle location"

2) Dense Multi-view reconstruction



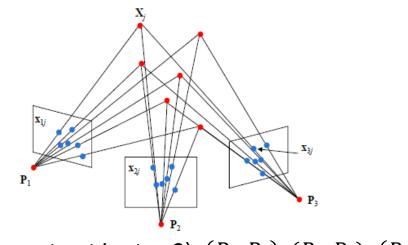
Example: Dense Reconstruction

[KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera, Izadi et al ACM Symposium on User Interface Software and Technology, October 2011]

Reconstruction Algorithm

Generic Outline (calibrated and un-calibrated cameras)

- 1) Compute robust F/E-matrix between each pair of neighboring views
- 2) Compute initial reconstruction of consecutive pair of views
- 3) Compute an initial full 3D reconstruction
- 4) Bundle-Adjustment to minimize overall geometric error
- 5) If cameras are not calibrated then perform auto-calibration (also known as self-calibration)



Reconstruct in step 2): (P_1, P_2) ; (P_2, P_3) ; (P_3, P_4) ...

[See page 453 HZ]

Step 2: Compute initial reconstruction of consecutive pair of views

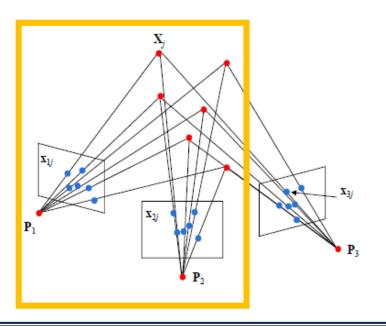
<u>Input:</u>

- Calibrated Cameras: E-matrix, K, K', 5+ matching points (x_i, x'_i)
- <u>Un-calibration Cameras</u>: *F*-matrices, 7+ matching points (x_i, x'_i)

<u>Output:</u> $P, P', X_{i's}$ such that geometric error: PX_i to x_i and $P'X_i$ to x'_i is small

2-Step Method:

- 1. Derive *P*, *P*'
- 2. Compute $X_{i's}$ (called Triangulation)

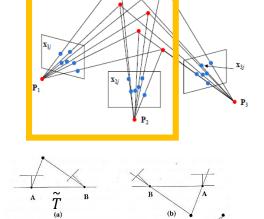


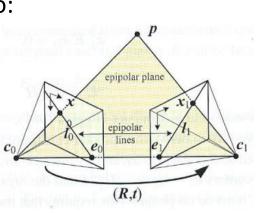
Derive P, P': calibrated case

We have done this already:

• We have seen that we can get: R, \tilde{T} (up to scale) from E

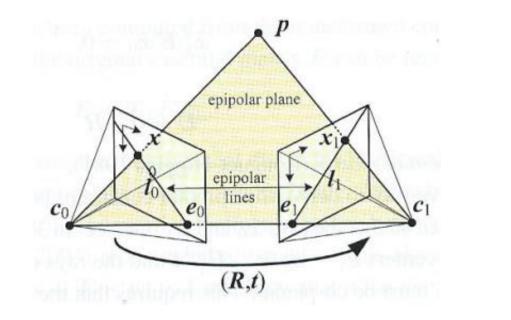
$$x_0 = \underbrace{K_0[I|0]}_P X \text{ and } x_1 = \underbrace{K_1 R^{-1}[I|-\tilde{T}]}_P X$$

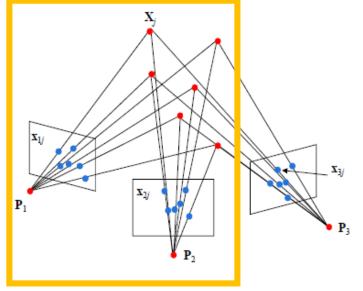




Derive P, P': un-calibrated case

• Derivation (blackboard) see HZ page 256 $P = [I_{3\times 3} \mid 0]; P' = [[e']_{\times}F \mid e']$





Derivation

we need P, P' south that x= PX, x'= P'X xTFx for all X P 3 XT PT ∓ P"X=0 (A) choese P= [I] P'= [STIe'] [15 Dot find] where $S = \overline{[} \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}]_{X} = \begin{bmatrix} 0 & -a' \\ -a' \\ -a' \end{bmatrix}$ we show that (1) holds for any X $\mathcal{C}^{\mathsf{IT}} \overline{+} \mathcal{P} = \begin{bmatrix} \overline{+}^{\mathsf{T}} S^{\mathsf{T}} \\ \overline{z}^{\mathsf{IT}} \end{bmatrix} \overline{+} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \overline{+}^{\mathsf{T}} S^{\mathsf{T}} \\ \overline{z}^{\mathsf{IT}} \end{bmatrix} \begin{bmatrix} \overline{+} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \overline{+}^{\mathsf{T}} S^{\mathsf{T}} \overline{+} & 0 \\ \overline{z}^{\mathsf{T}} \overline{+} & 0 \end{bmatrix}$ = $\begin{bmatrix} F^T S^T F \end{bmatrix}_{0}^{0}$ = we have to show $(x, y, z, n) \begin{bmatrix} \overline{\mp}^T S^T \overline{\mp} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{pmatrix} x \\ z \\ z \end{bmatrix} = 0 \quad \text{is } (x, y, z) \quad \overline{\mp}^T S^T \overline{\mp} \begin{pmatrix} S \\ z \\ z \end{bmatrix} = 0$ [(x, y, 2) 7 3 7 , 0] This is true if FTSF= [m]x CM2x / m abc [0-c'b] [adg] det [c'o-a] [beh] ah: [bha a'] [cci]

Derivation

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} -c' & b + b' & -c' & e + b' & f \\ -b' & a + a' & -b' & d + a' & -c' & b + b' & i \\ -b' & a + a' & -b' & d + a' & -b' & g + a' & h \end{bmatrix} = \begin{bmatrix} a & 2 & 3 \\ 4 & 5 & c \\ 7 & g & a' \end{bmatrix}$$

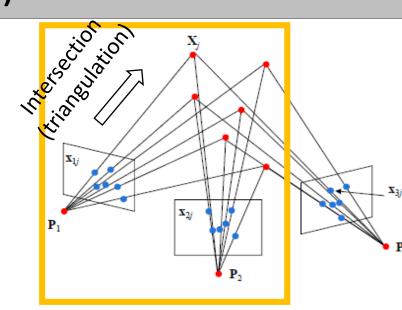
$$\begin{bmatrix} 0 & -a & c' & b + a & b' & c + b & c' & a - b & a' & c - c & b' & a + c & a' & b \\ -b' & d & + a' & b & -b' & d + a' & c & a' & b & = 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & -a & c' & b + a & b' & c + b & c' & a - b & a' & c - c & b' & a + c & a' & b & = 0 \\ \hline & 0 & -a & c' & a + d & b' & f + e & c' & d - e & a' & f - f & b' & d + f & a' & e & = 0 \\ \hline & 0 & -a & c' & b + & g & b' & c' & d - b & a' & i - b' & gi & + & a' & h & i & = 0 \\ \hline & 0 & -a & c' & b + & g & b' & i + h & c' & g - h & a' & i - b' & gi & + & a' & h & i & = 0 \\ \hline & 0 & -a & c' & b + & g & b' & c + h & c' & a - e & a' & c - & f & b' & a + f & a' & b & = : - & m_A \\ \hline & 0 & -d & c' & b + & g & b' & c + h & c' & a - h & a' & c - & i & b' & a + i & a' & b & = : - & m_A \\ \hline & 0 & -a & c' & h + & a & b' & i + b & c' & g - e & a' & i - & b' & g + f & a' & h & = : - & m_A \\ \hline & 0 & -a & c' & h + & a & b' & i + b & c' & g - e & a' & i - & i & b' & g + f & a' & h & = : - & m_A \\ \hline & 0 & -a & c' & h + & a & b' & i + & b & c' & g - e & a' & i - & i & b' & g + f & a' & h & = : - & m_A \\ \hline & 0 & -d & c' & h + & d & b' & i + & e & c' & g - e & a' & i - & f & b' & g + f & a' & h & = : - & m_B \\ \hline & 0 & -d & c' & h + & d & b' & i + & e & c' & g - e & a' & i - & f & b' & g + f & a' & h & = : - & m_B \\ \hline & 0 & -d & c' & h + & d & b' & i + & e & c' & g - e & a' & i - & f & b' & g + f & a' & h & = : - & m_B \\ \hline & 0 & -d & c' & h + & d & b' & i + & e & c' & g - e & a' & i - & f & b' & g + f & a' & h & = : - & m_B \\ \hline & 0 & -d & c' & h + & d & b' & i + & e & c' & g - e & a' & i - & f & b' & g + f & a' & h & = : - & m_B \\ \hline & 0 & -d & c' & h + & b' & d + & h & c' & g - & c & a' & i - & f & b' & g + f & a' & h & i & a' & b \\ \hline & 0 & -d & c' & h & h & c' & h & h & c' & f & - & i & b' & d + i & a' & c' & e & = : - & m_B \\ \hline \end{array}$$

Compute $X_{i's}$ (Triangulation)

- <u>Input:</u> *x*, *x*', *P*, *P*'
- <u>Output:</u> X_{i's}
- Triangulation is also called intersection
- Simple solution for algebraic error:

1)
$$\lambda x = P X$$
 and $\lambda' x' = P' X$
3x4 matrix

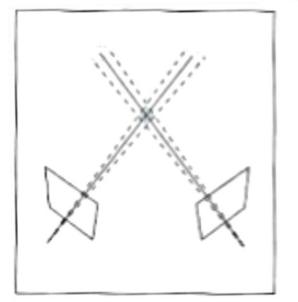


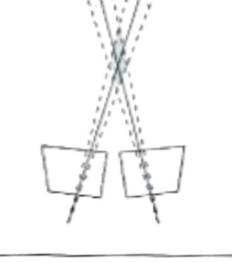
2) Eliminate λ by taking ratios. This gives 2x2 linear-independent equations for 4 unknowns: X = (X₁, X₂, X₃, X₄), and we want: ||X|| = 1. (remember X is a homogenous 4D vector, hence scale has to be fixed)

An example ratio is: $\frac{x_1}{x_2} = \frac{p_1 X_1 + p_2 X_2 + p_3 X_3 + p_4 X_4}{p_5 X_1 + p_6 X_2 + p_7 X_3 + p_8 X_4}$

3) This gives (as usual) a least square optimization problem: A X = 0 with ||X|| = 1 where A is of size 4×4 . This can be solved in closed-form using SVD.

Triangulation: Uncertainty





Large baseline Smaller uncertainty area

Smaller baseline Larger uncertainty area

Very small baseline Very large uncertainty area

