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Roadmap for next five lectures

* Appearance-based Matching (sec. 4.1)

* Projective Geometry - Basics (sec. 2.1.1-2.1.4)

* Geometry of a Single Camera (sec 2.1.5, 2.1.6)
* Camera versus Human Perception
* The Pinhole Camera
* Lens effects

* Geometry of two Views (sec. 7.2)
* The Homography (e.g. rotating camera)
e Camera Calibration (3D to 2D Mapping)
* The Fundamental and Essential Matrix (two arbitrary images)

* Robust Geometry estimation for two views (sec. 6.1.4)

* Accurate Geometry estimation for two views

* Multi-View 3D reconstruction (sec. 7.3-7.4)
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RANSAC

[Random Sample Consensus, Fischler and Bolles 1981]

Basic RANSAC method:

Can be done in parallel!

Repeat many times
select d-tuple, e.g. (x1, x?) for lines
compute parameter(s) y, e.g. liney = g(x1,x%)
evaluate f'(y) = 5, £ (x', )
ff ) <1
set y* = y and keep value f'(y*)

* Sometimes we get a discrete set of intermediate solutions y. For example for
F-matrix computation from 7 points we have up to 3 solutions. The we simply
evaluate f'(y) for all solutions.

* How many times do you have to sample in order to reliable estimate the true
model?
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Randomized RANSAC

Evaluation of a hypothesis vy, i.e. Zz f(z?, y)often time consuming

Randomized RANSAC:

instead of checking all data points z* € L
1. Sample m points from L

2. If all of them are inliers, check all others as before, i.e. evaluate hypothesis.
But, if there is at least one bad point, among m, reject the hypothesis

It is possible that good hypotheses are rejected.

However it saves time (bad hypotheses are recognized fast)
— one can sample more often

— overall often profitable (depends on application).




Roadmap for next five lectures

* Appearance-based Matching (sec. 4.1)

* Projective Geometry - Basics (sec. 2.1.1-2.1.4)

* Geometry of a Single Camera (sec 2.1.5, 2.1.6)
* Camera versus Human Perception
* The Pinhole Camera
* Lens effects

* Geometry of two Views (sec. 7.2)
* The Homography (e.g. rotating camera)
e Camera Calibration (3D to 2D Mapping)
* The Fundamental and Essential Matrix (two arbitrary images)

* Robust Geometry estimation for two views (sec. 6.1.4)

* Accurate Geometry estimation for two views
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In last lecture we asked (for rotating camera)...

Question 1: If a match is completly wrong then argmin,||Ah|| is a badidea
Answer: RANSAC withd = 4

Question 2: If a match is slighly wrong then argminy||Ah|| might not be perfect.
Better might be a geometric error: argming ||Hx — x'||
Answer: see next slides
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Refinement after RANSAC

Typical procedure:

1. RASNAC: compute model y in a robust way
2. Find all inliers X, 501
3. Refine model y from inliers X;,,jiors

4. Go to Step 2.
(until numbers of inliers or model does not change much)

50—
40+

%
30+
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Method to compute F, E, H for 2 Views

Procedure (as mentioned above):
1. RASNAC: compute model F, E, H in a robust way

2. Find all inliers X501 (With potential relaxed criteria)

3. Refine model F/E/H from inliers X;jiers

4. Go to Step 2.
(until numbers of inliers or model does not change much)

Next questions:

1) What is the best error measure for model
computation in step 1 and 3?

2) How to do step 37

Y
o,
ey
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Error function

1. Algebraic error: argming||Ah||

where d(a, b) is 2D geometric
distance ||a — b||?

2. First geometric error: H* = argming Y.; d(x;, Hx;)

This is not symmetric

c“LD
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Error function

where d(a, b) is 2D geometric

1. Algebraic error: argming||Ah|| distance [|a — b]|?

2. First geometric error: H* = argming Y.; d(x;, Hx;)

3. Second, symmetric geometric error: H* = argming Y,; d(x;, Hx;) + d(x;, H"1x';)

e —1.1 °
x; ¢ H x Hx; -x

~ ~
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Error function

where d(a, b) is 2D geometric

1. Algebraic error: argming||Ah|| distance [|a — b]|?

2. First geometric error: H* = argming Y.; d(x;, Hx;)
3. Second, symmetric geometric error: H* = argming Y,; d(x;, Hx;) + d(x;, H"1x';)

4. Third, optimal geometric error (gold standard error):
{H*,ﬁ\cl, 1= argmmz d(x;, X;) +d(x’ L% subject to X| = HJ’EL-

H, xl,xl
H
7 Sy
/ \ t/f\\e true 3D points
() (<)
X; o;\ci Iy o X! X are searched for
l

Comment: This is optimal in the sense that it is the maximl/J\m-IikeIihood (ML) estimation
under isotropic Gaussian noise assumption for x (see page 103 HZ)
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Method to compute H for 2 Views - Details

4.8 Automatic computation of a homography 123 .
we discussed :
Objective Harries corner
| _—" detector
Compute the 2D homography between two images. _
we mentioned :
Algorithm | _— Kd-tree to make
; ; ; o : / it fast
(i) Interest points: Compute interest points in each image.
(ii) Putative correspondences: Compute a set of interest point matches based on proxim- This is a geometric
ity and similarity of their intensity neighbourhood. error (for fixed H,

(iii) RANSAC robust estimation: Repeat for NV samples, where N is determined adap- | seenext slides).

tively as in algorithm 4.5: Depending on
(a) Select a random sample of 4 corres sand compute the homography H. runtime one can
(b) Calculate the distance d | for each putative correspondence. choose different
(¢) Compute the number of inliers consistent with H by the number of correspon- once.

dences for which d;| <t = /5.99 o pixels.
Choose the H with the largest number of inliers. In the case of ties choose the sotuti —— See next slide

that has the lowest standard deviation of inliers.

(iv) Optimal estimation: re-estimate H from all correspondences classified as inliers, by o _
minimizing the ML cost function (4.8-p95) using the Levenberg—Marquardt algorithm ™ [~ /is is the optimal
of section A6.2(p600). geometric error

(v) Guided matching: Further interest point correspondences are now determined using 4——

; 5 : : T Refinement, see
the estimated H to define a search region about the transferred point position. f ’

/ _
/ next slides

Algorithm 4.6. Automatic estimation of a homography between two images using RANSAC. _
[see details on page 114ff in HZ]

The last two steps can be iterated until the number of correspondences is stable.
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Input images

~500 interest
points

Computer Vision I: Robust Two-View Geometry 06/01/2017 13



268

putative 117
matches .
outliers
found
262
inliers
151 after
inliers guided
found matching

Guided matching variant: use given H and look for new inliers. Here we also
double the threshold on appearance feature matches to get more inliers.
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Geometric derivation of confidence interval

Assume Gaussian noise for a point with o standard deviation and 0 mean:

3D
point

Gaussian
uncertainty for
point position

To have a 95% chance that an inlier is inside the confidence interval, we require:

1. Fora2Dline:d(x,]) <o+v3.84=t
2. ForaHomography:d(x;, x,,H) < 0v599 =t
3. ForanF-matrix: d(x;, x,, F) <oc+V3.84 =t

(see page 119 HZ)

)
-
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Method to compute H, E, F for 2 Views - Details

Procedure (as mentioned above):
1. RASNAC: compute model F/E/H in a robust way

2. Find all inliers x;,;i0rs (With potential relaxed criteria)

3. Refine model F/E/H from inliers x;,jjers

4. Go to Step 2.
(until numbers of inliers or model does not change much)

Y.
We need geometric error for a fixed model F/E/H (RANSAC): - | o
1. For a Homography: d(x,x', H) = mln[d(x X) + d(x, A’)] subject to X' = Hx
2. For an F /E-matrix: d(x,x',F /E) = mln[d(x X) + d(x, ] subject to X''F/Ex = 0

xx

We need geometric error for model refinement F /E /H :

1. For a Homography: {H", xux )= argmmz d(x;, X)) + d(x’ ux '1) subject to X .= HX;

Hxlxl

2. For an F/E-matrix: {F*/E*, x;, x}}= argmlnz d(x;, %) + d(x';, %) sbj.to X'{F/EX; = 0
F/E,x;,%';
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A few word on iterative continuous optimization

So far we had linear (least square) optimization problems:
x* = argmin,||Ax||,

For non-linear (arbitrary) optimization problems:
x* = argmin, f(x)

Xo

Red Newton’s method;
green gradient descent

* |terative Estimation methods (see Appendix 6 in HZ; page 597ff)

* Gradient Descent Method
(good to get roughly to solution)

* Newton Methods (e.g. Gauss-Newton):
second order Method (Hessian). Good to find accurate result

* Levenberg — Marquardt Method:
mix of Newton method and Gradient descent




Application: Automatic Panoramic Stitching

An unordered set of images:

Run Homography search between all pairs of images

G“{LD Computer Vision |: Robust Two-View Geometry 06/01/2017
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Application: Automatic Panoramic Stitching

... automatically create a panorama
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Application: Automatic Panoramic Stitching

... automatically create a panorama
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Application: Automatic Panoramic Stitching

... automatically create a panorama
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Roadmap for next five lectures

* Appearance-based Matching (sec. 4.1)
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* Geometry of a Single Camera (sec 2.1.5, 2.1.6)
* Camera versus Human Perception
* The Pinhole Camera
* Lens effects

* Geometry of two Views (sec. 7.2)
* The Homography (e.g. rotating camera)
e Camera Calibration (3D to 2D Mapping)
* The Fundamental and Essential Matrix (two arbitrary images)

* Robust Geometry estimation for two views (sec. 6.1.4)

* Accurate Geometry estimation for two views

* Multi-View 3D reconstruction (sec. 7.3-7.4)
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Names: 3D reconstruction

1) Sparse Structure from Motion (SfM) I,
In Robotics this is known as SLAM (Simultaneous Localization and Mapping):
“Place a robot in an unknown location in an unknown environment and have
the robot incrementally build a map of this environment while simultaneously
using the map to compute the vehicle location”

2) Dense Multi-view reconstruction
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Example: Sparse Reconstruction

i

f/‘.
%

»

Building Rome in a day from People’s Photos

[Agarwal, Snavely, Simon, Seitz, Szeliski; ICCV 2009]
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Example: Dense Reconstruction

[KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera,
Izadi et al ACM Symposium on User Interface Software and Technology, October 2011]

Y
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3D Reconstruction: Problem definition

* Given image observations in m cameras of n static 3D points

Formally: x;; = P X; for j=1.m;i=1..n

Important: In practice we do not have all points visible in all views, i.e. the
number of x;; < mn (this is captured by the “visibilty matrix”)

Goal: find all P;’s and X;’s 191 points
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Reconstruction Algorithm

Procedure: (calibrated and un-calibrated cameras)

1)
2)
3)
4)
5)

Compute accurate F, E-matrix between each pair of neighboring views
Uncalibrated case: derive intrinsic camera parameters for each pair
Compute initial reconstruction of each pair of neighboring views
Compute an initial full 3D reconstruction

Bundle-Adjustment to minimize overall geometric error

Reconstruct in step 2): (P, Py); (Py, P3); (P3, Py) ...

[See page 453 HZ]

)
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Reconstruction Algorithm — Historic View

Procedure: Procedure:

(calibrated and un-calibrated cameras) (calibrated and un-calibrated cameras)

1)  Compute accurate F, E-matrix between 1)  Compute accurate F-matrix between
each pair of neighboring views each pair of neighboring views

2)  Uncalibrated case: derive intrinsic 2) -
camera parameters for each pair

3) Compute initial reconstruction of each 3) Compute initial reconstruction of each
pair of neighboring views pair/triplets of neighboring views (more

complex)

4)  Compute an initial full 3D reconstruction

. L 4 Compute an initial full 3D reconstruction
5)  Bundle-Adjustment to minimize overall ) P

geometric error 5) Bundle-Adjustment to minimize overall
geometric error

6) Uncalibrated case: Self-calibration.
Determine a 4 X 4 Matrix to bring the
reconstruction form projective to
Euclidian space

“Modern” “Historic”
(since it works as well as historic procedure) (10+ years research on uncalibrated cameras)




Reconstruction Algorithm — Historic View

Uncalibrated case: Self-calibration. Determine a 4 X 4 Matrix to bring the reconstruction form
projective to Euclidian space

Self-
Calibration

Correct reconstruction Correct reconstruction
(up to 3D projective ambiguity) (up to 3D Eucledian ambiguity)
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Reconstruction Algorithm

Procedure: (calibrated and un-calibrated cameras)

1) Compute accurate F, E-matrix between each pair of neighboring views

Uncalibrated case: derive intrinsic camera parameters for each pair

)
3) Compute initial reconstruction of each pair of neighboring views
4) Compute an initial full 3D reconstruction
5) Bundle-Adjustment to minimize overall geometric error
Reconstruct in step i): (P1, P,); (P, P3); (P3,Py) ...
[See page 453 HZ]
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Derive Intrinsic Camera parameters form F

N foos px
* Formulas: x =PX,x = KR(3x3| —O)X, K = |0 mf p,

0 0
* Given F we would like to derive K, K; for both views

1

|

e Quesss=0,m= 1,px,py image centre (later refined in bundle adjustment)

 Compute fy, f1:

1 0 -—p,
1. AdjustKtohavep, =0,p,=0: T = [0 1 —py] thenTK = [
0o 0 1

2. Between two views we have the so-called Kruppa equations:

(see explanation in HZ ch. 19.4)
T T T T T T
u1 (Ko Ko )uq _ _ Yo (Ko Ko )uq _ uo (Ko Ko )Uo
0'0 UO (K]_ K )vo 0'00112(7;(1(1 KI)Ul 0'1 vl (Kl K )v1

ol

3. This can be solved for fy, f; in cIosed form (see next slide)

where SVD of F = [ug u; eq]

p.s. There is lots of additional theory and concepts for reconstruction form
uncalibrated cameras (skipped here, see lectures of previous years)

&LD
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Reconstruction Algorithm

Procedure: (calibrated and un-calibrated cameras)

1) Compute accurate F, E-matrix between each pair of neighboring views

2) Uncalibrated case: derive intrinsic camera parameters for each pair
3) Compute initial reconstruction of each pair of neighboring views
4) Compute an initial full 3D reconstruction
5) Bundle-Adjustment to minimize overall geometric error
Reconstruct in step i): (P1, P,); (P, P3); (P3,Py) ...
[See page 453 HZ]
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Compute both Camera Matrices

* We have seen that we can get: R, f(up to scale) from E
(1 solution for 6+ points)

 We have set in previous lecture the camera matrices to:

xo = KolI10] X and x; = K;R™[1|-T] X

P P’

)
-
<g§§
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Compute X,/

e Input: x,x’, P, P’

Output: X/,
Process called Triangulation or “Intersection”

Simple solution for algebraic error:

N)Ax=PXandA'x'=P'X

3x4 matrix

2) Eliminate A by taking ratios. This gives 2x2 linear-independent equations
for 4 unknowns: X = (X, X5, X3,X,), and we want: || X]|| = 1.
(remember X is a homogenous 4D vector, hence scale has to be fixed)

X1 _ P1X1+P2Xp4D3X3+PaXy

X2  DPs X11tDeX2+D7X3+DgXs

An example ratio is:

3) This gives (as usual) a least square optimization problem:
A X = 0 with || X]| = 1 where A4 is of size 4 X 4.
This can be solved in closed-form using SVD.

&LD



Large baseline Smaller baseline Very small baseline

Smaller uncertainty area Larger uncertainty area Very large
uncertainty area
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Reconstruction Algorithm

Procedure: (calibrated and un-calibrated cameras)

1)
2)
3)
4)
5)

Compute accurate F, E-matrix between each pair of neighboring views
Uncalibrated case: derive intrinsic camera parameters for each pair
Compute initial reconstruction of each pair of neighboring views
Compute an initial full 3D reconstruction

Bundle-Adjustment to minimize overall geometric error

Reconstruct in step 2): (P, Py); (Py, P3); (P3, Py) ...

[See page 453 HZ]

)
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Stitch Pairs of Views together

X{,P, P}

Three views of a camera:

Reconstruct Points
and Camera 2 and 3
(denote with a dash)

Reconstruct Points
and Camera land 2

 Both reconstructions share: 5+ 3D points and one camera (here P,, P;).
(We denote the second reconstruction with a dash)

« Why are Xj, X;' not the same?
In general we have the following ambiguity: x;; = P;X; = P,Q™'QX; = P/ X;

* Our Goal: make X; = X; and P, = P; suchthat x;; = P;X; and x';; = P";X";
(remember all mean “=" mean equal up to scale. All elements, x, X and P are defined
up to scale)
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Stitch Pairs of Views together

X{,P, P}

Three views of a camera:

Reconstruct Points Reconstruct Points
and Camera 1 and 2 and Camera 2 and 3
Method: (denote with a dash)
« Compute Q such that X;_z = QX;_c (up to scale)
* This can be done from 5+ 3D points in usual least-square sense (||AQ]|), since each point

gives 3 equations and Q has 15 DoF.

XY QuaXMrHQipX24Qus X3 r+QuaX
An example ratiois: &5 = F——=2—— =~
X Q21X 1+Q22X41+Q23X°7+0Q24X

for X; = (X1, X%, X3,X%); X'y = (XV, X2, X3, X*")

* Convert the second (dashed) reconstruction into the first one:
P',3(new) = P,3Q7% X'i(new) = QX; (note: x;; = P;X; = P;Q™1QX;)

* _In this way you can “zip” all reconstructions into a single one, in sequential fashion.
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Reconstruction Algorithm

Procedure: (calibrated and un-calibrated cameras)

1)
2)
3)
4)
5)

Compute accurate F, E-matrix between each pair of neighboring views
Uncalibrated case: derive intrinsic camera parameters for each pair
Compute initial reconstruction of each pair of neighboring views
Compute an initial full 3D reconstruction

Bundle-Adjustment to minimize overall geometric error

Reconstruct in step 2): (P, Py); (Py, P3); (P3, Py) ...

[See page 453 HZ]
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Bundle adjustment

* Global refinement of jointly structure (points) and cameras
* Minimize geometric error: argming  x; z z a;;j d(P;Xi, x;j)
7
here a;; is 1 if X; visible in view P; (otherwise 0)

* Non-linear optimization with e.g. Levenberg-Marquard

X.

J

§ P.X
P, R

I B

)
-
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