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Roadmap for next five lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two views (sec. 6.1.4) 

• Accurate Geometry estimation for two views

• Multi-View 3D reconstruction (sec. 7.3-7.4)
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RANSAC
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Basic RANSAC method:  

• Sometimes we get a discrete set of intermediate solutions 𝑦. For example for
𝐹-matrix computation from 7 points we have up to 3 solutions. The we simply 
evaluate 𝑓′ 𝑦 for all solutions.   

• How many times do you have to sample in order to reliable estimate the true 
model?

Can be done in parallel!

Repeat many times
select d-tuple, e.g. (𝑥1, 𝑥2) for lines       
compute parameter(s) 𝑦, e.g. line 𝑦 = 𝑔 𝑥1, 𝑥2

evaluate 𝑓′ 𝑦 =  𝑖 𝑓(𝑥
𝑖 , 𝑦)

If 𝑓′ 𝑦 ≤ 𝑓′ 𝑦∗

set 𝑦∗ = 𝑦 and keep value 𝑓′ 𝑦∗

[Random Sample Consensus, Fischler and Bolles 1981]



Randomized RANSAC
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Evaluation of a hypothesis    , i.e.                      is often time consuming

Randomized RANSAC:

instead of checking all data points 

1. Sample 𝑚 points from

2. If all of them are inliers, check all others as before, i.e. evaluate hypothesis.
But, if there is at least one bad point, among 𝑚, reject the hypothesis

It is possible that good hypotheses are rejected. 
However it saves time (bad hypotheses are recognized fast) 
→ one can sample more often 
→ overall often profitable (depends on application).



Roadmap for next five lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two views (sec. 6.1.4) 

• Accurate Geometry estimation for two views

• Multi-View 3D reconstruction (sec. 7.3-7.4)
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In last lecture we asked (for rotating camera)…
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Question 1: If a match is completly wrong then is a bad idea
Answer: RANSAC with 𝑑 = 4

Question 2: If a match is slighly wrong then might not be perfect.
Better might be a geometric error:

Answer: see next slides

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉
𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝑯𝑥 − 𝑥′



Refinement after RANSAC

Typical procedure: 

1. RASNAC: compute model 𝑦 in a robust way 

2. Find all inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠

3. Refine model 𝑦 from inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠

4. Go to Step 2. 
(until numbers of inliers or model does not change much) 
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Method to compute 𝐹, 𝐸, 𝐻 for 2 Views

Procedure (as mentioned above): 

1. RASNAC: compute model 𝐹, 𝐸, 𝐻 in a robust way 

2. Find all inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠 (with potential relaxed criteria)

3. Refine model 𝐹/𝐸/𝐻 from inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠

4. Go to Step 2. 
(until numbers of inliers or model does not change much) 
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Next questions:
1) What is the best error measure for model 

computation in step 1 and 3?
2) How to do step 3?  



Error function
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1. Algebraic error: 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

2.    First geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑(𝑥𝑖
′, 𝐻𝑥𝑖)

This is not symmetric

𝑥𝑖 𝑥𝑖
′𝐻𝑥𝑖

where 𝑑(𝑎, 𝑏) is 2D geometric
distance 𝑎 − 𝑏 2



Error function
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1. Algebraic error: 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

2.    First geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑(𝑥𝑖
′, 𝐻𝑥𝑖)

where 𝑑(𝑎, 𝑏) is 2D geometric
distance 𝑎 − 𝑏 2

𝑥𝑖 𝑥𝑖
′𝐻𝑥𝑖𝐻−1𝑥′𝑖

3.    Second, symmetric geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑 𝑥𝑖
′, 𝐻𝑥𝑖 + 𝑑 𝑥𝑖 , 𝐻

−1𝑥′𝑖



Error function
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1. Algebraic error: 𝑎𝑟𝑔𝑚𝑖𝑛ℎ 𝐴𝒉

2.    First geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑(𝑥𝑖
′, 𝐻𝑥𝑖)

where 𝑑(𝑎, 𝑏) is 2D geometric
distance 𝑎 − 𝑏 2

3.    Second, symmetric geometric error: 𝐻∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐻  𝑖 𝑑 𝑥𝑖
′, 𝐻𝑥𝑖 + 𝑑 𝑥𝑖 , 𝐻

−1𝑥′𝑖

4.    Third, optimal geometric error (gold standard error):
{𝐻∗, 𝑥𝑖 , 𝑥′𝑖} = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑖 𝑑(𝑥𝑖 , 𝑥𝑖) + 𝑑(𝑥′𝑖 , 𝑥′𝑖)

𝑥𝑖 𝑥𝑖
′

the true 3D points
𝑋 are searched for

^𝑥𝑖
^

𝑥𝑖
′

𝐻

Comment: This is optimal in the sense that it is the maximum-likelihood (ML) estimation              
under isotropic Gaussian noise assumption for 𝑥 (see page 103 HZ)^

^

^ ^
^

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑖
′ = 𝐻𝑥𝑖

^ ^

𝐻, 𝑥𝑖 , 𝑥′𝑖
^

^ ^



Method to compute 𝐻 for 2 Views - Details
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[see details on page 114ff in HZ] 

we discussed :
Harries corner
detector

we mentioned :
Kd-tree to make
it fast

This is the optimal 
geometric error

Refinement, see 
next slides

This is a geometric
error (for fixed H, 
see next slides). 
Depending on 
runtime one can
choose different 
once.

See next slide



Example
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Input images

~500 interest 
points



Example
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268 
putative 
matches

117 
outliers
found

151
inliers
found

262
inliers
after 
guided 
matching

Guided matching variant: use given 𝐻 and look for new inliers. Here we also 
double the threshold on appearance feature matches to get more inliers.



To have a 95% chance that an inlier is inside the confidence interval, we require:

1. For a 2D line: 𝑑 𝑥, 𝑙 ≤ 𝜎 3.84 = 𝑡

2. For a Homography: 𝑑 𝑥𝑙 , 𝑥𝑟 , 𝐻 ≤ 𝜎 5.99 = 𝑡

3. For an F-matrix: 𝑑 𝑥𝑙 , 𝑥𝑟 , 𝐹 ≤ 𝜎 3.84 = 𝑡

Geometric derivation of confidence interval

06/01/2017Computer Vision I: Image Formation Process 15

Assume Gaussian noise for a point with 𝜎 standard deviation and 0 mean: 

(see page 119 HZ)     



𝑥, 𝑥′^^

𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝑑(𝑥𝑖 , 𝑥𝑖) + 𝑑(𝑥′𝑖 , 𝑥′𝑖)

Method to compute 𝐻, 𝐸, 𝐹 for 2 Views - Details

Procedure (as mentioned above): 

1. RASNAC: compute model 𝐹/𝐸/𝐻 in a robust way 

2. Find all inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠 (with potential relaxed criteria)

3. Refine model 𝐹/𝐸/𝐻 from inliers 𝑥𝑖𝑛𝑙𝑖𝑒𝑟𝑠

4. Go to Step 2. 
(until numbers of inliers or model does not change much) 
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1. For a Homography: 𝑑 𝑥, 𝑥′, 𝐻 = min[𝑑 𝑥, 𝑥 + 𝑑 𝑥′, 𝑥′ ] subject to 𝑥′ = 𝐻𝑥^^ ^ ^

2. For an 𝐹/𝐸-matrix: 𝑑 𝑥, 𝑥′, 𝐹/𝐸 = min[𝑑 𝑥, 𝑥 + 𝑑 𝑥′, 𝑥′ ] subject to 𝑥′𝑡𝐹/𝐸𝑥 = 0^^ ^^

We need geometric error for model refinement 𝐹/𝐸/𝐻 :

1. For a Homography: {𝐻∗, 𝑥𝑖 , 𝑥𝑖
′} = 𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝑑(𝑥𝑖 , 𝑥𝑖) + 𝑑(𝑥′𝑖 , 𝑥′𝑖) subject to 𝑥′𝑖 = 𝐻𝑥𝑖

2. For an 𝐹/𝐸-matrix: {𝐹∗/𝐸∗, 𝑥𝑖 , 𝑥𝑖
′}= sbj. to 𝑥′𝑖

𝑡𝐹/𝐸𝑥𝑖 = 0

^^^

𝐻, 𝑥𝑖 , 𝑥′𝑖
^

^𝐹/𝐸, 𝑥𝑖 , 𝑥′𝑖

^

^

^

^^^^

^ ^

^ ^

We need geometric error for a fixed model 𝐹/𝐸/𝐻 (RANSAC):

^𝑥, 𝑥′



A few word on iterative continuous optimization
So far we had linear (least square) optimization problems:

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐴𝑥 𝟐

For non-linear (arbitrary) optimization  problems: 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝑓(𝑥)

• Iterative Estimation methods (see Appendix 6 in HZ; page 597ff)

• Gradient Descent Method 
(good to get roughly to solution)

• Newton Methods (e.g. Gauss-Newton): 
second order Method (Hessian). Good to find accurate result

• Levenberg – Marquardt Method:

mix of Newton method and Gradient descent 
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Red Newton’s method; 
green gradient descent



Application: Automatic Panoramic Stitching
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Run Homography search between all pairs of images

An unordered set of images:



Application: Automatic Panoramic Stitching
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... automatically create a panorama



Application: Automatic Panoramic Stitching
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... automatically create a panorama



Application: Automatic Panoramic Stitching
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... automatically create a panorama



Roadmap for next five lectures
• Appearance-based Matching (sec. 4.1)

• Projective Geometry - Basics (sec. 2.1.1-2.1.4)

• Geometry of a Single Camera (sec 2.1.5, 2.1.6)
• Camera versus Human Perception
• The Pinhole Camera 
• Lens effects

• Geometry of two Views (sec. 7.2)
• The Homography (e.g. rotating camera)
• Camera Calibration (3D to 2D Mapping)
• The Fundamental and Essential Matrix (two arbitrary images)

• Robust Geometry estimation for two views (sec. 6.1.4) 

• Accurate Geometry estimation for two views

• Multi-View 3D reconstruction (sec. 7.3-7.4)
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Names: 3D reconstruction
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Sparse Structure from Motion (SfM)
In Robotics this is known as SLAM (Simultaneous Localization and Mapping): 
“Place a robot in an unknown location in an unknown environment and have 
the robot incrementally build a map of this environment while simultaneously 
using the map to compute the vehicle location”

2) Dense Multi-view reconstruction 

1)



Example: Sparse Reconstruction 
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[Agarwal, Snavely, Simon, Seitz, Szeliski; ICCV 2009]

Building Rome in a day from People’s Photos



Example: Dense Reconstruction
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[KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera, 
Izadi et al ACM Symposium on User Interface Software and Technology, October 2011]



3D Reconstruction: Problem definition
• Given image observations in 𝑚 cameras of 𝑛 static 3D points

• Formally: 𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 for  𝑗 = 1…𝑚; 𝑖 = 1…𝑛

• Important: In practice we do not have all points visible in all views, i.e. the 
number of  𝑥𝑖𝑗 ≤ 𝑚𝑛 (this is captured by the “visibilty matrix”)

• Goal: find all 𝑃𝑗’s and 𝑋𝑖’s  
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Example: “Visibility” matrix



Reconstruction Algorithm

Procedure:  (calibrated and un-calibrated cameras)

1) Compute accurate 𝐹, 𝐸-matrix between each pair of neighboring views

2) Uncalibrated case: derive intrinsic camera parameters for each pair

3) Compute initial reconstruction of each pair of neighboring views

4) Compute an initial full 3D reconstruction

5) Bundle-Adjustment to minimize overall geometric error
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[See page 453 HZ]

Reconstruct in step 2): 𝑃1, 𝑃2 ; (𝑃2, 𝑃3); 𝑃3, 𝑃4 …

Computer Vision I: Multi-View 3D reconstruction



Reconstruction Algorithm – Historic View

Procedure:  
(calibrated and un-calibrated cameras)

1) Compute accurate 𝐹, 𝐸-matrix between 
each pair of neighboring views

2) Uncalibrated case: derive intrinsic 
camera parameters for each pair

3) Compute initial reconstruction of each 
pair of neighboring views

4) Compute an initial full 3D reconstruction

5) Bundle-Adjustment to minimize overall 
geometric error
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Procedure:  
(calibrated and un-calibrated cameras)

1) Compute accurate 𝐹-matrix between 
each pair of neighboring views

2) -

3) Compute initial reconstruction of each 
pair/triplets of neighboring views (more 
complex)

4) Compute an initial full 3D reconstruction

5) Bundle-Adjustment to minimize overall 
geometric error

6) Uncalibrated case: Self-calibration. 
Determine a 4 × 4Matrix to bring the 
reconstruction form projective to 
Euclidian space

“Modern” 
(since it works as well as historic procedure)

“Historic”
(10+ years research on uncalibrated cameras)



Reconstruction Algorithm – Historic View
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Uncalibrated case: Self-calibration. Determine a 4 × 4Matrix to bring the reconstruction form 
projective to Euclidian space

Correct reconstruction 
(up to 3D projective ambiguity) 

Correct reconstruction 
(up to 3D Eucledian ambiguity) 

Self-
Calibration



Reconstruction Algorithm

Procedure:  (calibrated and un-calibrated cameras)

1) Compute accurate 𝐹, 𝐸-matrix between each pair of neighboring views

2) Uncalibrated case: derive intrinsic camera parameters for each pair

3) Compute initial reconstruction of each pair of neighboring views

4) Compute an initial full 3D reconstruction

5) Bundle-Adjustment to minimize overall geometric error
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[See page 453 HZ]

Reconstruct in step 2): 𝑃1, 𝑃2 ; (𝑃2, 𝑃3); 𝑃3, 𝑃4 …

Computer Vision I: Multi-View 3D reconstruction



Derive Intrinsic Camera parameters form 𝐹
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𝒙 = 𝐾 𝑅 (𝐼𝟑×𝟑 | − 𝑪) 𝑿 ,
~ 𝐾 =

𝑓 𝑠 𝑝𝑥
0 𝑚𝑓 𝑝𝑦
0 0 1

𝒙 = 𝑃 𝑿,• Formulas:

• Given 𝐹 we would like to derive 𝐾0, 𝐾1 for both views
• Guess 𝑠 = 0,𝑚 = 1, 𝑝𝑥, 𝑝𝑦 image centre (later refined in bundle adjustment)

• Compute  𝑓0, 𝑓1:

1. Adjust 𝐾 to have 𝑝𝑥 = 0, 𝑝𝑦 = 0 :

2. Between two views we have the so-called Kruppa equations: 
(see explanation in HZ ch. 19.4)

𝑢1
𝑇(𝐾0 𝐾0

𝑇)𝑢1

𝜎0
2𝑣0
𝑇(𝐾1 𝐾1

𝑇)𝑣0
=
𝑢0
𝑇(𝐾0 𝐾0

𝑇)𝑢1

𝜎0𝜎1𝑣0
𝑇(𝐾1 𝐾1

𝑇)𝑣1
=
𝑢0
𝑇(𝐾0 𝐾0

𝑇)𝑢0

𝜎1
2𝑣1
𝑇(𝐾1 𝐾1

𝑇)𝑣1

where SVD of 𝐹 = 𝑢0 𝑢1 𝑒1

𝜎0 0 0
0 𝜎1 0
0 0 0

𝑣0
𝑇

𝑣1
𝑇

𝑒0
𝑇

3.    This can be solved for 𝑓0, 𝑓1 in closed form (see next slide)

𝑇 =
1 0 −𝑝𝑥
0 1 −𝑝𝑦
0 0 1

then 𝑇𝐾 =
𝑓 0 0

0 𝑓 0

0 0 1

p.s. There is lots of additional theory and concepts for reconstruction form 
uncalibrated cameras (skipped here, see lectures of previous years)



The solution for 𝑓0, 𝑓1

06/01/2017Computer Vision I: Multi-View 3D reconstruction 32

(



Reconstruction Algorithm

Procedure:  (calibrated and un-calibrated cameras)

1) Compute accurate 𝐹, 𝐸-matrix between each pair of neighboring views

2) Uncalibrated case: derive intrinsic camera parameters for each pair

3) Compute initial reconstruction of each pair of neighboring views

4) Compute an initial full 3D reconstruction

5) Bundle-Adjustment to minimize overall geometric error
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[See page 453 HZ]

Reconstruct in step 2): 𝑃1, 𝑃2 ; (𝑃2, 𝑃3); 𝑃3, 𝑃4 …

Computer Vision I: Multi-View 3D reconstruction



Compute both Camera Matrices

• We have seen that we can get: 𝑅, 𝑇(up to scale) from 𝐸
(1 solution for 6+ points)

• We have set in previous lecture the camera matrices to:
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~

𝑥0 = 𝐾0 𝐼 0 𝑋 and 𝑥1 = 𝐾1𝑅
−1 𝐼 −𝑇 𝑋

~

𝑃 𝑃′

𝑋𝑖 , 𝑃, 𝑃′

𝑷
𝑷′



Compute 𝑋𝑖′𝑠
• Input: 𝑥, 𝑥’, 𝑃, 𝑃’

• Output: 𝑋𝑖′𝑠

• Process called Triangulation or “Intersection”

• Simple solution for algebraic error:
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1) 𝜆𝑥 = 𝑃 𝑋 and 𝜆′𝑥′ = 𝑃′ 𝑋

2) Eliminate 𝜆 by taking ratios. This gives 2x2 linear-independent equations   
for  4 unknowns: 𝑋 = 𝑋1, 𝑋2, 𝑋3, 𝑋4 , and we want: 𝑋 = 1.
(remember 𝑋 is a homogenous 4D vector, hence scale has to be fixed)

An example ratio is:  
𝑥1

𝑥2
=
𝑝1 𝑋1+𝑝2𝑋2+𝑝3𝑋3+𝑝4𝑋4

𝑝5 𝑋1+𝑝6𝑋2+𝑝7𝑋3+𝑝8𝑋4

3) This gives (as usual) a least square optimization problem: 
𝐴 𝑋 = 0 with 𝑋 = 1where 𝐴 is of size 4 × 4. 
This  can be solved in closed-form using SVD.

3x4 matrix 𝑷′

𝑷



Triangulation: Uncertainty
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Large baseline
Smaller uncertainty area

Smaller baseline
Larger uncertainty area

Very small baseline
Very large 

uncertainty area



Reconstruction Algorithm

Procedure:  (calibrated and un-calibrated cameras)

1) Compute accurate 𝐹, 𝐸-matrix between each pair of neighboring views

2) Uncalibrated case: derive intrinsic camera parameters for each pair

3) Compute initial reconstruction of each pair of neighboring views

4) Compute an initial full 3D reconstruction

5) Bundle-Adjustment to minimize overall geometric error
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[See page 453 HZ]

Reconstruct in step 2): 𝑃1, 𝑃2 ; (𝑃2, 𝑃3); 𝑃3, 𝑃4 …

Computer Vision I: Multi-View 3D reconstruction



Stitch Pairs of Views together

Three views of a camera:
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Reconstruct Points 
and Camera 1 and 2

Reconstruct Points 
and Camera 2 and 3
(denote with a dash) 

𝑋𝑖 , 𝑃1, 𝑃2 𝑋𝑖
′,𝑃2
′ , 𝑃3
′

• Both reconstructions share: 5+ 3D points and one camera (here 𝑃2, 𝑃2
′). 

(We denote the second reconstruction with a dash)

• Why are 𝑋i, 𝑋𝑖′ not the same?
In general we have the following ambiguity: 𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 = 𝑃𝑗𝑄

−1𝑄𝑋𝑖 = 𝑃𝑗
′𝑋𝑖
′

• Our Goal: make 𝑋𝑖 = 𝑋𝑖
′ and 𝑃2 = 𝑃2

′ such that 𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 and 𝑥′𝑖𝑗 = 𝑃′𝑗𝑋′𝑖
(remember all mean “=“ mean equal up to scale. All elements, 𝑥, 𝑋 and 𝑃 are defined 
up to scale)  



Stitch Pairs of Views together

Three views of a camera:
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Reconstruct Points 
and Camera 1 and 2

Reconstruct Points 
and Camera 2 and 3
(denote with a dash) 

𝑋𝑖 , 𝑃1, 𝑃2 𝑋𝑖
′,𝑃2
′ , 𝑃3
′

Method:
• Compute 𝑄 such that 𝑋1−5 = 𝑄𝑋1−5

′ (up to scale)
• This can be done from 5+ 3D points in usual least-square sense ( 𝐴𝑄 ), since each point 

gives 3 equations and 𝑄 has 15 DoF.

An example ratio is:  
𝑋1

𝑋2
=
𝑄11𝑋

1′+𝑄12𝑋
2′+𝑄13𝑋

3′+𝑄14𝑋
4′

𝑄21𝑋
1′+𝑄22𝑋

2′+𝑄23𝑋
3′+𝑄24𝑋

4

for 𝑋1 = 𝑋
1, 𝑋2, 𝑋3, 𝑋4 ; 𝑋′1 = 𝑋

1′, 𝑋2′, 𝑋3′, 𝑋4′

• Convert the second (dashed) reconstruction into the first one:
𝑃′2,3 𝑛𝑒𝑤 = 𝑃2,3

′ 𝑄−1; 𝑋′𝑖 𝑛𝑒𝑤 = 𝑄𝑋𝑖
′ (note: 𝑥𝑖𝑗 = 𝑃𝑗𝑋𝑖 = 𝑃𝑗𝑄

−1𝑄𝑋𝑖)

• In this way you can “zip” all reconstructions into a single one, in sequential fashion.



Reconstruction Algorithm

Procedure:  (calibrated and un-calibrated cameras)

1) Compute accurate 𝐹, 𝐸-matrix between each pair of neighboring views

2) Uncalibrated case: derive intrinsic camera parameters for each pair

3) Compute initial reconstruction of each pair of neighboring views

4) Compute an initial full 3D reconstruction

5) Bundle-Adjustment to minimize overall geometric error
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[See page 453 HZ]

Reconstruct in step 2): 𝑃1, 𝑃2 ; (𝑃2, 𝑃3); 𝑃3, 𝑃4 …

Computer Vision I: Multi-View 3D reconstruction



Bundle adjustment

• Global refinement of jointly structure (points) and cameras

• Minimize geometric error:

here 𝛼𝑖𝑗 is 1 if 𝑋𝑗 visible in view 𝑃𝑗 (otherwise 0)
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• Non-linear optimization with e.g. Levenberg-Marquard

𝑎𝑟𝑔𝑚𝑖𝑛{𝑃𝑗,𝑋𝑖}  

𝑗

 

𝑖

𝛼𝑖𝑗 𝑑(𝑃𝑗𝑋𝑖, 𝑥𝑖𝑗)



Example – Reconstruction from a Video
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