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Reminder: Reconstruction Algorithm
Generic Outline (calibrated and un-calibrated cameras)

1) Compute robust 𝐹/𝐸-matrix between each pair of neighboring views

2) Compute initial reconstruction of consecutive pair of views

3) Compute an initial full 3D reconstruction

4) Bundle-Adjustment to minimize overall geometric error

5) If cameras are not calibrated then perform auto-calibration 
(also known as self-calibration)
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[See page 453 HZ]

Reconstruct in step 2): 𝑃1, 𝑃2 ; (𝑃2, 𝑃3); 𝑃3, 𝑃4 …



Reminder: 
Step 2: Compute initial reconstruction of consecutive pair of views
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Input: 
• Calibrated Cameras: 𝐸-matrix, 𝐾,𝐾’, 5+ matching points (𝑥𝑖 , 𝑥′𝑖)
• Un-calibration Cameras: 𝐹-matrices, 7+ matching points (𝑥𝑖 , 𝑥′𝑖)

Output: 𝑃, 𝑃’, 𝑋𝑖′𝑠 such that geometric error: 𝑃𝑋𝑖 𝑡𝑜 𝑥𝑖 and
𝑃′𝑋𝑖 𝑡𝑜 𝑥′𝑖 is small

2-Step Method:
1. Derive 𝑃, 𝑃’
2. Compute 𝑋𝑖′𝑠 (called Triangulation) 



Reminder: Derive 𝑃, 𝑃’: calibrated case

• We have seen that we can get: 𝑅, 𝑇(up to scale) from 𝐸

• We have set in previous lecture the camera matrices to:
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~
𝑇

~

𝑥0 = 𝐾0 𝐼 0 𝑋 and 𝑥1 = 𝐾1𝑅
−1 𝐼 −𝑇 𝑋

~

We have done this already:

𝑃 𝑃′



Reminder: Derive 𝑃, 𝑃’: un-calibrated case
• Derivation (blackboard) see HZ page 256

𝑃 = 𝐼3×3 0 ]; 𝑃
′ = 𝑒′ ×𝐹 𝑒′]
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Reminder: Compute 𝑋𝑖′𝑠 (Triangulation)
• Input: 𝑥, 𝑥’, 𝑃, 𝑃’

• Output: 𝑋𝑖′𝑠

• Triangulation is also called intersection

• Simple solution for algebraic error:
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1) 𝜆𝑥 = 𝑃 𝑋 and 𝜆′𝑥′ = 𝑃′ 𝑋

2) Eliminate 𝜆 by taking ratios. This gives 2x2 linear-independent equations   
for  4 unknowns: 𝑋 = 𝑋1, 𝑋2, 𝑋3, 𝑋4 , and we want: 𝑋 = 1.
(remember 𝑋 is a homogenous 4D vector, hence scale has to be fixed)

An example ratio is:  
𝑥1

𝑥2
=
𝑝11 𝑋1+𝑝12𝑋2+𝑝13𝑋3+𝑝14𝑋4

𝑝21 𝑋1+𝑝22𝑋2+𝑝23𝑋3+𝑝24𝑋4

3) This gives (as usual) a least square optimization problem: 
𝐴 𝑋 = 0 with 𝑋 = 1where 𝐴 is of size 4 × 4. 
This  can be solved in closed-form using SVD.

3x4 matrix



Reminder: Triangulation: Uncertainty
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Large baseline
Smaller uncertainty area

Smaller baseline
Larger uncertainty area

Very small baseline
Very large 

uncertainty area



Reconstruction Algorithm
Generic Outline (calibrated and un-calibrated cameras)

1) Compute robust 𝐹/𝐸-matrix between each pair of neighboring views

2) Compute initial reconstruction of consecutive pair of views

3) Compute an initial full 3D reconstruction

4) Bundle-Adjustment to minimize overall geometric error

5) If cameras are not calibrated then perform auto-calibration 
(also known as self-calibration)
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[See page 453 HZ]

Reconstruct in step 2): 𝑃1, 𝑃2 ; (𝑃2, 𝑃3); 𝑃3, 𝑃4 …



Step 3: Compute initial reconstruction
Three views of an un-calibrated or calibrated camera:
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Reconstruct Points 
and Camera 1 and 2

Reconstruct Points 
and Camera 2 and 3
(denote with a dash) 

• Both reconstructions share: 5+ 3D points and one camera (here 𝑃2, 𝑃2
′). 

(We denote the second reconstruction with a dash)
• Why are 𝑋i, 𝑋𝑖′ not the same?

In general we have the following ambiguity: 𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 = 𝑃𝑗𝑄
−1𝑄𝑋𝑖 = 𝑃𝑗

′𝑋𝑖
′

• Our Goal: make 𝑋𝑖 = 𝑋𝑖
′ and 𝑃2 = 𝑃2

′ such that
(remember all mean “=“ mean equal up to scale. All elements, 𝑥, 𝑋 and 𝑃 are 
defined up to scale)  

𝑋𝑖 , 𝑃1, 𝑃2 𝑋𝑖
′, 𝑃2
′ , 𝑃3
′

𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖



Step 3: Compute initial reconstruction
Three views of an un-calibrated or calibrated camera:
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Method:
• Compute 𝑄 such that 𝑋1−5 = 𝑄𝑋1−5

′ (up to scale)
• This can be done from 5+ 3D points in usual least-square sense ( 𝐴𝑄 ), since each 

point gives 3 equations and 𝑄 has 15 DoF.

An example ratio is:  
𝑋1

𝑋2
=
𝑄11𝑋

1′+𝑄12𝑋
2′+𝑄13𝑋

3′+𝑄14𝑋
4′

𝑄21𝑋
1′+𝑄22𝑋

2′+𝑄23𝑋
3′+𝑄24𝑋

4

for 𝑋1 = 𝑋
1, 𝑋2, 𝑋3, 𝑋4 ; 𝑋′1 = 𝑋

1′, 𝑋2′, 𝑋3′, 𝑋4′

• Convert the second (dashed) reconstruction into the first one:
𝑃′2,3 𝑛𝑒𝑤 = 𝑃2,3

′ 𝑄−1; 𝑋′𝑖 𝑛𝑒𝑤 = 𝑄𝑋𝑖
′ (note: 𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 = 𝑃𝑗𝑄

−1𝑄𝑋𝑖)

• In this way you can “zip” all reconstructions into a single one, in sequential fashion.

Reconstruct Points 
and Camera 1 and 2

Reconstruct Points 
and Camera 2 and 3
(denote with a dash) 



Reconstruction Algorithm
Generic Outline (calibrated and un-calibrated cameras)

1) Compute robust 𝐹/𝐸-matrix between each pair of neighboring views

2) Compute initial reconstruction of consecutive pair of views

3) Compute an initial full 3D reconstruction

4) Bundle-Adjustment to minimize overall geometric error

5) If cameras are not calibrated then perform auto-calibration 
(also known as self-calibration)
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[See page 453 HZ]

Reconstruct in step 2): 𝑃1, 𝑃2 ; (𝑃2, 𝑃3); 𝑃3, 𝑃4 …



Bundle adjustment

• Global refinement of jointly structure (points) and cameras

• Minimize geometric error:

here 𝛼𝑖𝑗 is 1 if 𝑋𝑗 visible in view 𝑃𝑗 (otherwise 0)
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• Non-linear optimization with e.g. Levenberg-Marquard

𝑎𝑟𝑔𝑚𝑖𝑛{𝑃𝑗,𝑋𝑖}  

𝑗

 

𝑖

𝛼𝑖𝑗 𝑑(𝑃𝑗𝑋𝑖, 𝑥𝑖𝑗)



Reconstruction Algorithm
Generic Outline (calibrated and un-calibrated cameras)

1) Compute robust 𝐹/𝐸-matrix between each pair of neighboring views

2) Compute initial reconstruction of consecutive pair of views

3) Compute an initial full 3D reconstruction

4) Bundle-Adjustment to minimize overall geometric error

5) If cameras are not calibrated then perform auto-calibration 
(also known as self-calibration)
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[See page 453 HZ]

• All is as close to: 𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖
for  𝑗 = 1…𝑚; 𝑖 = 1…𝑛
(algebraic or geometric error)

• But does the reconstruction 
look already nice?



Roadmap for next four lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4) 

• Multi-View 3D reconstruction (sec. 7.3-7.4)
• General scenario
• From Projective to Metric Space
• Special Cases

03/12/2015 14Computer Vision I: Image Formation Process



Scale ambiguity
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Is the pumpkin 5m or 30cm tall?



Projective ambiguity
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We can write (most general):   𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 = 𝑃𝑗𝑄
−1𝑄𝑋𝑖 = 𝑃𝑗

′𝑋𝑖
′

• 𝑄 has 15 DoF (projective ambiguity)
• If we do not have any additional information about the cameras or points 

then we cannot recover 𝑄. 
• Possible information (we will see details later)

• Calibration matrix is same for all cameras 
• External constraints: orthogonal vanishing points



Projective ambiguity
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This is a “protectively” correct reconstruction 
… but not a nice looking one 

3D points  map to image points



Affine ambiguity
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We can write (most general):       𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 = 𝑃𝑗𝑄
−1𝑄𝑋𝑖 = 𝑃𝑗

′𝑋𝑖
′

• 𝑄 has now 12 DoF (affine ambiguity)

• 𝑄 leaves the plane at infinity 𝜋∞ = 0,0,0,1
𝑇 in place, since 

any point on 𝜋∞ moves like: 𝑄 𝑎, 𝑏, 𝑐, 0 𝑇 = (𝑎′, 𝑏′, 𝑐′, 0)

• Therefore parallel 3D lines stay parallel for any 𝑄



Affine ambiguity
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3D Points at infinity stay at infinity 



Similarity Ambiguity (Metric space)

03/12/2015Computer Vision I: Multi-View 3D reconstruction 20

• 𝑄 has now 7 DoF (similarity ambiguity)

• 𝑄 preserves angles, ratios of lengths, etc.

• For visualization purpose this ambiguity is sufficient. (We often do not need 

to know if a reconstruction has the size of 1m, 1cm)

• Note, if we do not care about the choice of 𝑄 we can set for instance the 
camera center of first camera to 𝐶 = (0,0,0).

We can write (most general):     𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 = 𝑃𝑗𝑄
−1𝑄𝑋𝑖 = 𝑃𝑗

′𝑋𝑖
′

~



Similarity Ambiguity
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How to “upgrade” a reconstruction 
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• Camera is calibrated

• Calibration from external constraints
(Example(1): 5 known 3D points)

• Calibration from a mix of in- and 
external constraints
(Example(2): single camera and 

3 orthogonal vanishing points 
and a square-pixel camera) 

• Calibration from internal constraints 
only (known as auto-calibration)
(Examples(3): 2 views with unknown 
focal lengths)  

Illustrating some ways to upgrade from Projective to Affine and then to Metric Space
(see details in HZ page 270ff and chapter 19)

• Find plane at infinity and move 
it to canonical position: 
• One of the cameras is 

affine (3rd of camera matrix 
is plane at infinity. See HZ 
page 271)

• 3 non-collinear 3D
vanishing points

• Translational motion
(HZ page 268) 



Projective to Metric: Direct Method (Example 1)
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Given: Five known 3D points (e.g. measured)

Compute 𝑄: 
1) 𝑄𝑋𝑖 = 𝑋𝑖

′ (each 3D point gives 3 linear independent equations)
2) 5 points give 15 equations, enough to compute 𝑄 (15 DoF) using SVD

Upgrade cameras and points:
𝑃𝑗
′ = 𝑃𝑗𝑄

−1 and 𝑋𝑖
′ = 𝑄𝑋𝑖 (remember: 𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 = 𝑃𝑗𝑄

−1𝑄𝑋𝑖)

(Same method as above: “Step 3: Compute initial reconstruction”)



• For a camera 𝑃 = 𝐾 [𝐼 | 0] the ray outwards is: 
𝑥 = 𝑃 𝑋 hence 𝑋 = 𝐾−1𝑥

• The angle Θ is computed as the normalized rays 𝑑1, 𝑑2:

• We define the matrix: 𝜔 = 𝐾−𝑇𝐾−1

• Comment: (𝐾−1)𝑇 = (𝐾𝑇)−1 =:𝐾−𝑇

But without external knowledge?
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cosΘ =
𝑑1
𝑇𝑑2

𝑑1
𝑇𝑑1 𝑑2

𝑇𝑑2
=

𝐾−1𝑥1
𝑇 𝐾−1𝑥2

√ 𝐾−1𝑥1
𝑇 𝐾−1𝑥1 √ 𝐾

−1𝑥2
𝑇 𝐾−1𝑥2

=
𝑥1
𝑇𝜔 𝑥2

𝑥1
𝑇𝜔𝑥1 𝑥2

𝑇𝜔𝑥2

~



But without external knowledge?
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cosΘ =
𝑥1
𝑇𝜔 𝑥2

𝑥1
𝑇𝜔𝑥1 𝑥2

𝑇𝜔𝑥2
• We have: 

• If we were to know 𝜔 then we can compute angle Θ
(Comment, if  Θ = 90𝑜 then we have 𝑥1

𝑇𝜔 𝑥2 = 0)

• 𝐾 can be derived from 𝜔 = 𝐾−𝑇𝐾−1 using Cholesky decomposition 
(see HZ page 582)

• Note, 𝜔 depends on 𝐾 only and not on 𝑅, 𝐶. 
Hence it plays a central role in auto-calibration. 

• How do we get 𝜔?

~



Degrees of Freedom of 𝜔
• We have:
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𝜔 = (𝐾−1)𝑇𝐾−1 =
𝑎 0 0

𝑏 𝑑 0

𝑐 𝑒 1

𝑎 𝑏 𝑐

0 𝑑 𝑒

0 0 1

=
𝑎2 𝑎𝑏 𝑎𝑐

𝑎𝑏 𝑏2 + 𝑑2 𝑏𝑐 + 𝑑𝑒

𝑎𝑐 𝑏𝑐 + 𝑑𝑒 𝑐2 + 𝑒2 + 1

=

𝜔1 𝜔2 𝜔3
𝜔2 𝜔4 𝜔5
𝜔3 𝜔5 𝜔6

𝐾 =
𝑓 𝑠 𝑝𝑥
0 𝑚𝑓 𝑝𝑦
0 0 1

then 𝐾−1 =
𝑎 𝑏 𝑐

0 𝑑 𝑒

0 0 1

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are some values that depend on: 𝑓,𝑚, 𝑠, 𝑝𝑥, 𝑝𝑦

• Then it is:

• This means that 𝜔 has 5 DoF (scale is not unique)

• 𝜔 is a 2D conic (see definition of conic from pervious lecture)



Degrees of Freedom of 𝜔 (special case)
• Assume we have a “square-pixel” camera, i.e. 𝑚 = 1 and 𝑠 = 0

(practically this is often the case)

• We have:
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𝜔 = (𝐾−1)𝑇𝐾−1 =
𝑓−1 0 0

0 𝑓−1 0

𝑎 𝑏 1

𝑓−1 0 𝑎

0 𝑓−1 𝑏

0 0 1

=

𝑓−2 0 𝑓−1𝑎

0 𝑓−2 𝑓−1𝑏

𝑓−1𝑎 𝑓−1𝑏 𝑎2 + 𝑏2 + 1

=
𝜔1 0 𝜔2
0 𝜔1 𝜔3
𝜔2 𝜔3 𝜔4

𝐾 =
𝑓 0 𝑝𝑥
0 𝑓 𝑝𝑦
0 0 1

then 𝐾−1 =
𝑓−1 0 𝑎

0 𝑓−1 𝑏

0 0 1

where 𝑎, 𝑏 are some values that depend on: 𝑓, 𝑝𝑥, 𝑝𝑦

• Then it is:

• This means that 𝜔 has 3 DoF (scale is not unique)



Single Camera: internal + external constraints (Example 2)

• Square pixel cameras (i.e. 𝑚 = 1, 𝑠 = 0 in 𝐾) gives 

𝜔 =
𝜔1 0 𝜔2
0 𝜔1 𝜔3
𝜔2 𝜔3 𝜔4

with only 3 DoF

• Given 3 image points 𝑣1−3 that correspond to orthogonal directions
We know:  𝑣1

𝑇𝜔 𝑣2 = 0; 𝑣1
𝑇𝜔 𝑣3 = 0; 𝑣2

𝑇𝜔 𝑣3 = 0

• This gives a linear system of equations 𝐴𝜔 = 0 with 𝐴 of size 3 × 4. 
Hence 𝜔 can be obtained with SVD
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𝑣1

𝑣2 𝑣3

cosΘ =
𝑥1
𝑇𝜔 𝑥2

𝑥1
𝑇𝜔𝑥1 𝑥2

𝑇𝜔𝑥2



• Between 2 views  we have the so-called Kruppa equations: 
(see explanation in HZ ch. 19.4)

𝑢1
𝑇𝜔0
−1𝑢1

𝜎0
2𝑣0
𝑇𝜔1
−1𝑣0
=
𝑢0
𝑇𝜔0
−1𝑢1

𝜎0𝜎1𝑣0
𝑇𝜔1
−1𝑣1
=
𝑢0
𝑇𝜔0
−1𝑢0

𝜎1
2𝑣1
𝑇𝜔1
−1𝑣1

where SVD of 𝐹 = 𝑢0 𝑢1 𝑒1

𝜎0 0 0
0 𝜎1 0
0 0 0

𝑣0
𝑇

𝑣1
𝑇

𝑒0
𝑇

and𝜔𝑖
−1 = 𝐾𝑖

−𝑇𝐾𝑖
−1 −1 = 𝐾𝑖 𝐾𝑖

𝑇 = diag(𝑓𝑖
2, 𝑓𝑖
2, 1) 

• This can be solved for 𝑓0, 𝑓1 in closed form (see next slide)

Practically most important case (Example 3)

• Assume two cameras with: 𝑠 = 0,𝑚 = 1, 𝑎𝑛𝑑 𝑝𝑥, 𝑝𝑦 known

• Let us shift images to get 𝑝𝑥 = 0, 𝑝𝑦 = 0
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and 𝐾 =
𝑓 0 𝑝𝑥
0 𝑓 𝑝𝑦
0 0 1

See HZ, example 19.8 (page 472) 

𝑇 =
1 0 −𝑝𝑥
0 1 −𝑝𝑦
0 0 1

we get: 𝑇𝑥 = 𝑇𝐾 𝑅 (𝐼3×3 | − 𝐶) 𝑋

then 𝑇𝐾 =
𝑓 0 0

0 𝑓 0

0 0 1



The solution for 𝑓0, 𝑓1
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(



Auto-Calibration: Only internal constraints
• Chapter 19 HZ

• Insight: Multiple views automatically give extra constraints 
(not discussed here) 
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intrinsic

𝐾 =
𝑓 𝑠 𝑝𝑥
0 𝑚𝑓 𝑝𝑦
0 0 1

Remember: We 
have 5 intrinsic 
parameters:intrinsic



Example – Reconstruction from a Video
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Building Rome in a day – Reconstruction from Flickr 

03/12/2015Computer Vision I: Multi-View 3D reconstruction 33

[Agarwal, Snavely, Simon, Seitz, Szeliski; ICCV 2009]



Roadmap for next four lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two cameras (sec. 6.1.4) 

• Multi-View 3D reconstruction (sec. 7.3-7.4)
• General scenario
• From Projective to Metric Space
• Special Cases (skip – see slides at the end)
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Decision Trees in Computer Vision 
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Regression forestsClassification forests

Manifold forestsDensity forests Semi-supervised forests

e.g. semantic segmentation e.g. object localization

e.g. novelty detection e.g. dimensionality reduction e.g. semi-sup. semantic segmentation

Computer Vision I: Multi-View 3D reconstruction



Mushroom example
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Measure attributes:
- Size in centimeters
- Color: Average “whitness” of the 

mushroom (i.e. value along 
diagonal in RGB cube)

Size

white0 255

2cm

15cm

eatable not
eatable

eatable not
eatable

not
eatable

not
eatable

Task: Build a decision tree such that you can distinguish eatable form not eatable mushrooms. 

Computer Vision I: Multi-View 3D reconstruction



Decision Tree
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Size

white0 255

2cm

15cm

Size>8cm
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Decision Tree
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Size

white0 255

2cm

15cm

Size>8cm

white>180

eatable

not
eatablenot

eatable

eatable

not
eatable

not
eatable
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Decision Tree – Split Criteria

03/12/2015 39

B
ef

o
re

 s
p

lit

Shannon’s entropy

Sp
lit

 1
Sp

lit
 2

Information gain

Think of minimizing Entropy
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Decision Tree – Split Criteria
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• We have 𝑆 = 12
• In 𝑆 we have 6 red and 6 blue points (2 classes)
• 𝐻(𝑆) = − 0.5 log 0.5 + 0.5 log 0.5 = 1
• We look at two possible splits 

(in both cases we happen to have 𝑆𝐿 = 6 and 𝑆𝑅 = 6, but could be different)

1) 50%-50% class-split (each side (𝑆𝐿 and 𝑆𝑅) gets 3 red and 3 blue)
𝐻 𝑆𝐿 = − 0.5 log 0.5 + 0.5 log 0.5 = 1
𝐻 𝑆𝑅 = − 0.5 log 0.5 + 0.5 log 0.5 = 1
𝐼(𝑆) = 𝐻(𝑆) – (0.5 + 0.5) = 𝐻(𝑆) – 1 = 0

2) 16%-84% class-split (right side has 5 red and 1 blue, left side has 5 blue and 1 red)

𝐻 𝑆𝐿 = −
1

6
log

1

6
+
5

6
log

5

6
= 0.64

𝐻 𝑆𝑅 = −
1

6
log

1

6
+
5

6
log

5

6
= 0.64

𝐼 𝑆 = 𝐻 𝑆 – 0.5 ∗ 0.64 + 0.5 ∗ 0.64 = 𝐻 𝑆 – 0.64 = 0.36
(Higher information gain)

(Lower information gain)
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Generalization
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eatable not
eatable

eatable not
eatable

not
eatable

not
eatable

Training Data:

Size>8cm

white>180

eatable

not
eatable

not
eatable

Test Data:

System is optimal!
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Generalization
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eatable not
eatable

eatable not
eatable

not
eatable

not
eatable

Training Data:

Size>8cm

white>180

eatable

not
eatable

not
eatable

Test Data:

System may not be optimal!not
eatable

eatable
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Generalization
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Size

white0 255

2cm

15cm

BUT its 
eatable!

BUT its not 
eatable!

eatable
not

eatable

not
eatable
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Definition

• Over-fitting: Is the effect that the model perfectly memorizes the 
training data, but does not perform well on test data

• Generalization: One of the most important aspect of a model is its 
ability to generalize. That means that new (unseen) test data is 
correctly classified. A model which overfitts does not generalize 
well. 

• How to avoid over-fitting?

• Idea 1: Where to place decision boundary? 

• Idea 2: Do not make the trees too deep
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Decision Boundary

03/12/2015 45

Size

white0 255

2cm

15cm

Size>9cm

white>190

eatable

not
eatablenot

eatable

Place “decision boundary” such that the 
distance to all (some) examples is maximized! 

not
eatable

not
eatable

eatable
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Tree Depth
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Size

white0 255

2cm

15cm

Size>9cm

Output:
𝑝(𝑒𝑎𝑡𝑎𝑏𝑙𝑒) = 2/3
𝑝(𝑛𝑜𝑡 𝑒𝑎𝑡𝑎𝑏𝑙𝑒) = 1/3

not
eatable

not
eatable

eatable
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Tree Depth - Comparison
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Size

white0 255

2cm

15cm

Test data:

System with 2 split-nodes makes: 
0 mistake training; 2 mistakes testing

Not eatable

eatable

Not eatable

Conclusion: A system which makes less mistakes during training may not be the better 
system at test time!

System with 1 split-nodes makes: 
1 mistake training; 2 mistakes testing
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Example: People tracking
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[ J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. 
Real-Time Human Pose  Recognition in Parts from a Single Depth Image. In Proc. IEEE CVPR, June 2011.]

… what runs on Microsoft Xbox

Depth 
camera
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Example: People tracking
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body joint hypotheses

front view side view top view

input depth image body parts

Bodypart
Labelling

Clustering

Body is divided 
into 31 body parts

(simple centroid 
computation)
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Train on synthetic data – test on real data

03/12/2015 50

Synthetic (graphics)
Train data

Real (hand-labelled)
Test Data
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Decision Tree
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Each leaf stores a distribution 
over the 31 body parts

Δ

Classify each pixel (yellow cross) independently

Input image

Simple feature test: 
Depth value at red pixel > threshold?
(Optimize over Δ and threshold with 
Information Gain)

Output labeling
(each pixel shows 
most probable 
labeling)

Computer Vision I: Multi-View 3D reconstruction



Tree Depth
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Number of Parameters (tree depth)

More training 
data pushes 
this boundary

Computer Vision I: Multi-View 3D reconstruction



Real System performance that runs on Xbox
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ac
cu

ra
cy

Amount of Training Data is one of the main factors
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Example: Overfitting with tree depth
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overfittingunderfitting

Depth 3

Mushroom example 
with 4 classes 
(e.g. how tasty)

white

size

(non-linear decision boundaries)

Depth 6 Depth 15
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Decision Forest for better Decision Boundary
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Tree t=1 t=2 t=3

Forest output probability

The ensemble model

𝑝 𝑐 =
1

𝑇
 

𝑡

𝑇

𝑝𝑡(𝑐) 𝑝
𝑐

𝑇 is the number of trees

(Each tree is trained with a different subset of the training data)
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Example: Better Decision Boundary
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Training different trees in the forest

Testing different trees in the forest

Training points

mushroom 
example

white

size
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Number of Trees
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ground truth

1 tree 3 trees 6 trees

inferred body parts (most likely)

40%

45%

50%

55%

1 2 3 4 5 6

A
ve

ra
ge

 p
e

r-
cl

as
s 

ac
cu

ra
cy

Number of trees

Test Performance
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The following slides contain additional Information, which
is not relevant for the exam
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Reminder: affine cameras
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• Affine camera has 8 DoF:

• Parallel 3D lines map to parallel 2D lines 
(since points stay at infinity)

𝑥
𝑦
1

=  
𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
0 0 0 1

𝑋
𝑌
𝑍
1

𝑥
𝑦
0

=  
𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
0 0 0 1

𝑋
𝑌
𝑍
0

• In short:  𝑥 = 𝑀𝑋 + 𝑡~ ~

2 × 3 2 × 1
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Reminder: Affine cameras (from previous lecture)
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(very large focal length)(normal focal length)

“Close to parallel projection”



Affine Cameras give affine reconstruction
Assume we have reconstructed the scene with 

𝑃𝑗 =
𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
0 0 0 1

Then the transformations 𝑄 has to be an affine transformation 
in order to keep cameras affine:
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𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 = 𝑃𝑗𝑄𝑄
−1𝑋𝑖 = 𝑃𝑗

′𝑋𝑖
′

not:



Multi-View Reconstruction for affine cameras
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(derivation on blackboard)



Multi-View Reconstruction for affine cameras
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(derivation on blackboard)

Note, Frobenius norm:

𝐴 𝐹 = ( 
𝑖

 

𝑗

𝑎𝑖𝑗
2
)

1

2



Comments / Extensions
• Main restriction is that all points have to be visible in all views.

(can be used for a subset of views and then “zipping” sub-views together)

• Extensions to missing data have been done 
(see HZ ch. 18)

• Extensions to projective cameras have been done (see HZ ch. 18.4)

• Extensions to non-rigidly moving scenes (see HZ ch. 18.3)
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Direct reference plane approach (DRP)

• 𝐻∞ = 𝐾𝑅 is called infinity homography since it is the mapping from the plane 
at infinity to the image: 

𝑥 = 𝐻∞(𝐼| − 𝐶)

𝑥
𝑦
𝑧
0

= 𝐻∞
𝑥
𝑦
𝑧

03/12/2015Computer Vision I: Multi-View 3D reconstruction 65

[Rother PhD Thesis 2003]

~

• Basic Idea: simply define any plane as the plane at infinity 𝜋∞ = 0,0,0,1
𝑇

(this can be done in projective space) 

Define as plane 
at infinity



Direct reference plane approach (DRP)
Derivation on blackboard
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[Rother PhD Thesis 2003]



Results
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How to get infinite Homographies
• Real Plane in the scene: 

• Fixed / known 𝐾 and 𝑅, e.g. translating camera with fixed camera intrinsic

• Orthogonal scene directions and a square pixel camera.
We can get out: 𝐾, 𝑅 (up to a small, discrete ambiguity)
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Results: University Stockholm
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Constant intrinsic parameters (sketch only)

• Assume 𝐾 is constant over 3+ Frames then 𝐾 can be computed

• We know that we can get 𝐾, 𝑅, 𝐶 from 𝑃 = 𝐾 𝑅 (𝐼3×3 | − 𝐶)

• We have 𝑃1, 𝑃2, 𝑃3 and it is

𝑥𝑖1 = 𝑃1𝑋𝑖 = 𝑃1𝑄
−1𝑄𝑋𝑖 = 𝑃1

′𝑋𝑖
′

𝑥𝑖2 = 𝑃2𝑋𝑖 = 𝑃2𝑄
−1𝑄𝑋𝑖 = 𝑃2

′𝑋𝑖
′

𝑥𝑖3 = 𝑃3𝑋𝑖 = 𝑃3𝑄
−1𝑄𝑋𝑖 = 𝑃3

′𝑋𝑖
′

• Try to find a 𝑄 such that all 𝑃1, 𝑃2, 𝑃3 have the same 𝐾 but different 
𝑅1−3 and 𝐶1−3

• See details in chapter 19 HZ

• (Note: this does not work if camera zooms during capture)
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~~

~



Side comment: Where does 𝜔 come from?
• There a “strange thing” call the absolute conic Ω∞ = 𝐼3×3

that lives on the plane at infinity 𝜋∞ = 0,0,0,1
𝑇

• The absolute conic is an “imaginary circle with radius 𝑖”:

𝑥, 𝑦, 1 Ω∞ 𝑥, 𝑦, 1
𝑇 = 0

hence: 𝑥2 + 𝑦2 = −1

• 𝜔 is called the “image of the absolute conic”, 
since it is the mapping of the absolute conic onto the image plane 

• Proof: 
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image

𝐻∞

𝜔

1. The homography𝐻∞ = 𝐾𝑅 is the mapping from the pane at infinity to the 
image plane. Since 

𝑥 = 𝐾𝑅 𝐼 − 𝐶] 𝑥, 𝑦, 𝑧, 0 𝑇

hence  𝑥 = 𝐾𝑅 𝑥, 𝑦, 𝑧 𝑇

2. The conic Ω∞ = I3×3 maps from the plane at infinity to 𝜋∞ to the image as:

𝐻∞
−TΩ∞𝐻∞

−1 = 𝐾𝑅 −𝑇𝐼 𝐾𝑅 −1 = 𝐾−𝑇𝑅−𝑇𝑅−1𝐾−1 = 𝐾−𝑇𝐾−1 = 𝜔


