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Roadmap (3 lectures)

* Object Detection

» Scene Understanding

* Image Categorization
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Roadmap (last lecture)

» Part Based Detector (cont. last last lecture)
« Deformable Part Model
 Poselets

» Scene Understanding Problem

 Context

 Spatial Layout

* 3D Scene Understanding
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Class-based recognition: Level of Detail

* Image Categorization

* One or more categories per image Frog, branch

2D bounding box for

* Object Class Detection each frog

« Also find bounding box

« Part-based Object Detection

* Find parts of the object
(and in this way the full object)

« Semantic Segmentation (see last lecture)
(segmentation implies pixel-wise accuracy)

» Object-class segmentation
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Task: Generic object detection
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DPM : Object Detection with

Discriminatively Trained Part Based
Models
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P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection
with Discriminatively Trained Part Based Models, PAMI 32(9), 2010

COMPUTER
&) ) VISION LAB


http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf

DPM: overview

e Each category detector has mixture of
deformable part models (components)

« Each component has global template +
deformable parts

e Fully trained from bounding boxes alone
(Latent SVM)




DPM: Detection

m |=| Combine
o Many Parts

feature map at twice the resolution

-----

response of root filter

color encoding of filter
response values
root locations
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.

One poselet one classifier
not a model for whole human body
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Spatial layout is especially important

1. Context for recognition
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Spatial layout is especially important

1. Context for recognition
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Spatial layout is especially important

1. Context for recognition
2. Scene understanding

COMPUTER
&) ) VISION LAB



Geometry estimation as recognition
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Surface Layout Algorithm

Input Image Segmentation Surface Labels

(Features\
Perspective gy
Color » —- o
Texture i e o Al
ey o 94 34'-‘('.:‘“ N
9 Position ) L L %

Trained
Region
Classifier

Wim = BH BT
B s e b
Be-bax

Training Data
[Hoiem Efros Hebert 2007]
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Surface Layout Algorithm

Multiple Confidence-Weighted Final
Input Image Segmentations Predictions Surface Labels
Features | muuu
Perspective “
Color »— T
Texture soil @ R
Position — Skl SR
=k |
X f"m‘%-'
Trained pom ¥
Region || = . . .
Classifier

»cg ! . [Hoiem Efros Hebert 2007]
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Roadmap (this lecture)

* Image Categorization

» Bag-of-Words (BOW)

* Generative vs. Discriminative Approach

 Spatial Pyramid Matching
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Class-based recognition: Level of Detail

Image Categorization

 One or more categories per image Frog (branch)

2D bounding box for
each frog

Object Class Detection
« Also find bounding box

Part-based Object Detection

* Find parts of the object
(and in this way the full object)

Semantic Segmentation
(segmentation implies pixel-wise accuracy) q
» Object-class segmentation ———
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Image Categorization

Why?

Application
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How many visual object categories are there?
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Variation within an object class
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Images from Flickr




Recognition: A machine learning approach

Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, Kristen Grauman, and Derek Hoiem
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The machine learning framework

* Apply a prediction function to a feature representation
of the image to get the desired output:

— “apple”
“tomato”
“COW”
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The machine learning framework

y = f(x)

LN

output prediction Image
function feature

 Training: given a training set of labeled examples
{(x1,y1), vy (xN,yN)}, estimate the prediction function f by minimizing the prediction

error on the training set

» Testing: apply f to a never before seen test example x and output the predicted value
y = f(x)
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Image Categorization-Steps

/" Training

Images
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Image Categorization-Steps

Training Training
Labels
CENOOHN - "f'
REREIXYE Feature assifier Trained
Y XK representation — Training — Classifier
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Testing
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Generalization

Training set (labels known) Test set (labels
unknown)

« How well does a learned model generalize from the data it
was trained on to a new test set?
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Generalization

Generalization depends on:

*Invariance properties of the feature representation
*There is a tradeoff between invariance and
discriminability

*Training data
*Some intra-class variations must be adequately
represented
in the training data (hard to model analytically)

*Statistical model
*Some models are more powerful than others and
able to generalize better.
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Roadmap (this lecture)

* Image Categorization

» Bag-of-Words (BOW)

* Generative vs. Discriminative Approach

 Spatial Pyramid Matching
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Image Categorization - Bag of Words Approach

Object |— Bag of ‘words’
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Origin 1: Texture recognition

regular irregular stochastic

Example textures (from Wikipedia)
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http://en.wikipedia.org/wiki/File:Texture_spectrum.jpg

Origin 1: Texture recognition

* Texture is characterized by the repetition of basic elements
or textons

* For stochastic textures, it is the identity of the textons, not
their spatial arrangement, that matters
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001;
Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003
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Origin 2: Bag-of-words models

» Orderless document representation: frequencies of words
from a dictionary satton & mcaill (1983)
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Origin 2: Bag-of-words models

» Orderless document representation: frequencies of words
from a dictionary satton & mcaill (1983)

ntable affordable afghanistan anbar baghdad challenges chamber chaos
wices civilians coalition commitment confront congressman ledat led
deficit democratic deploy dikembe diplomacy disruptions earmarks C"COHOI"H‘; einstein @1€CTIONS eliminate
xpand extremists famities freedom fuel funding god haven ideology
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iran ] raq islam julie lebanon math medicare neighborhoods nuciear

palestinian payroll qaeda regimes

terrorists.....
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Origin 2: Bag-of-words models

» Orderless document representation: frequencies of words
from a dictionary satton & mcaill (1983)
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Origin 2: Bag-of-words models

» Orderless document representation: frequencies of words
from a dictionary satton & mcaill (1983)
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Bags of words for object recognition

« Works pretty well for image-level classification and for
recognizing object instances
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Bags of words for object recognition

bag of features bag of features Parts-and-shape model

class Zhang ct al. (2005) | Willamowski et al. (2004) | Fergus et al. (2003)
airplanes 98.8 97.1 90.2
cars (rear) 98.3 98.6 90.3
cars (side) 95.0 87.3 88.5
faces 100 99.3 96.4
motorbikes 98.5 08.0 92.5
spotted cats 97.0 — 90.0
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Bag of Words

= Independent features
= Histogram representation
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Bag of Words - Overview

learning recognition
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Object Representation

learning

recognition
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Feature Detection and Representation
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Feature Detection and Representation

e N

— | ¢—

— |

— -
Compute o
descriptor Normalize

e.qg. SIFT, shape patch

context, etc.

Detect patches

Local interest operator
(e.qg. Harris-Laplace)
or regular grid
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Feature Detection and Representation

Take all training images
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Feature Detection and Representation

o .
® o
128-D SIFT space
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Codeword dictionary formation

128-D SIFT space
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e.g. k-means

€]

COMPUTER
VISION LAB

Computer Vision Il: Recognition

48—



Reminder: K-means

K-means

1. Ask user how many
clusters they'd like.

(e.qg. k=5)

2. Randomly guess k

cluster Center
locations

.
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Reminder: K-means

K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to. (Thus
each Center "owns”
a set of datapoints)
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Reminder: K-means

1.

K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns

Auton’s G

0.8

0.6

0.4

0.2

|

0.8

x0

(€),
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Reminder: K-means

6.

K-means

Ask user how many
clusters theyd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!
(Repeat means
go to step 3)
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Codeword dictionary visualization
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Image Patch examples of Codewords

Examples which are assigned Examples which are assighed
to same codeword to same codeword

[from Josef Sivic% )
LI.
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Bag of Words - Image Representation

= Histogram of features
assigned to each cluster

frequency

FLOSERLS B

= 174
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Roadmap (this lecture)

* Image Categorization

» Bag-of-Words (BOW)

* Generative vs. Discriminative Approach

 Spatial Pyramid Matching
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Bag of Words - Overview

2!
category models , category
(and/or) classifiers decision
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Classifiers
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Two approaches

Generative approach:
models distributions

Discriminative function:
models decision function

COMPUTER . . ops
C‘! VISION LAB Computer Vision II: Recognition



Generative vs. Discriminative

Generative Discriminative
 Training * Training
« Maximize joint likelihood of — Learn to directly predict the
data and labels labels from the data
. A_ssume (.or learn) probability — Assume form of boundary
distribution and dependency . .
structure — Margin maximization or

parameter regularization

« Can impose priors .
+ Testing « Testing | T
« P(y=1, x) / P(y=0, x) > t? - flx) >t 5 eg., wix>t
« Examples * Examples
- Foreground/background — Logistic regression
GMM — SVM
* Naive Bayes classifier — Boosted decision trees

* Bayesian network
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Two approaches

Generative approach:
models distributions

Discriminative function:
models decision function
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Discriminative functions

= Linear discriminant function:
e Linear hyperplane:
y(x) =wix +b

* trained on samples of both classes
Ci (W) and C; (@)

= Classification:
* decide class C; (?) when y(x) > 0
» decide class C2 (?) when y(x) < 0

Support Vector Machine is the optimal
classifier
-> see Machine Learning 1

COMPUTER .
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Which Hyperplane is best and why?

jm|
1) B B
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D

SVM classifier: Max-Margin behavior

- best generalization

«
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Support Vector Machines

= For now: linearly separable data

. . . r
* N training data points: {;lt.i, Yi .;-z\zl

* Hyperplane that y=0
separates the data: y < y

y(x) = w'x + wy

* Which hyperplane shall we use?
* How can we maximize the margin?

€Xr; € Rd
Yi € {—1, 1}
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Simpler decision functions are better

O
® o
a
o)
7
. .
o
a
@] o ® 9]
too simple | too complex
o
® o
o]
O
(@)

@ negative example
W positive example (o}

t

Best generalization

[Florian Markowetz]
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Half way slide

3 Minutes break
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Two approaches

Generative approach:
models distributions

Discriminative function:
models decision function

COMPUTER
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Bayesian Decision Theory

= st concept: Class conditional probabilities p(’l'\Ck)
* Probability of making an observation 1 knowing '
that it comes from some class (. (Likelihood)

e Here ;: is a feature (vector).

e 1 measures / describes properties of the data.

-

—
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plx|a)

p(x|b)
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Bayesian Decision Theory

= 2nd concept: Class priors p(Ch)

(a priori probability of a data point belonging to a
particular class)

7
/P =0.75
« Example: e

\ P(b)-() 25 ) I

Ch=a p(C’ ) =0.75
Cy =0 p(Cs) = 0.25

e Generally: Z p(Ch) =
A.

aababaaba
baaaabaaba
abaaaabba

babaabaa
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Bayesian Decision Theory

= Example:

r = 20

= Question:
* How do we decide which class the data point belongs to?
e Remember that p(a) = 0.75 and p(b) = 0.25
* This means we May decide class «.

COMPUTER . . iy
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Bayesian Decision Theory

= Formalize this using Bayes’ theorem:

* We want to find the a-posteriori probability (posterior) of the
class ('}, given the observation (feature) x

class-conditional probability

/ (likelihood)

class posterior

N\ p(x|Cr)p(C)

p(Cilx) = o(x)
\ normalization term

— class prior

p(x|Cr)p(Crk)  p(x|Ck)p(Ck)

p(Crla) = plx) B >_; p(@|C5)p(C;)

COMPUTER . .
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Bayesian Decision Theory

' plxla) p(z|b)
m Likelihood

plx,a) = p(x|la)pla)

= p(x|b)p(b)
Likelihood x Prior

>

i

: < decision boundary

p(b|x)

Likelihood x Prior

Posterior =

Normalization factor
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Bayesian Decision Theory

= Decision rule:

* Decide (' if p(Cilz) > p(Calx) We do not need
the normalization!
e This is equivalent to /
p(x|C1)p(Cr) > p(x|C2)p(Cy)

= MAP classifier:

* A classifier obeying this rule is called a MAP classifier
(sometimes called Bayes optimal classifier)

COMPUTER . . sg s
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Relation to previous lectures

r“!'"

* |Image gets a label (class):

K labelings

* Each pixel gets a label (class):
K™ labelings
* Pixels are structured

¥ COMPUTER
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Naive Bayes Classifier

A naive Bayes classifier is a simple probabilistic classifier based
on applying Bayes' theorem with strong (naive) independence
assumptions

* Encode each image as a feature vector
x = (x!,...,x™) where n is the
number of interest points.

 x/ € {wy,...w,,}. Here m visual words.

~200 interest points Interest points for
codewords (visual words)

» Naive Bayes Classifier assumes that visual words are conditionally independent
given object class: P(x|c) = []; P(x’|c)
(which is rarely true in practice)

* Naive Baves Classifier:
c* = argmax,. P(c|x) = argmax. P(c) P(x|c) = argmax. P(c) |]; P(x’|c)
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http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Bayes'_theorem
http://en.wikipedia.org/wiki/Statistical_independence

Image Classification with Naive Bayes

= Image dataset: 7 object categories, arbitrary views, partial
occlusions
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Image Classification with Naive Bayes

Table 1. Confusion matrix and the mean rank for the best vocabulary (k=1000).

True classes 2| faces  buildings  trees cars phones bikes books
Jaces 76 4 2 3 4 4 13
buildings 2 44 5 0 5 1 3
trees 3 2 80 0 0 5 0
cars | 0 75 3 1 4
phones 9 15 1 16 70 14 11
bikes 2 15 12 0 8 73 0
books | 19 0 6 7 2 69

Mean ranks | 1.49 1.88 133 133 1.63 1.57 1.57

Examples of correctly classified images:
‘! X
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Bag of words - Done!

learning recognition
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Summary and Discussion

* Bag of words representation:
» Sparse representation of object categories
* Many Machine learning techniques can be applied
(here naive Bayes and SVM)
* Robust to occlusion
* Allows sharing of representation between multiple
classes (via codeword dictionary)

* Problems:
 Spatial distribution of visual works is not modelled.
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Roadmap (this lecture)

* Image Categorization

» Bag-of-Words (BOW)

* Generative vs. Discriminative Approach

 Spatial Pyramid Matching
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C&J VISION LAB Computer Vision |l: Recognition



Spatial Pyramid Matching

« Add spatial information to the bag-of-features

* Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 20006]
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Spatial Pyramid Matching

Similar approaches:
Subblock description [Szummer & Picard, 1997]
SIFT [Lowe, 1999]
GIST [Torralba et al., 2003]

SIFT Gist
Color k |
- L
1
# /'Q K AN F
i <t -
H 2N '
— H |
|-l
A AN AN
_d\..‘.\ ‘\\\\\
==L KX
Texture '
Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003)
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Spatial pyramid representation

Locally orderless
representation at
several levels of
spatial resolution

level O
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Spatial pyramid representation

Locally orderless
representation at
several levels of
spatial resolution

LRI
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Spatial pyramid representation

Locally orderless
representation at
several levels of
spatial resolution
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Spatial Pyramid Matching

« Combination of spatial levels with pyramid match kernel
[Grauman & Darell’05]

level 0 level |

level 2
° + + o + + s + +
< s <>+ < . <>+ o . <>+
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+’0 + . +.0 + * +.0 + *
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+ .o + .o + e O <
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Pyramid Matching Kernel

\-I/

optimal partial
matching between
sets of features

Slides Credit: Kristen Grauman
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Pyramid Matching Kernel
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<
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optlmal partial
matching
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Pyramid match overview

Pyramid match kernel measures similarity of
a partial matching between two sets:

* Place multi-dimensional, multi-resolution grid
over point sets

« Consider points matched at finest resolution
where they fall into same grid cell

* Approximate similarity between matched
points with worst case similarity at given level
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Pyramid match kernel

Number of newly
matched pairs at level |

similarity

L
Approximate
partial match KA — E w?,NZ
1=0 ‘

Measure of difficulty
of a match at level i
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Feature extraction

X:{il,...,im}, }_{'zemd
® o o ® O D ...d:l

|

Histogram pyramid:
level i has bins of size 2/

o A Lil ||

Hp(X) Hy(X)  Hj( X)

U(X) = [Ho(X),. .. ,HL(XH




Counting matches

T(H(X),H(Y))=)> min(H(X);, H(Y);)

J=1

Histogram
intersection

X R S |
Y| v vi @ v iv i ovi &

IIIIIIIII m 1
H(X) H(Y)  I(H(X), H(Y)) =4




Counting new matches

r

Hi -
ntoreaction 2 (H(X). H(Y)) = >~ min (H(X);. H(Y);)
j=1
matches at this level matches a’tj)fvious level
N; =71 (Hi(X),Hi(Y)) — I (Hi-1(X),H;i-1(Y))

Difference in histogram intersections across
levels counts number of new pairs matched
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Pyramid match kernel

histogram pyramids

A
- N

Ka (V(X),¥(Y)) =

L
> o (T (Hi0), Hi(Y) ~Z(Hi 1 (X), Hia(Y)))
O

S~—— I
—

number of newly matched pairs at level i

measure of difficulty of a
match at level /

* Weights inversely proportional to bin size

« Normalize kernel values to avoid favoring large sets
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Example pyramid match

Level O

vvvvvvvvvvvvvvvvvvv
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Example pyramid match
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Example pyramid match

Level 2

SITA

I II 4
Hs(Y)

1o =5




Example pyramid match

pyramid match L

oipge pig o e KA = zNz
TRV

optimal match K — max S(x;,7(x;))
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Scene Classification

Enﬂ! FHlER ﬁ-ﬂlﬂ

office klu en ll\ mg room
bedroom store mdu»m al

nll bunldm; inside city* street*
e . )-h - S~ EE;: g--
ighway coast® open country”®
T B T e Bl
mountain® o forest* suburb o -
L Single-level Pyramid
0(1x1) 72.240.6
1(2x2) 77.9%0.6 79.0 0.5
2(4x4) 79.4%0.3 81.1 +0.3
3(8x8) 77.2+0.4 80.7 +0.3
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Retrieval Examples

(a) Kitchen hiv mg room

(d) tall bldg

(e) tall bldg mnside city

(f) inside city

living room  hiving room office livingroom  hving room  living room  living room

iside city

inside city

e I

mountain

mountain

tall bldg
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Category classification - CalTech101

Bag-of-words approach by Zhang et al.’"07: 54 %

L Single-level Pyramid
0(1x1) 41.2%1.2
1(2x2) 55.910.9 57.0 0.8
2(4x4) 63.6%0.9 64.6 0.8
3(8x8) 60.3+0.9 64.6 0.7

€’
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CalTech101

Easiest and hardest classes

BERY A~ ST

minaret (97.6%) windsor chair (94.6%) joshua tree (37.9%)

IBE 930 o= E B

‘ y S b :
cougar body (27.6%) beaver (27.5%) crocodile (25.0%) ant (25.0%)

* Sources of difficulty:
— Lack of texture
— Camouflage
— Thin, articulated limbs
— Highly deformable shape
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Discussion

* Summary
 Spatial pyramid representation: appearance of local
image patches + coarse global position information
 Substantial improvement over bag of features
* Depends on the similarity of image layout

» Extensions
* Integrating different types of features, learning weights,
use of different grids
 Flexible, object-centered grid
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Roadmap (this lecture)

* Image Categorization

» Bag-of-Words (BOW)

* Generative vs. Discriminative Approach

 Spatial Pyramid Matching
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Roadmap (this lecture)

* Image Categorization

» Bag-of-Words (BOW)

* Generative vs. Discriminative Approach

 Spatial Pyramid Matching

» Application: Remote Sensing Image Classification
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