Computer Vision II -

Scene Understanding

Michael Yang

Roadmap (last lecture)

- Defining the Problem
- Rigid Template
 - HOG for human detection
 - Exemplar SVM detector

- Part Based Detector
 - Deformable Part Model
 - Poselets
- New development for object detection

Class-based recognition: Level of Detail

- Image Categorization (next lecture)
 - One or more categories per image

- Object Class Detection
 - Also find bounding box

Part-based Object Detection

Semantic Segmentation

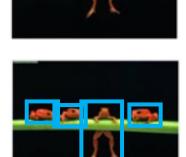
Find parts of the object

Object-class segmentation

(and in this way the full object)

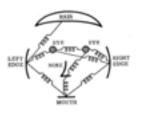
(segmentation implies pixel-wise accuracy)

Computer Vision II: Recognition

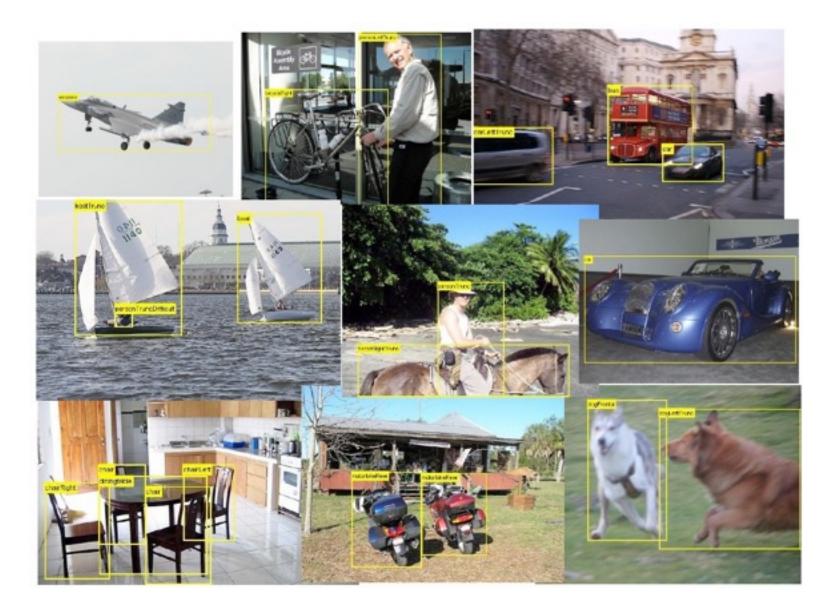


2D bounding box for each frog

Frog, branch



Task: Generic object detection



Summary of Basic object detection Steps

Training: Train a classifier describe the detection target

Testing : Detection by binary classification on all location

HOG Descriptor:

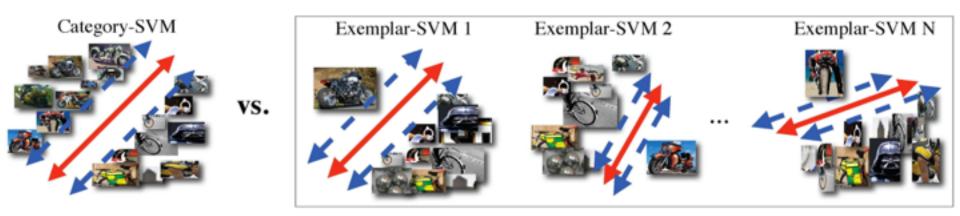
- Cell –
 Compute histograms on 'cells' of typically 8x8 pixels (i.e. 8x16 cells)
- 3. Normalize histograms within overlapping blocks of cells
- 4. Concatenate histograms

It is a typical procedure of feature extraction !

Overlap of Blocks

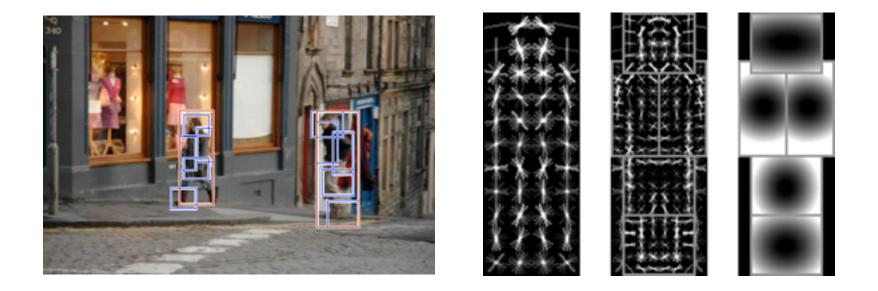
Exemplar-SVM

• Still a rigid template, but train a separate SVM for each positive instance



For each category it can has exemplar with different size aspect ratio

DPM : Object Detection with Discriminatively Trained Part Based Models



P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection</u> <u>with Discriminatively Trained Part Based Models</u>, PAMI 32(9), 2010

Roadmap (this lecture)

- Part Based Detector (cont. last lecture)
 - Deformable Part Model
 - Poselets
- Scene Understanding Problem

Context

• Spatial Layout

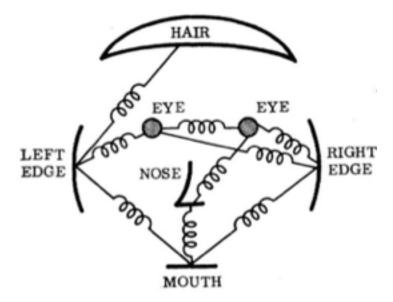
• 3D Scene Understanding

Part Based Detector

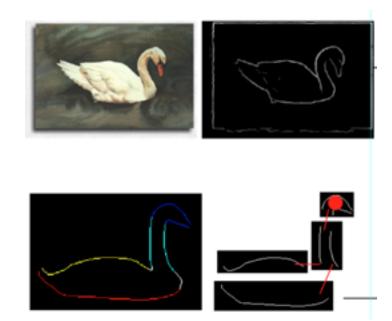
- Pictorial Structures
- Without part label
 - Deformable part model
- With part labeled
 - Poselets

Part Based Detector

Objects are represented by features of parts and spatial relations between parts



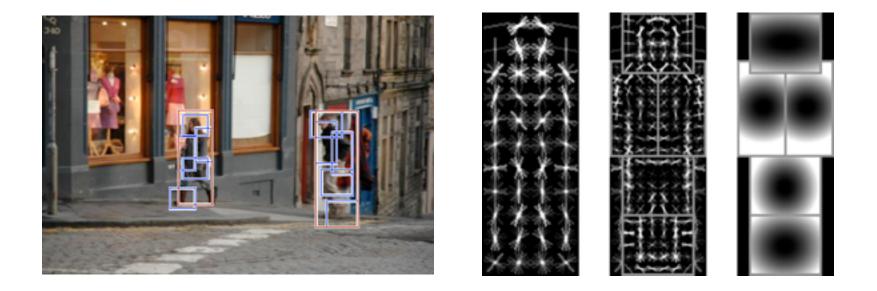
Face model by Fischler and Elschlager '73



Part Based Detector

- How to defined the parts for one object category
- How to represent their spatial relation shape
- How to combine parts detection and spatial relations to obtained the final detection

DPM : Object Detection with Discriminatively Trained Part Based Models

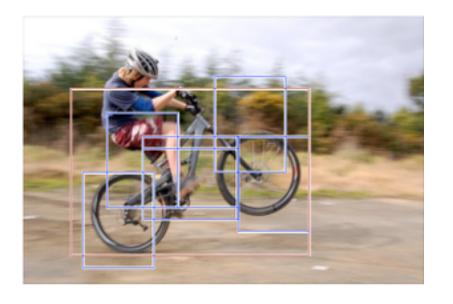


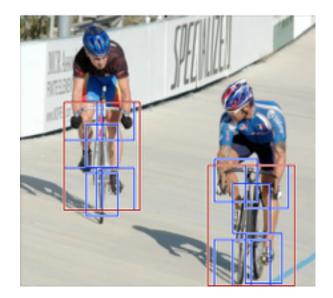
P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection</u> <u>with Discriminatively Trained Part Based Models</u>, PAMI 32(9), 2010

• Each category detector has mixture of deformable part models (components)

- Each component has global template + deformable parts
- Fully trained from bounding boxes alone (Latent SVM)

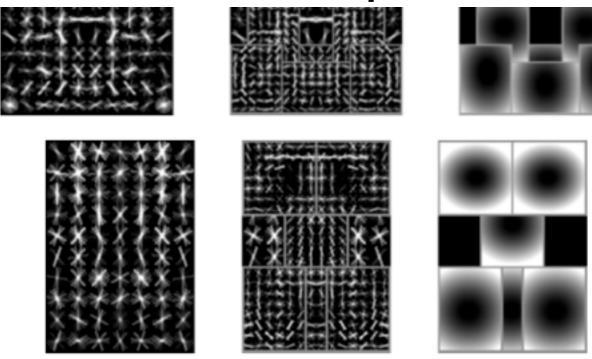
DPM: component





- Each category detector has mixture of component for different aspect ratio (handle intra-class variance)
- Each component has a it's own DPM model

DPM: component



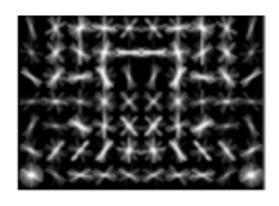
root filters part filters deformation coarse resolution finer resolution models

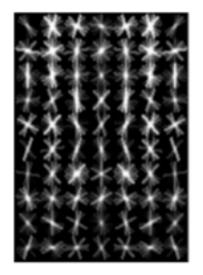
Each component has a root filter F_0 and *n* part models (F_i , v_i , d_i)

F: filter, v: 2D vector for anchor position, d: deformation parameter

DPM: Initialization

Root filter for each component

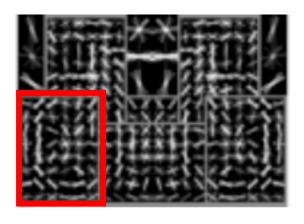


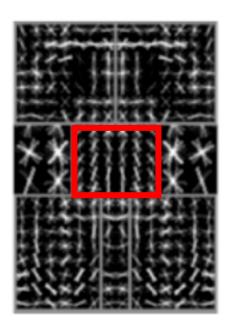


- For each component warp all positives to have same size
- Random pick negatives with same size
- Standard SVM no latent information

DPM: Initialization

Initializing Part Filter

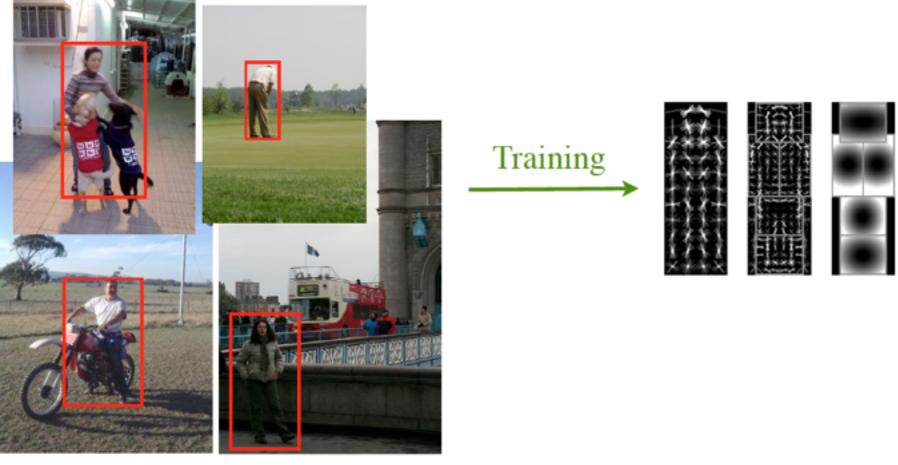


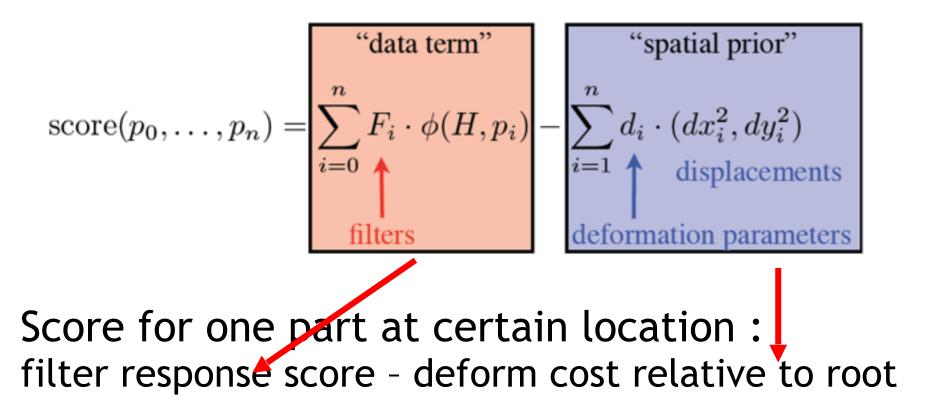


- Fixed number : 6 parts per component
- Choose the high-energy regions of the root filter (Energy : norm of positive weight in subwindow)
- Greedy approach: once part placed set to zero and find next high-energy part

DPM: Training

- Training data consists of images with labeled bounding boxes.
- Need to learn the model structure, filters and deformation costs.





F: subwindow filter, F_i: vector by concatenating the weight vectors phi: vector by concatenating the feature vectors in the subwindow H: feature pyramid, p = (x, y, l) specify a position (x, y) in pyramid level l

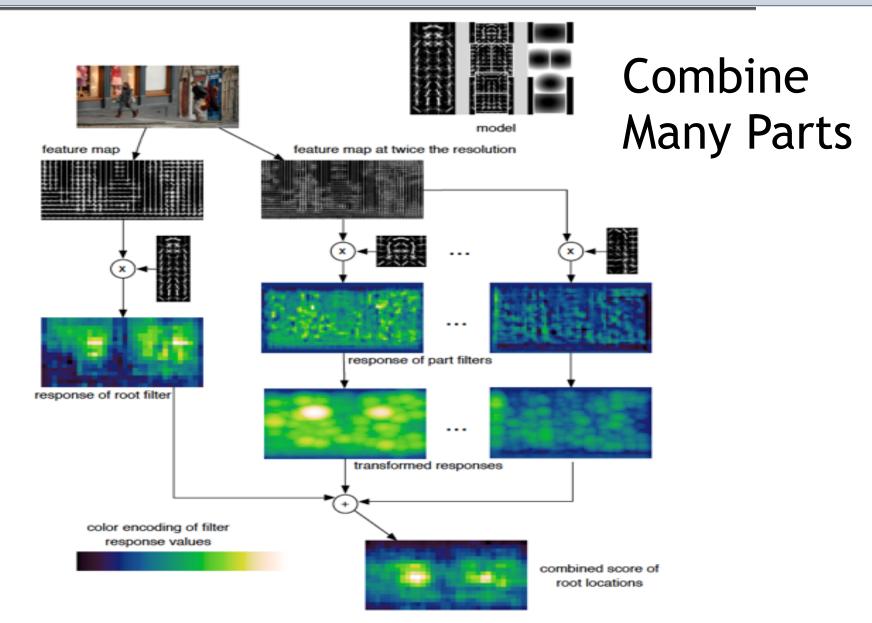
DPM: Detection

- Define an overall score for each root location
 - Based on best placement of parts

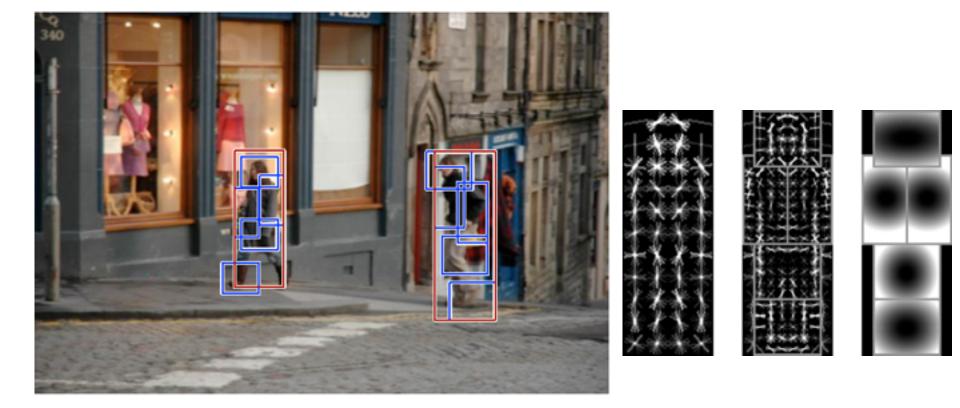
 $\operatorname{score}(p_0) = \max_{p_1,\ldots,p_n} \operatorname{score}(p_0,\ldots,p_n).$

- High scoring root locations define detections
- Efficient computation: dynamic programming + generalized distance transforms

DPM: Detection

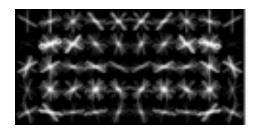


DPM: Detection

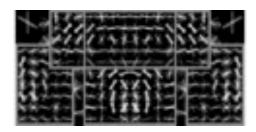


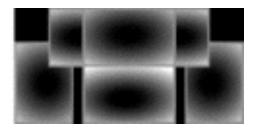
(after non-maximum suppression) ~1 second to search all scales

Car model

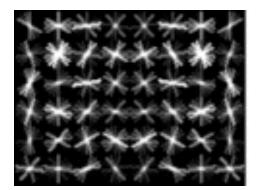


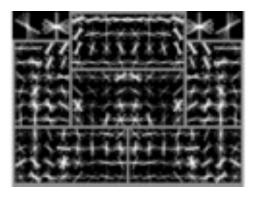
Component 1

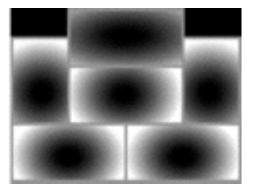




Component 2

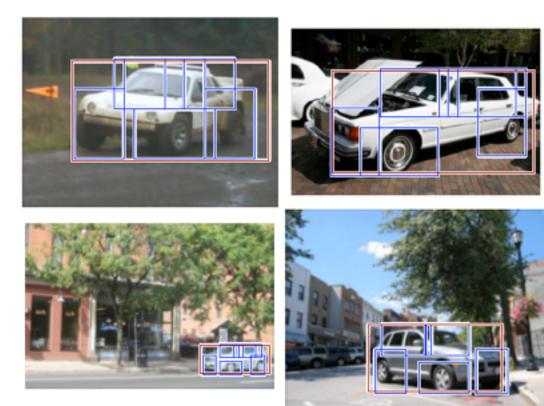




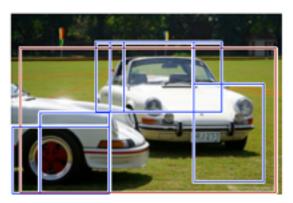


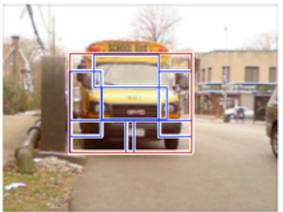
Car detections

high scoring true positives



high scoring false positives

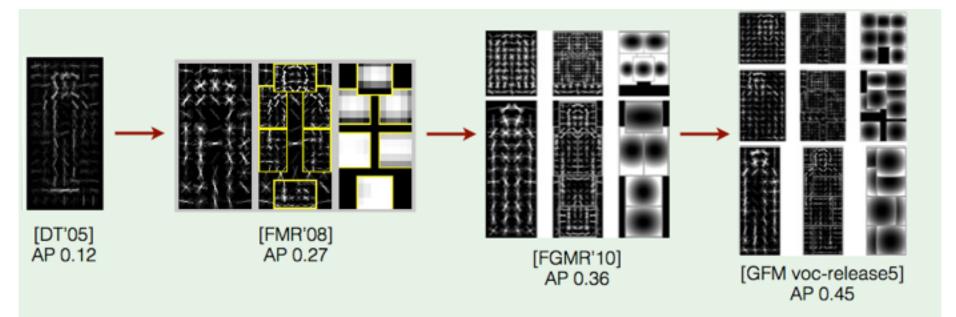


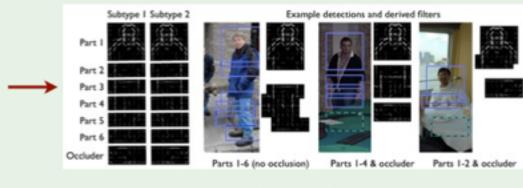


More detections

horse

Summary of Results





[GFM'11] AP 0.49

Poselets capture part of the pose from a given Viewpoint [Bourdev & Malik, ICCV09]

Examples may differ visually but have common semantics [Bourdev & Malik, ICCV09]

One poselet one classifier not a model for whole human body

given pose configuration

Finding correspondences at training time

Given part of a human pose

How do we find a similar pose configuration in the training set?

Finding correspondences at training time

We use key points to annotate the joints, eyes, nose, etc. of people

Finding correspondences at training time

Residual Error

Training poselet classifiers

Residual Error:

0.15 0.20 0.10 0.85 0.15 0.35

 Given a seed patch
 Find the closest patch for every other person
 Sort them by residual error
 Threshold them

Training poselet classifiers

Given a seed patch Find the closest patch for every other person Sort them by residual error Threshold them Use them as positive training examples to train a linear SVM with **HOG** features

1.

2.

3.

4.

5.

Training poselet classifiers

One poselet one classifier not a model for whole human body

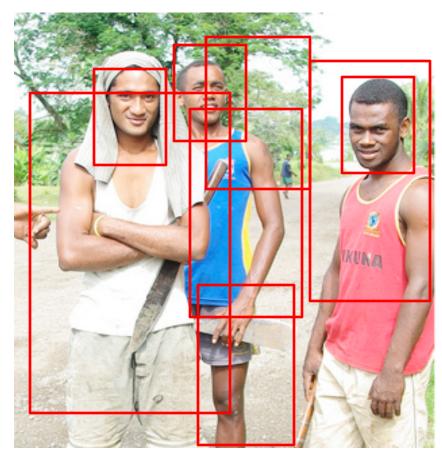
- 1. Given a seed patch
- 2. Find the closest patch for every other person
 - Sort them by residual error
- 4. Threshold them
 - Use them as positive training examples to train a linear SVM with HOG features

3.

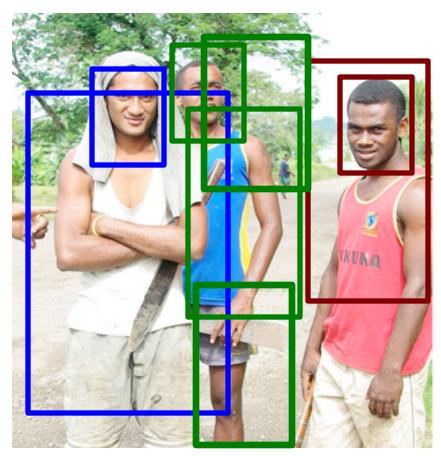
5.

Goal

Step 1: Detect poselet activations

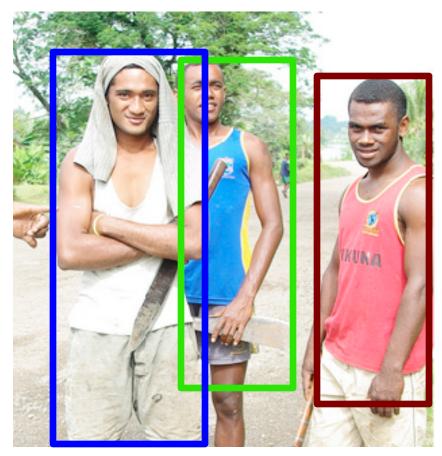


Step 2: Cluster the activations



Because we know the joint for each poselet

Step 3: Predict person bounds



Step 4: Identify the correct cluster

Max-flow in bipartite graph

Person recognition:

	Poselets	DPMs
2010	48.5%	47.7%
2009	48.3%	47.4%
2008	54.1%	43.1%
2007	46.9%	43.2%

Highest scoring hits on PASCAL test set

Highest scoring hits on PASCAL test set

Roadmap (this lecture)

- Part Based Detector (cont. last lecture)
 - Deformable Part Model
 - Poselets
- Scene Understanding Problem

Context

• Spatial Layout

• 3D Scene Understanding

Scene Understanding

- What is goal of scene understanding:
 - Build machine that can see like humans to automatically interpret the content of the images

• Comparing with traditional vision problem:

- Study on larger scale
- Human vision related tasks

Larger Scale

More image information. Context information.

focal length = 35 mm



COMPUTER VISION LAB

Human vision related task

More similar as the way that human understand the image Infer more useful information from image

How DO human learn?

• Bayesian Rules:

$$P(A \mid B) = P(B \mid A) \cdot P(A) / P(B)$$

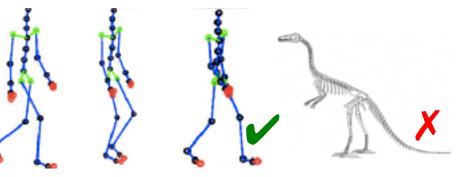
 $\propto P(I | W) \cdot P(W)$

• In practice: Infer abstract knowledge based on observation $P(W|I) = P(I|W) \cdot P(W) / P(I)$

Posterior probability

Likelihood: The probability of getting I given model W

Prior: The probability of W w/o seeing any observation



How DO human learn?

- To teach human baby what is "horse": show 3 pictures and let them learn by themselves.
- They can be very successful to learn the correct concept.

"horse"

- But all the following concepts can explain the images:
 - "horse" = all horse
 - "horse" = all horse but not Clydesdales
 - "horse" = all animal

Roadmap (this lecture)

- Part Based Detector (cont. last lecture)
 - Deformable Part Model
 - Poselets
- Scene Understanding Problem

Context

• Spatial Layout

• 3D Scene Understanding

• Objects usually are surrounded by a scene that can provide context in the form of nearby objects, surfaces, scene category, geometry, etc.

Contextual Reasoning

• Definition: Making a decision based on more than *local* image evidence.

• What is this?

• What is this?

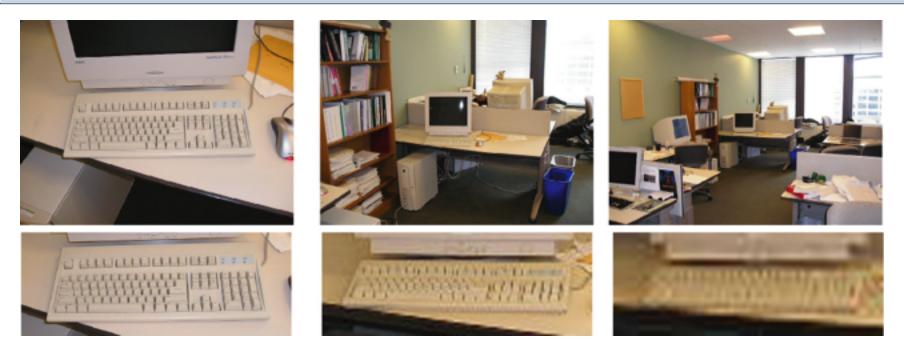
• Now can you tell?

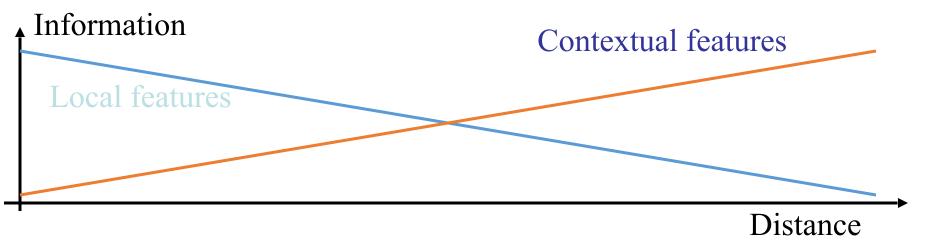
• once more how amazing is the visual system

• once more how amazing is the visual system

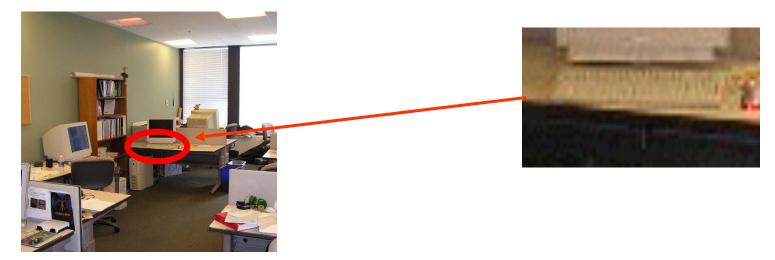
Is local information enough?

Is local information enough?

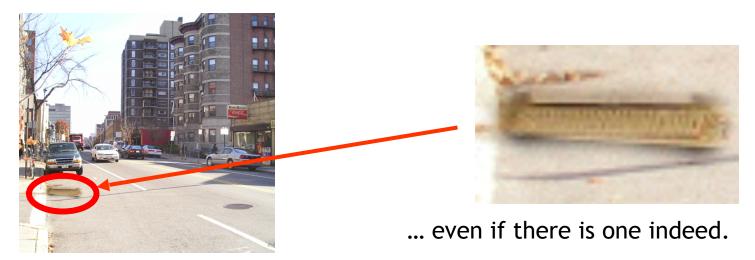




We know there is a keyboard present in this scene even if we cannot see it clearly.

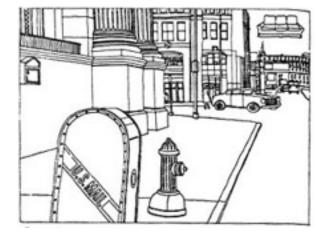


We know there is no keyboard present in this scene



Look-Alikes by Joan Steiner

- Pictures shown for 150 ms
- Objects in appropriate context were detected more accurately than objects in an inappropriate context



Biederman 1982

 Scene consistency affects object detection

Why is context important?

• Changes the interpretation of an object (or its function)

•Context defines what an unexpected event is

There are many types of context

• Local pixels

• window, surround, image neighborhood, object boundary/shape, global image statistics

• 2D Scene Gist

- global image statistics
- 3D Geometric
 - 3D scene layout, support surface, surface orientations, occlusions, contact points, etc.
- Semantic
 - event/activity depicted, scene category, objects present in the scene and their spatial extents, keywords
- Photogrammetric
 - camera height orientation, focal length, lens distortion, radiometric, response function
- Illumination
 - sun direction, sky color, cloud cover, shadow contrast, etc.
- Geographic
 - GPS location, terrain type, land use category, elevation, population density, etc.
- Temporal
 - nearby frames of video, photos taken at similar times, videos of similar scenes, time of capture
- Cultural
 - photographer bias, dataset selection bias, visual cliches, etc. from Divvala et al. CVPR 2009

Roadmap (this lecture)

- Part Based Detector (cont. last lecture)
 - Deformable Part Model
 - Poselets
- Scene Understanding Problem

Context

• Spatial Layout

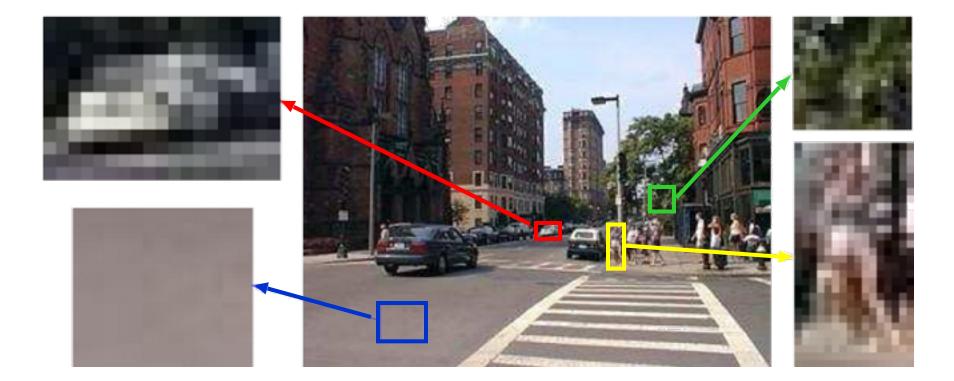
• 3D Scene Understanding

Spatial layout is especially important

1. Context for recognition

Spatial layout is especially important

1. Context for recognition



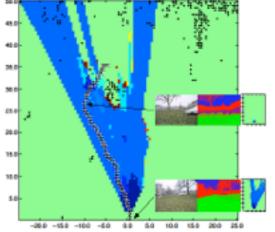
Spatial layout is especially important

- 1. Context for recognition
- 2. Scene understanding

Spatial layout is especially important

- 1. Context for recognition
- 2. Scene understanding
- 3. Many direct applications
 - a) Assisted driving
 - b) Robot navigation/interaction
 - c) 2D to 3D conversion for 3D TV
 - d) Object insertion

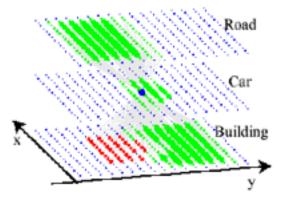
3D Reconstruction: Input, Mesh, Novel View



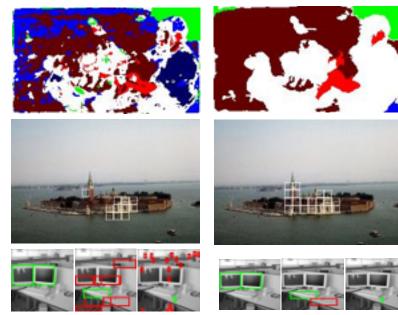
Robot Navigation: Path Planning

Spatial Layout: 2D vs. 3D

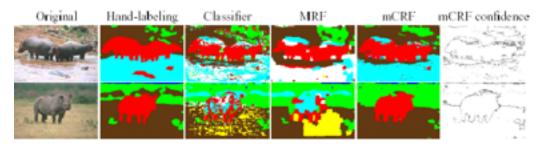
Context in Image Space



[Torralba Murphy Freeman 2004]

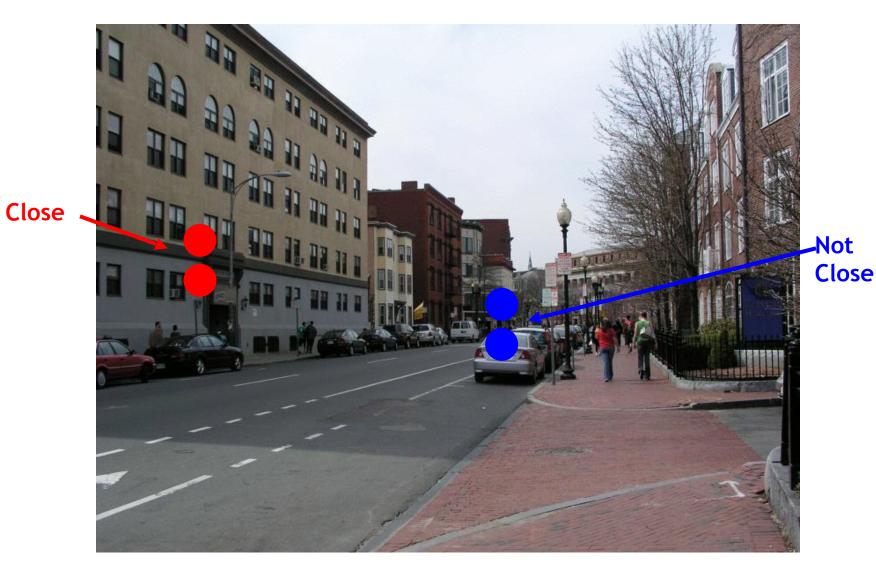


[Kumar Hebert 2005]



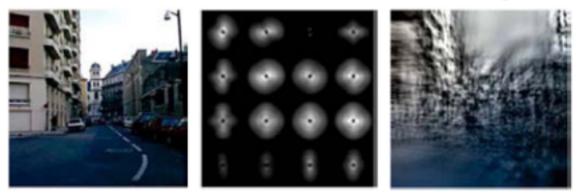
[He Zemel Cerreira-Perpiñán 2004]

But object relations are in 3D...

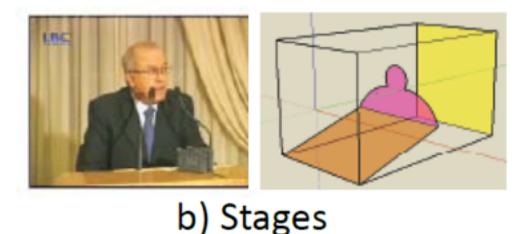


Wide variety of possible representations

Scene-Level Geometric Description

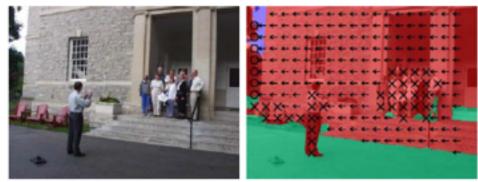


a) Gist, Spatial Envelope



Wide variety of possible representations

Retinotopic Maps



c) Geometric Context

d) Depth Maps

Wide variety of possible representations

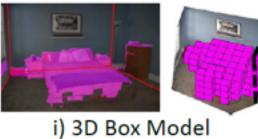
Highly Structured 3D Models

e) Ground Plane

f) Ground Plane with Billboards

g) Ground Plane with Walls

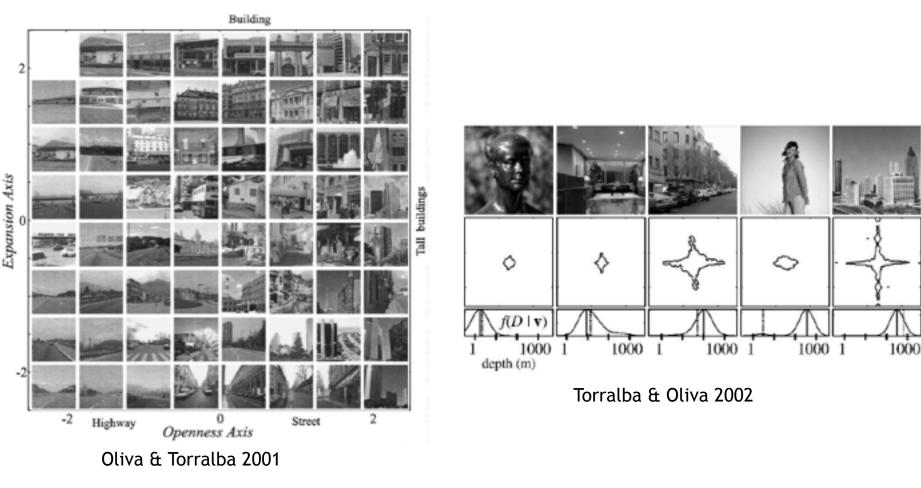
h) Blocks World



COMPUTER VISION LAB

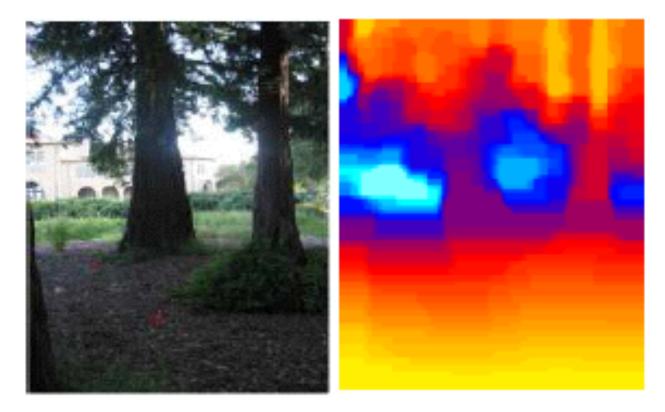
- Level of detail: rough "gist", or detailed point cloud?
 - Precision vs. accuracy
 - Difficulty of inference
- Abstraction: depth at each pixel, or ground planes and walls?
 - What is it for: e.g., metric reconstruction vs. navigation

Low detail, Low abstraction



High detail, Low abstraction

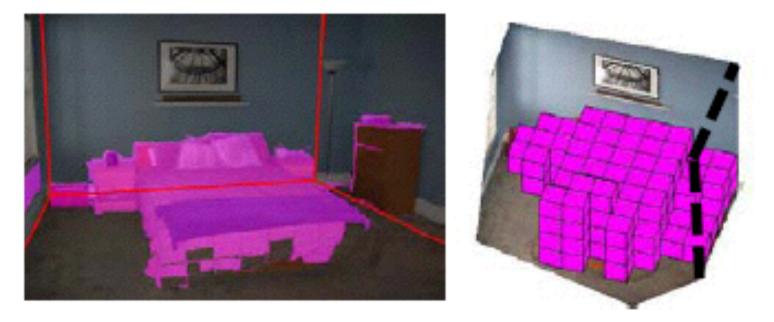
Depth Map



Saxena, Chung & Ng 2005, 2007

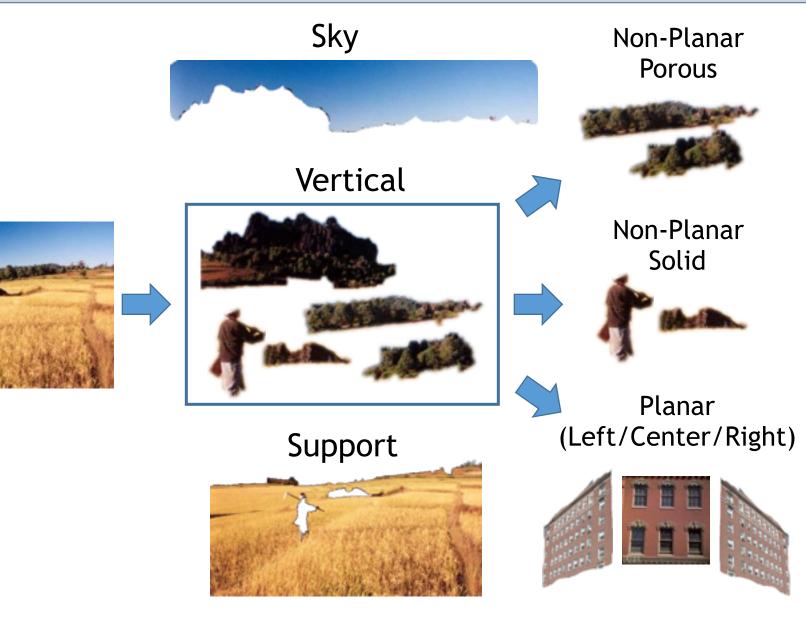
Medium detail, High abstraction

Room as a Box

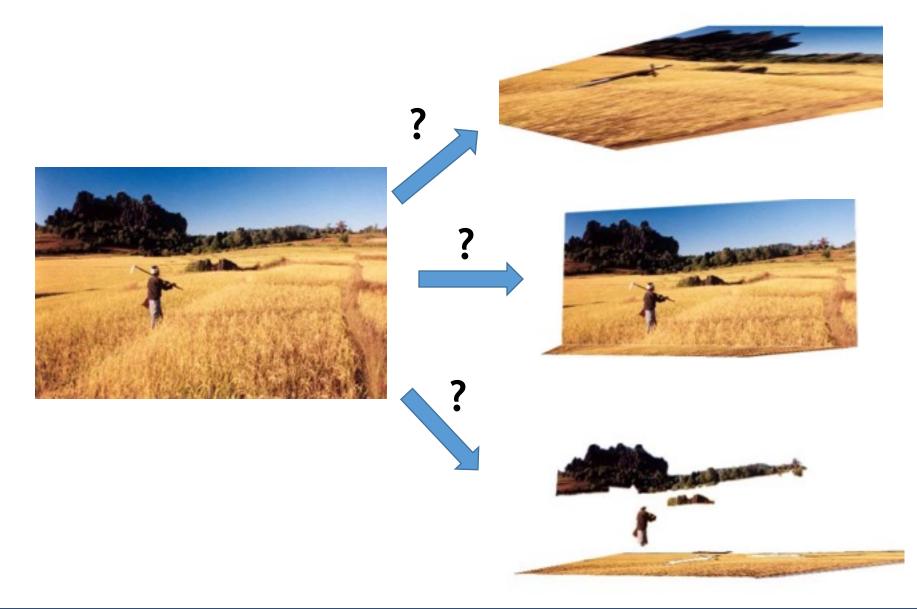


[Hedau Hoiem Forsyth 2009]

Surface Layout



The challenge



Our World is Structured

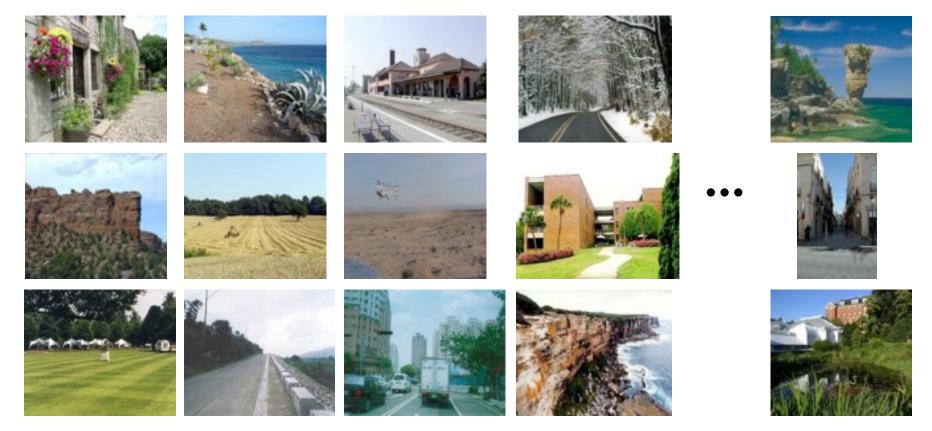
Abstract World

Our World

Image Credit (left): F. Cunin and M.J. Sailor, UCSD

Learn the Structure of the World

Training Images

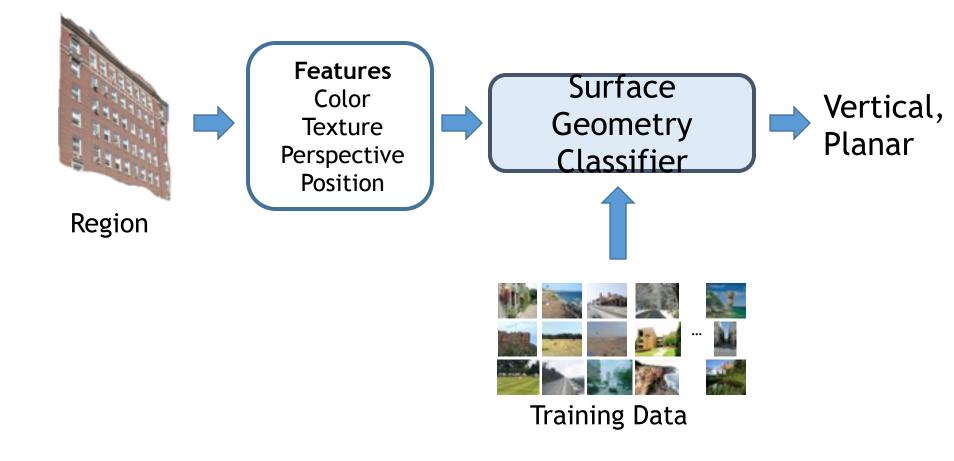


Infer the most likely interpretation

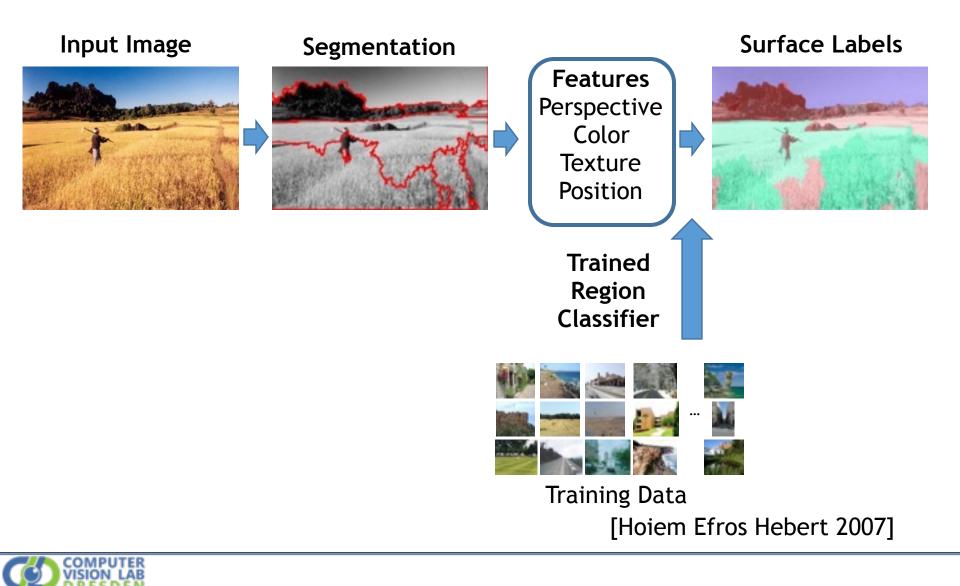
Unlikely

Likely

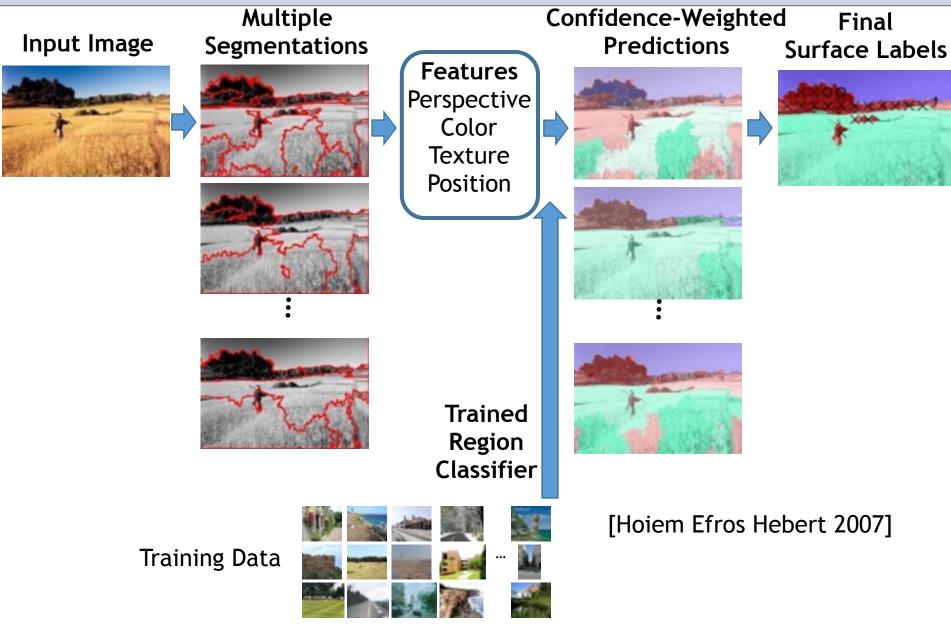
Geometry estimation as recognition



Surface Layout Algorithm

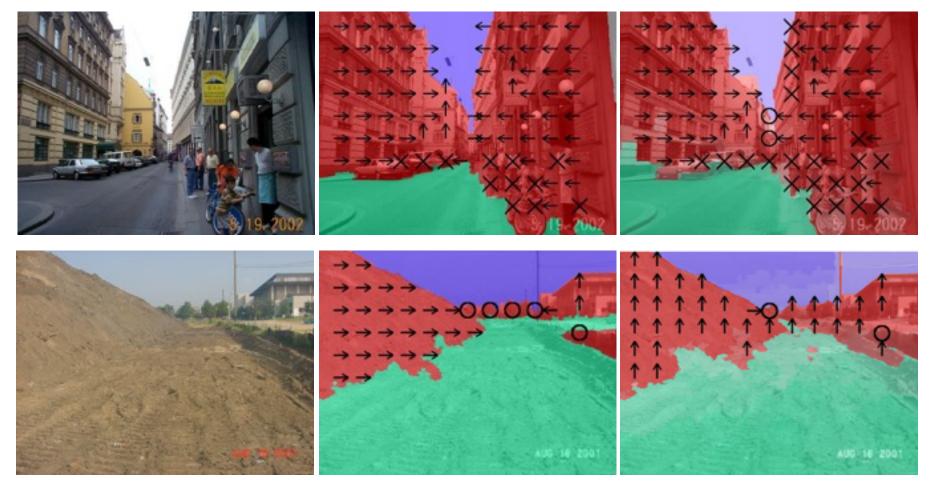


Surface Layout Algorithm



Surface Description Result

Results

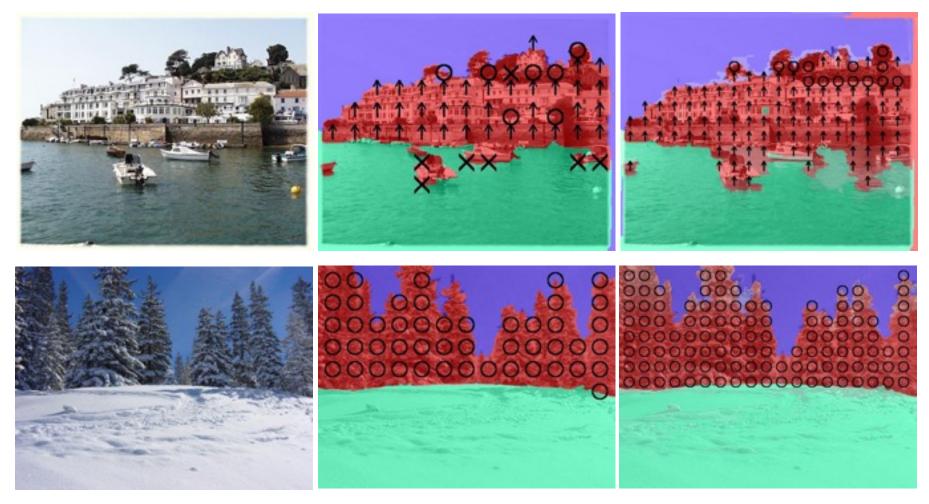


Input Image

Ground Truth

Result

Results

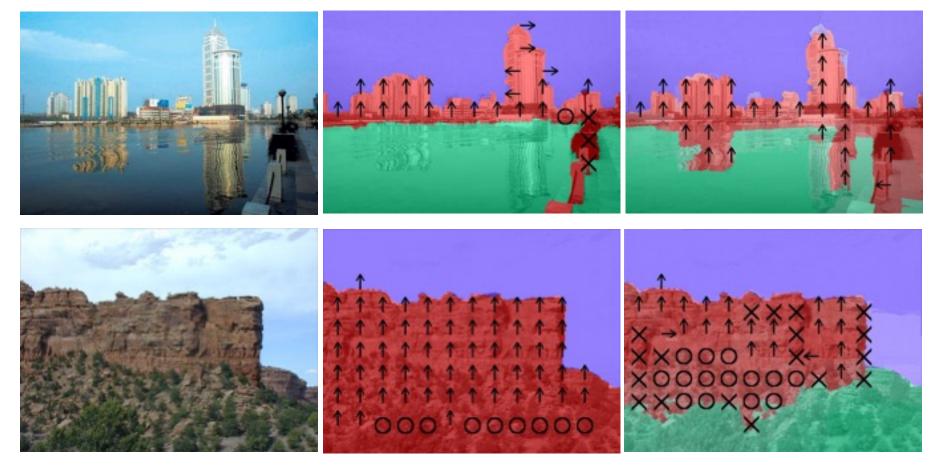


Input Image

Ground Truth

Result

Failures: Reflections, Rare Viewpoint



Input Image

Ground Truth

Result

Average Accuracy

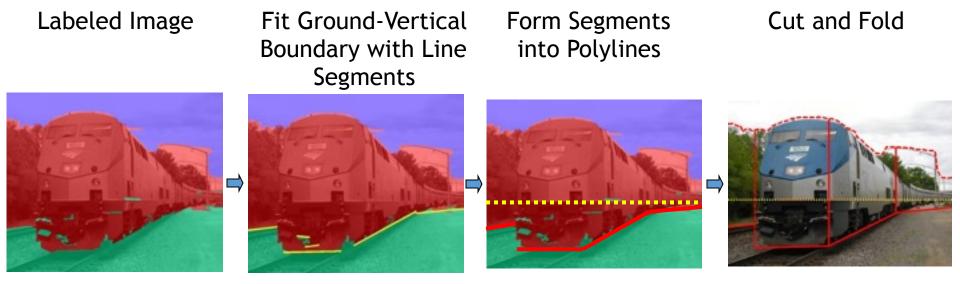
Main Class: 88%

Subclasses: 61%

Main Class						
	Support	Vertical	Sky			
Support	0.84	0.15	0.00			
Vertical	0.09	0.90	0.02			
Sky	0.00	0.10	0.90			

Vertical Subclass							
	Left	Center	Right	Porous	Solid		
Left	0.37	0.32	0.08	0.09	0.13		
Center	0.05	0.56	0.12	0.16	0.12		
Right	0.02	0.28	0.47	0.13	0.10		
Porous	0.01	0.07	0.03	0.84	0.06		
Solid	0.04	0.20	0.04	0.17	0.55		

Automatic Photo Popup



Final Pop-up Model

Mini-conclusions

- Can learn to predict surface geometry from a single image
- Very rough models, much room for improvement

Things to remember

- Objects should be interpreted in the context of the surrounding scene
 - Many types of context to consider
- Spatial layout is an important part of scene interpretation, but many open problems
 - How to represent space?
 - How to learn and infer spatial models?
- Consider trade-offs of detail vs. accuracy and abstraction vs. quantification

Roadmap (this lecture)

- Part Based Detector (cont. last lecture)
 - Deformable Part Model
 - Poselets
- Scene Understanding Problem

Context

• Spatial Layout

• 3D Scene Understanding

Complete Scene Understanding

Involves

- Localization of all instances of foreground objects ("things")
- Localization of all background classes ("stuff")
- Pixel-wise segmentation
- 3D reconstruction
- Pose detection
- Action recognition
- Event recognition
-

KITTI (video)

3D Traffic Scene Understanding from Movable Platforms

Andreas Geiger

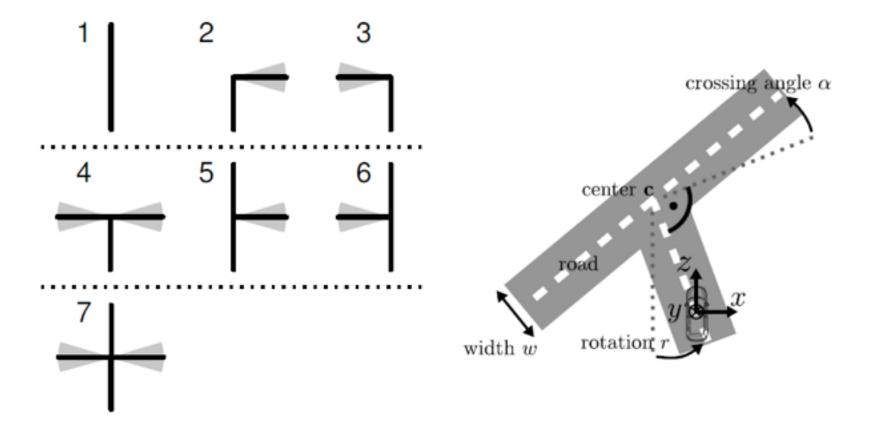
3D Traffic Scene Understanding

•Goal: Infer from short video sequences (moving observer)

- •Topology and geometry of the scene
- •Semantic information (traffic situation)

•Probabilistic generative model of 3D urban scenes

Topology and Geometry Model



Topology Model (κ) **Geometry Model** ($\mathbf{c}, \mathbf{w}, \mathbf{r}, \alpha$)

Road Layout $\mathcal{R} = \{\kappa, \mathbf{c}, \mathbf{w}, \mathbf{r}, \alpha\}$

Image Evidence

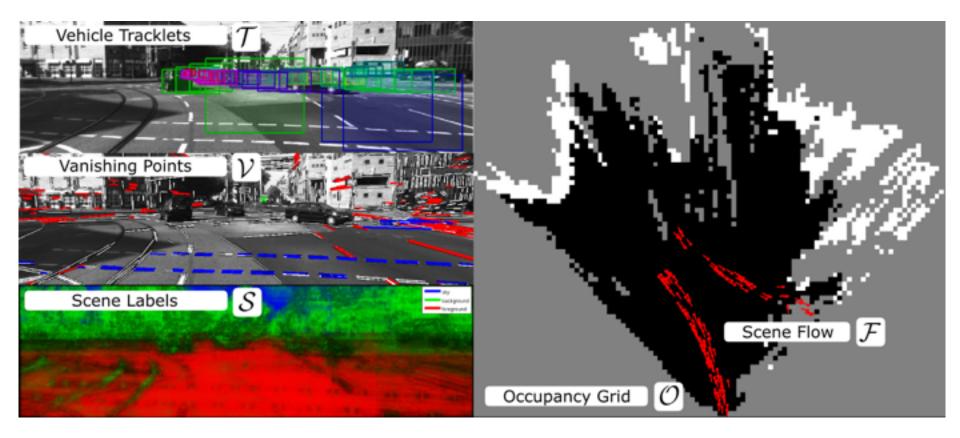
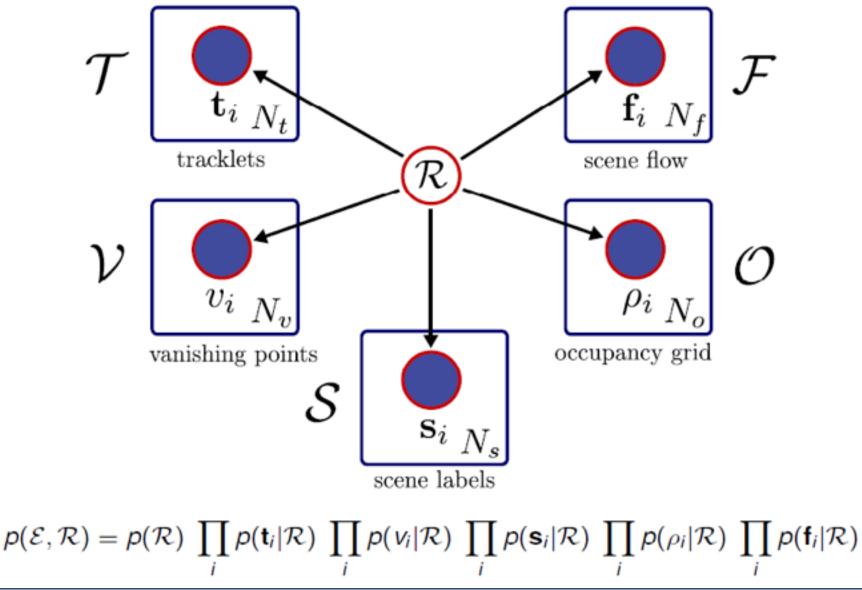
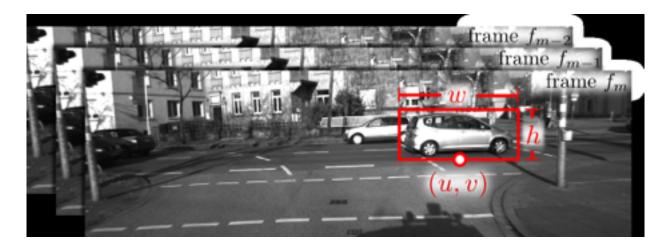


Image Evidence E = {T ; V; S; F;O}

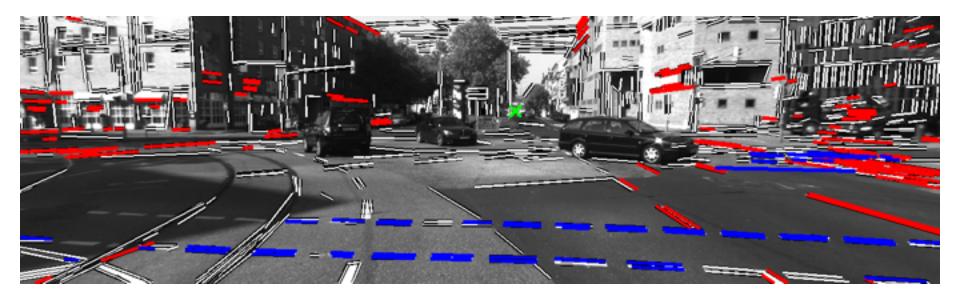


Vehicle Tracklets

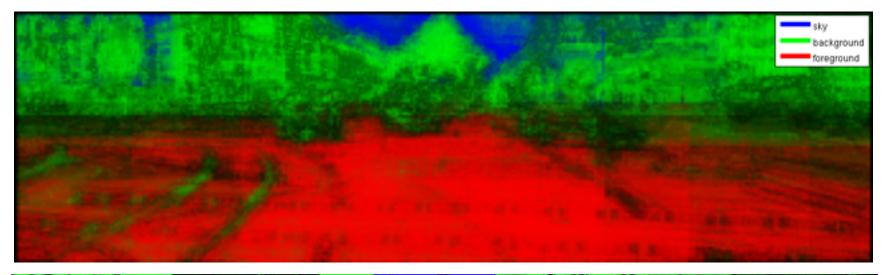


- Object detection [Felzenszwalb et al. 2010]Associate objects over time (tracking by detection)
- Projection to 3D object tracklet t = {d1, ..., d}
 (d captures the object location and orientation)

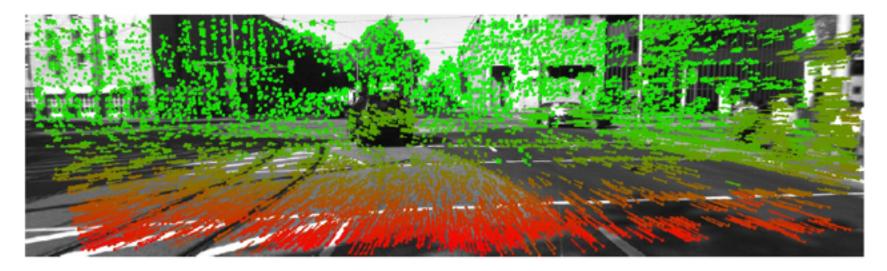
Vanishing Points



Semantic Labels



Occupancy, Scene Flow



Inference

Denote

- \mathcal{E} the image evidence
- *R* the road layout
- C the location of cars in the scene

Given *E*, inference of *R* and *C* is solved in two steps: ■ Infer road layout *R* while marginalizing *C*

$$\hat{\mathcal{R}} = \underset{\mathcal{R}}{\operatorname{argmax}} p(\mathcal{R}|\mathcal{E})$$
 (Metropolis-Hastings)

 \blacksquare Infer car locations ${\mathcal C}$ using MAP road layout ${\mathcal R}$

$$\hat{C} = \underset{C}{\operatorname{argmax}} p(C|\mathcal{E}, \mathcal{R})$$
 (Dynamic programming)

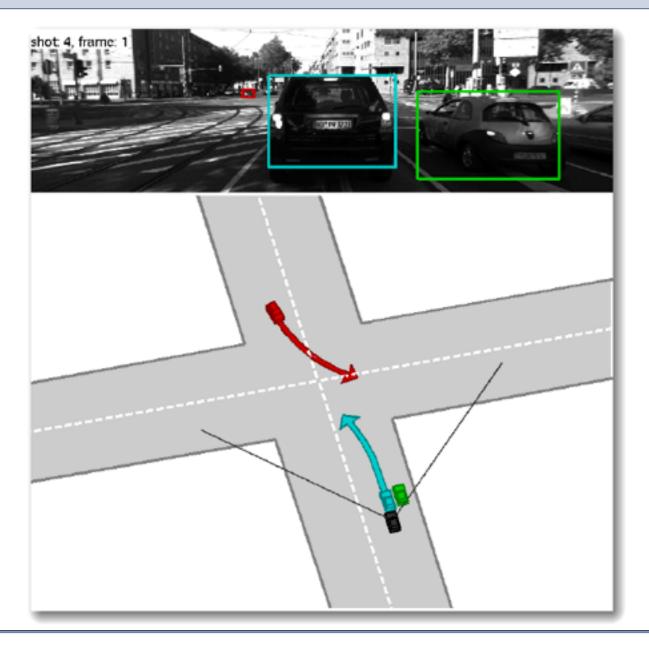
Experiments

- •113 sequences 5-30 seconds (9438 frames)
- •Best results when combining all feature cues
- •Most important: Occupancy grid, tracklets, 3D scene flow
- •Less important: Semantic labels, vanishing points

Metrics

- •Topology Accuracy: 92.0%
- •Location Error: 3.0 m
- •Street Orientation Error: 3.0
- •Tracklet-to-Lane Accuracy: 82.0%
- •Vehicle Orientation Error: 14.0

Experimental Results



3D Scene Understanding

• Defining the Problem

Context

• Spatial Layout

• 3D Scene Understanding

