
Fakultät Informatik Institut für Künstliche Intelligenz · Professur für Bildverarbeitung

COMPARISON OF LEARNED
INFERENCE APPROACHES FOR
IMAGE RESTORATION

Master-Arbeit
zur Erlangung des Hochschulgrades

Master of Science
(M. Sc.)

vorgelegt von: JAKOB KRUSE

geboren am: 21. AUGUST 1990 in DRESDEN

Tag der Einreichung: 12. SEPTEMBER 2016
Betreuer: Prof. Ph.D. Carsten ROTHER

Abstract

A common approach to many image restoration problems is to model the corruption
process and the desired characteristics of restored images with the help of a random
field. Then Bayesian inference can be carried out to find the best estimate of the
original image for any given observation. In several recent works, the inference
procedure is truncated to a small number of iterations to guarantee fast runtime.
The loss in accuracy is compensated for by discriminatively learning an individual
set of model parameters for each iteration, minimizing a loss function over training
data. The resulting application-specific architectures can achieve high restoration
quality with small computational effort.

For this thesis, two truncated inference approaches were implemented and trained
for image denoising and non-blind deblurring. The gradient-descent approach, which
had previously been reported to produce very good denoising results, is shown here
to be less suitable for the deblurring task, except when truncating inference after
many iterations or supplying strong initial guesses. A variant of half-quadratic in-
ference, which has not been used in this context before, produces good deblurring
results within few iterations, at the cost of a much longer computation time. Both
approaches are shown to be equally suited for the denoising task, although each
works best for a different type of image content.

Zusammenfassung

Ein beliebter Ansatz zum Lösen von Problemen der Bildwiederherstellung besteht
darin, den Korruptionsprozess und die gewünschten Eigenschaften wiederhergestell-
ter Bilder mit Hilfe eines Random Field-Modells zu beschreiben. Darauf lässt sich
Bayes’sche Inferenz anwenden, um zu einer gegebenen Beobachtung die beste Vermu-
tung für das Ursprungsbild zu finden. In einigen neueren Werken wird diese Inferenz
auf eine kleine Zahl an Iterationen begrenzt, um schnelle Laufzeit sicherzustellen.
Der Verlust an Genauigkeit wird ausgeglichen, indem für jede Iteration ein separater
Satz an Modellparametern diskriminativ von Trainingsdaten gelernt wird. Die so
entstandenen anwendungsspezifischen Systeme können mit geringem Rechenaufwand
eine hohe Wiederherstellungsqualität erzielen.

Im Zuge dieser Arbeit wurden zwei derart begrenzte Inferenzverfahren umgesetzt
und jeweils zum Entfernen von Rauschen und Unschärfe trainiert. Das Gradien-
tenverfahren, dessen starke Ergebnisse beim Entrauschen bereits publiziert wurden,
zeigt sich hier als weniger geeignet zum Entfernen von Unschärfe, wenn die Inferenz
nicht erst deutlich später begrenzt wird oder gute Ausgangsvermutungen bereit-
gestellt werden. Eine Variante halb-quadratischer Inferenz, die noch nicht in diesem
Kontext angewendet wurde, führt dagegen in wenigen Iterationen zu guten Ergeb-
nissen, benötigt jedoch erheblich längere Rechenzeit. Beide Ansätze sind gleichauf
beim Entfernen von Bildrauschen, erreichen ihre jeweils besten Ergebnisse aber bei
unterschiedlichen Bildinhalten.

Acknowledgements

I wish to thank Uwe Schmidt for his invaluable input on this thesis, from explaining
high-level concepts to providing detailed criticism and feedback. While working on
this topic, I learned many things I might never have discovered on my own. I also
want to thank my parents, who, among many wonderful things, made it possible for
me to pursue the educational path that led to this point. Finally, my university life
could never have been as fulfilling without Lisa, who was a great source of support
during the sometimes quite stressful past months. Thank you :)

Contents

1 Introduction 9
1.1 Related Work . 10
1.2 Outline of Thesis . 11

2 Background and Theory 13
2.1 Notation . 13
2.2 Images and Restoration . 15

2.2.1 Image Representation . 16
2.2.2 Noisy Images . 17
2.2.3 Blurred Images . 18
2.2.4 Finding the Restored Image 20

2.3 Graphical Models . 20
2.3.1 Markov Random Fields . 21
2.3.2 Fields of Experts . 24
2.3.3 Robust Potentials . 25
2.3.4 Maximum A-Posteriori Inference 26
2.3.5 Energy Minimization . 28

3 Learned Inference 31
3.1 Bi-level Optimization . 31

3.1.1 Loss Function . 32
3.1.2 Training Data . 34
3.1.3 Model Parameters . 35

3.2 Truncated Optimization . 39
3.2.1 Computing Gradients with Backpropagation 41
3.2.2 Greedy and Joint Training . 42

3.3 Inference via Gradient Descent . 43
3.3.1 Motivation . 43
3.3.2 Energy Gradient . 43
3.3.3 Update Formula . 44
3.3.4 Derivative of the Loss Function 45
3.3.5 Input Gradient . 45
3.3.6 Parameter Gradients . 46
3.3.7 Summary . 48

3.4 Half-Quadratic Inference . 49
3.4.1 Motivation . 49
3.4.2 Update Formula . 51
3.4.3 Solving Systems of Linear Equations 52
3.4.4 Derivative of the Loss Function 54
3.4.5 Input Gradient . 55
3.4.6 Parameter Gradients . 56

3.4.7 Summary . 59

4 Experiments and Results 61
4.1 Training and Test Setup . 61

4.1.1 Data Sets . 62
4.1.2 Boundary Handling . 63
4.1.3 Initialization . 64

4.2 Image Denoising . 66
4.2.1 Gradient Descent . 68
4.2.2 Half-Quadratic Inference . 69

4.3 Image Deblurring . 70
4.3.1 Gradient Descent . 71
4.3.2 Half-Quadratic Inference . 72

5 Discussion and Outlook 77
5.1 Denoising . 77
5.2 Deblurring . 78
5.3 Computation time . 82
5.4 Outlook . 83
5.5 Conclusion . 84

6 Appendix 87

Bibliography 95

1 Introduction

The field of computer vision is a branch of computer science dedicated to the ex-
traction of information from visual media like photographs, microscope or telescope
output, stereo images and video streams. The information might be a segmentation
of an image into objects and background, an estimation of an object’s movement
or a reconstruction of the three-dimensional structure of the scene. For these tasks,
computer vision uses techniques from the related fields of signal processing, pattern
recognition and machine learning among others.

One of the classical problems in computer vision is that of image restoration. Having
observed some corrupted image, the restoration task is to produce the best possi-
ble estimate of the original, uncorrupted image. However, like many problems in
computer vision, the image restoration problem is usually not well-posed because
the input images lack important information. For an algorithm to make decisions
when faced with such ambiguity, some form of prior knowledge about the desired
properties of the output images is necessary.

A common technique for encoding this kind of information is to model an image as
a graph structure, where each node corresponds to one image pixel and the edges
represent their neighbourhood relationships. An energy function can then be defined
on the whole graph which assigns a score to each possible configuration of the pixel
values. Less desirable configurations are assigned a higher energy, which translates
to a lower probability under the model. With this resulting prior probability dis-
tribution over all images, as well as a model for the likelihood of any given clean
image leading to the observed corrupted image, Bayesian inference can be employed
to reason about the unknown quantity, which is the original image.

The task of finding the candidate for the restored image with the highest posterior
probability under a specified model is called maximum a-posteriori inference, and is
commonly carried out by minimizing the energy function. This can be achieved using
a wide range of known gradient-based optimization techniques. One disadvantage of
this approach, however, is that minimization of the energy can take many iterations
to converge. Furthermore, it is not usually clear in advance how long the inference
procedure will take.

An alternative approach proposed in recent years, sometimes labelled truncated opti-
mization, aims to avoid this. The central idea is to limit the minimization procedure
to a fixed small number of steps, but to train the model parameters separately for
each step with respect to a loss function over training data. Essentially, each step
uses a differently trained model, tuned to improve on the result of its predecessor.
The whole arrangement can be interpreted as a cascade. As a result, the model
architecture and the chosen gradient-based optimization algorithm are no longer
independent, but become fused in one unit.

10 1 Introduction

While many such combinations of model and inference algorithm are possible, only
some have been studied in the literature so far, and there has been no systematic
comparison as of yet. While it is beyond the scope of this work to provide an
exhaustive survey, the following chapters will take a close look at two combinations
and see how they compare to each other when applied to specific image restoration
problems.

Both will be based on the Field of Experts model architecture [35], a higher-order
graphical model that is very popular as a prior for natural images. The first approach
combines this with the standard gradient descent approach for energy minimization,
a combination that has been studied before in [13]. The second inference approach
will be based on a variant of half-quadratic inference [19], which to the best of our
knowledge has not yet been studied in combination with this type of model.

Finally, the concrete task for this thesis was to implement these two model-inference
combinations from scratch and train them under identical conditions. Then a di-
rect comparison of both the quality of the results after each inference step and the
required runtime can be made. For this comparison, the two classical image restora-
tion problems of denoising and non-blind deblurring, both under the assumption of
Gaussian noise, are considered here.

The application of the gradient descent approach to the deblurring problem, as well
as the application of the considered half-quadratic variant in such a truncated opti-
mization setting in general, constitute new contributions to the field.

1.1 Related Work

The Field of Experts prior was proposed by Roth and Black in [34] as a higher-order
variant of the common Markov random field architecture, particularly suited for im-
age restoration. It models the probability of an image as the product of potentials
of overlapping image patches called cliques. Each potential consists of a nonlinear
expert function modelling the response of a linear filter. Of special interest is the
ability to learn all model parameters from training data, which will be exploited to
train the models in this thesis. The authors also already advocate the simple gradi-
ent descent algorithm as a means of finding an approximate maximum a-posteriori
solution.

Where Roth and Black chose a generative training approach, employing sampling
and contrastive divergence, Samuel and Tappen [39] suggest training the Field of
Experts model discriminatively with respect to a specific loss function. Instead of
training the model independently on natural images and doing inference later on,
they argue that the model parameters should be tuned to maximize the effectiveness
of a particular inference method to achieve the best performance. This leads to
a bi-level optimization problem: In the lower level, the energy of the random field
configuration is minimized to find a maximum a-posteriori estimate for a given input
image. In the upper level, the model parameters are optimized such that the results
from the lower level are as close as possible to ground truth data, according to a
chosen measure of similarity.

The notion to truncate the optimization in the lower level, that is to limit the inference
procedure to a fixed number of steps, can first be found in Barbu’s work [2]. There,

1.2 Outline of Thesis 11

an Active Random Field is defined as the combination of a random field model and
an inference algorithm. The author chooses the Field of Experts architecture for
the image model. The same bi-level optimization as in [39] is applied, except that
the lower level consists of only 1 to 4 iterations of standard gradient descent to
approximate an energy minimum. It is shown that the suboptimal solution obtained
in the lower level is compensated for by the model bias introduced through loss-
specific training. The truncated optimization approach yields results on par with
the original Field of Experts paper [34], while achieving a speedup of several orders
of magnitude. A closely related route is taken by Domke in [17]. Both authors train
a set of arbitrary linear filters, shared between all steps of their models, and the
parameters for a very constrained set of expert functions.

In a similar way, cascades of regression tree fields [26], a novel form of Gaussian
random fields, are discriminatively trained by Schmidt et al. in [41] for the tasks of
image denoising and deblurring. In their case, both the nonlinear functions and the
linear filters are highly flexible and trained individually for each stage of the cascade,
an idea that had not been exploited in previous truncated optimization schemes.

In [14], Chen et al. revisit the discriminative approach from [39] and show that, using
an improved training procedure, they can achieve much more competitive results than
previously assumed. Their findings suggest that solving the lower level problem with
higher accuracy leads to better overall performance of the bi-level framework. They
also note that the maximum a-posteriori estimate remains a very effective inference
option for low-level computer vision tasks such as denoising.

Building on [41], Cascades of Shrinkage Fields are introduced by Schmidt and Roth
in [40] as a combination of the Field of Experts model with an efficient variant of the
additive form of half-quadratic inference [20]. They again utilize a cascade of fixed
length for the lower level of optimization, where each stage represents one iteration
of half-quadratic optimization.

The idea of training each step of a truncated model individually is transferred back
to the Active Random Field approach by Chen and Pock in [13]. As in Barbu’s work
[2], a Field of Experts architecture is paired with truncated gradient descent infer-
ence. However, the new approach differs in that the gradient descent steps no longer
share their parameters. The authors then find that, in contrast to common random
field applications, their freely tuned expert functions work not just to locally ensure
smoothness of the image, but also to sharpen edges and even encode preferences
for certain textures or patterns. For the task of image denoising, their best model
outperforms all competitors while requiring significantly shorter computation time.

1.2 Outline of Thesis

This work is divided into five parts. Following this introduction, Chapter 2 covers
a number of basic assumptions and definitions regarding the images on which the
examined algorithms operate. A brief overview of the processes behind noise and
blur in natural images is provided, followed by a discussion of the image restoration
problem in general. The chapter also gives an introduction to Markov random fields
and related concepts, which are essential for understanding the model architectures
that are be employed later on.

12 1 Introduction

Chapter 3 gives the mathematical formulation of the bi-level optimization problem,
shows how it is modified by truncating the lower level, and covers the two approaches
used here for finding an approximate solution. Starting with the concept of loss-
specific training, the chapter covers the loss function and the required training data as
well as the parameterization of all learned model components, most notably the linear
filters and the nonlinear functions. After that, the idea of truncating the inference
procedure is presented, and what this means in terms of the model formulated before.
As will be shown, the truncation allows the application of a back-propagation scheme
to efficiently calculate the gradients of the model parameters for each inference step
with respect to the value of the loss function. After that follows a short discussion
of the differences between joint and greedy training of said parameters, before the
two concrete inference approaches are presented in detail. For each of these, there
is a brief section on motivation followed by the resulting update formula for one
inference iteration. Next, derivations of the parameter gradients are presented for
each approach, including some remarks on how they can be computed more efficiently.

After that, Chapter 4 is dedicated to the practical evaluation of the two truncated
optimization frameworks. After a number of general and technical points regarding
the experimental setup, the results of different variants of the two model-inference
combinations for the tasks of image denoising and deblurring are presented. The
performance of the trained models on established test sets is shown next to the results
of related work, and the computation time of the new implementation reported for
each variant.

Finally, Chapter 5 is used to draw conclusions from the experimental results, compare
them to each other and to initial expectations, and offer explanations for the observed
differences. It discusses the weak and strong points of each approach and addresses
the matter of computation time. In addition, it provides an overview of possible
extensions and improvements of the work presented in this thesis, as well as ideas
for further research on the topic.

2 Background and Theory

To enable a good understanding of both the task that needs to be solved and the
underlying mathematical models, this chapter will introduce a number of relevant
concepts from the field of computer vision. After a short section on notation and a
few basic mathematical results, some fundamental definitions and assumptions are
stated about the images that are processed by the models in this thesis. This includes
how the images are represented, as well as the basic models for image degradation
by noise and by blur. From there the chapter will explain how these ideas connect
to the random field models that are the basis for the approaches compared in this
thesis, and see how they can help with restoring corrupted images.

2.1 Notation

Throughout this work there will be a few rules regarding notation that should make
it easier to discern, at a glance, what each of the symbols in an equation is supposed
to represent.

A lower case letter in bold, like x, will always represent a column vector. Its transpose
is x>. An upper case letter in bold, like F, will represent a matrix. Its transpose is
F>, its inverse F−1. Ik×k is the identity matrix of size k × k. Anything not set in
bold will represent either a scalar, like λ, or a function, like ρ(x).

The term diag{x} represents a diagonal matrix with height and width equal to the
dimension of the vector x, where the diagonal entries are given by the elements of
x, and all other entries are zero.

Depending on context, an index, as in xt, will mark a specific member out of a group
of similar objects or, as in xn, the nth element of a structure. If both kinds of indices
are needed, the latter will appear second, separated by a comma, as in xt,n. For a
matrix A, the entry in the ith row and jth column is denoted Aij . Similarly, for a
vector a, the ith element of a is ai.

A hat, like in x̂, means that the variable in question is an estimate of another,
unknown quantity, which will sometimes be marked with an asterisk, as in x∗.

The convolution of a vector x with a second vector k will be written as x∗k = k∗x.

The Gaussian normal distribution with the variance σ2 and centered on the mean
µ, which is defined as

N (µ, σ2) :=
1√

2σ2π
exp

(
−(x− µ)2

2σ2

)
,

will sometimes be denoted N (x;µ, σ2) to stress that it describes the distribution of
some variable x. Analoguous notation is used for the multivariate Gaussian normal

14 2 Background and Theory

distribution N (x;µ,Σ) of a vector x, centered on the vector µ and defined via
the covariance matrix Σ. This is also called the moment parameterization. When
the distribution is given in information parameterization [44] instead, it is written
as NI(x;η,Ω) with the information vector η = Σ−1µ and the precision matrix
Ω = Σ−1.

When it comes to matrix calculus, that is, differentiating anything that involves non-
scalar expressions, this work will always follow the numerator layout convention1,
also known as the Jacobian formulation, for consistency. Thus differentiating a vector
y ∈ Rm with respect to a vector x ∈ Rn will yield an m × n matrix of the partial
derivatives. Following the denominator layout instead would lead to the same results,
only transposed.

For some of the derivations in Chapter 3 it will be convenient to apply binary oper-
ators to vectors or matrices separately for each element. The element-wise matrix
product is usually known as the Hadamard or Schur product [32] and will be written
as A�B with (A�B)ij = Aij ·Bij .

The principle can be illustrated with this simple example: 1 4
2 5
3 6

�
 2 1

1 2
2 1

 =

 2 4
2 10
6 6



In the case of vectors, (a � b)i = ai · bi = (diag{a} · b)i. A simple example of this
would be the following: 1

2
3

�
 4

5
6

 =

 4
10
18

 =

 1 0 0
0 2 0
0 0 3

 ·
 4

5
6



If an element-wise binary operator appears between a vector and a matrix, it shall
be applied to each column of the matrix separately, setting

(a�B)ij = (B� a)ij := ai ·Bij . (2.1)

This is an extension of the conventional definition, but it will come in very handy
later on. For example, it allows the formulation (a�B)ij = ai ·Bij = (diag{a} ·B)ij
for a vector-matrix pair as well: 1

2
3

�
 4 7

5 8
6 9

 =

 4 7
10 16
18 27

 =

 1 0 0
0 2 0
0 0 3

 ·
 4 7

5 8
6 9



It also allows for the introduction of an element-wise product rule for two vectors a

1see for example https://en.wikipedia.org/wiki/Matrix_calculus

https://en.wikipedia.org/wiki/Matrix_calculus

2.2 Images and Restoration 15

and b, where both depend on a third vector x:

∂

∂x
(a� b) =


...

∂
∂x(ai · bi)

...

 =


...

ai
∂bi
∂x + bi

∂ai
∂x

...



=


...

ai
∂bi
∂x
...

+


...

bi
∂ai
∂x
...

 = a� ∂b
∂x

+ b� ∂a
∂x

(2.2)

Note that both ∂b
∂x and ∂a

∂x are matrices.

Another result that will be of use later on is the following equality for two vectors
a ∈ Rp, c ∈ Rq and a matrix B ∈ Rp×q:

((a�B) · c)i =

q∑
j=1

(ai ·Bij) · cj

= ai ·
q∑

j=1

Bij · cj

= ai · (B · c)i

= (a� (B · c))i ,

and therefore

(a�B) · c = a� (B · c) . (2.3)

While many further results could be found for element-wise operators, these are the
ones immediately relevant to this thesis.

2.2 Images and Restoration

The task of image restoration is one of the classical problems in low-level computer
vision2. Generally speaking, it is the process of estimating the true original image
from a corrupted observation or a set thereof.

Such corruptions of the observed image can have a multitude of forms and causes.
While this thesis will only deal with noise and blur, arguably the best known sources
of corruption, other sources have been and continue to be the subject of research.

Many operations commonly performed on images in everyday use, like downscaling
and lossy compression, degrade the image in typical ways. These can be addressed by
techniques like super-resolution [45] or JPEG deblocking [26, 13]. Problems during
data transmission, as well as undesired overlays, such as text pasted over the image,
can lead to whole image regions being lost. A common countermeasure in these

2Low-level computer vision tends to deal with local, pixel-based tasks as opposed to high-level
problems such as face recognition and scene understanding. There is, however, no clear-cut
definition of what constitutes high-level and low-level computer vision.

16 2 Background and Theory

situations is inpainting [22], where the unknown parts are interpolated based on
the surviving observation and prior knowledge. Standard digital cameras also often
introduce colour aberrations as a result of the way they capture and interpolate
colour samples in an internal step called demosaicing [30].

2.2.1 Image Representation

Before having a closer look at the models for image corruption used in this work,
there should be a few words on what is meant by the word image in this context.

First of all, the focus of this work is on natural images, which generally means
photographs of real-world scenes captured by digital cameras. The models and tech-
niques presented later on certainly extend to other types of images, such as ultra-
sound scans or digital renderings, but these will not be investigated here.

A significant part of the scientific community generally conceptualizes images as
two-dimensional signals in the spatial domain, continuous functions that have to be
sampled from to obtain concrete values, for example at pixel positions. This fits well
with the physical world the images come from, where structures and surfaces above
the scale of individual particles tend to be smooth and continuous. It also allows for
the full range of signal processing techniques, shared with other areas of research, to
be applied [42].

For the approaches discussed here, however, this understanding of images is not
particularly useful. Instead, an image will be treated as just a two-dimensional
matrix of variables, each representing the intensity of one specific pixel. For coloured
images, there is one such matrix for each colour channel. These can be combined
into a single three-dimensional array. For the sake of simplicity, this thesis will
only consider grayscale images, but it is worth noting that the methods used can be
generalized to handle colour images as well.

Although the images produced by a normal camera are made up of discrete integers,
with values usually ranging from 0 to 255, the variables of the image model used here
are defined as continuous real numbers. This allows for greater accuracy, but more
importantly it guarantees that the equations presented later on are differentiable,
which will be important for parameter learning. The restored images resulting from
the algorithms discussed later on can always be converted back to integer values to
comply with common file formats.

Having introduced this matrix representation of images, it is often helpful to move to
a different representation which is more convenient from a mathematical perspective.
An image matrix M ∈ Rm×n can be reshaped into a vector vec(M) = v ∈ Rmn simply
by concatenating all the columns of M, as illustrated in Figure 2.1. Note that this
can easily be reverted. For the remainder of this thesis, the vector representation
will be used when images occur in equations, unless explicitly stated otherwise.

Furthermore, when talking about images in the context of image restoration there are
some terms that may be used interchangeably. The clean image, which is unknown
to the restoration algorithm, is also called original image or ground truth and will
always be denoted by xgt. The corrupted image based on it, which is the input image
for the algorithm, is also called the observation and will always be denoted by y.

2.2 Images and Restoration 17


1.0 5.0 9.0 13.0
2.0 6.0 10.0 14.0
3.0 7.0 11.0 15.0
4.0 8.0 12.0 16.0

⇐⇒



1.0
2.0
3.0
...

14.0
15.0
16.0


Figure 2.1: Illustration of reversible matrix-vector conversion

Finally, the output image of the restoration algorithm is usually called prediction
and will always be denoted x̂, since it can only ever be an estimate of the original
image.

This assignment of y and x̂ as input and output may be confusing to some readers,
as these variables are often used the other way around. A potential reason why
it is different in the context of image restoration is that the problem is an inverse
one: y is in fact the output of some image corruption process with input x. But for
an algorithm seeking to undo the corruption, it is the input. Switching the names
around here would likely only cause additional confusion.

2.2.2 Noisy Images

Maybe the most obvious and well-understood type of image corruption is noise. Just
like image corruption in general, noise in natural images can stem from a variety of
very different sources.

There is the so-called shot noise, which arises from the inherent randomness when
photons from a light source reach the sensor. In theory, shot noise is governed by
a Poisson distribution, but under most conditions it can be reasonably described by
a normal distribution about its mean. It is more prevalent in darker image regions,
where the total number of photons collected is lower.

The same demosaicing process responsible for the afore-mentioned colour aberrations
in conventional digital cameras also introduces noise [12], as do other electronic
circuits that process the captured data. Temperature plays an important role in this
respect, as heated sensors are more prone to leak noise into the image [15, § 11.2.3].

Finally, the true image intensities will always be rounded to a value that is repre-
sentable in the chosen image format, often an 8 bit integer in the range [0, 255], in
a step called quantization. This is, in essence, just another form of noise, although
this time following a uniform distribution.

However, modelling each type of noise individually and correctly is not in the scope
of this work. To simplify matters, a common assumption for image noise is a single
Gaussian distribution, affecting each pixel xi of an image x in the following way:

yi = xi + r, r ∼ N (0, σ2) (2.4)

Figure 2.2 shows the effect of such Gaussian white noise applied to an image from
the data set used for the denoising experiments in Chapter 4.

18 2 Background and Theory

(a) σ2 = 0 (b) σ2 = 5 (c) σ2 = 15 (d) σ2 = 25 (e) σ2 = 50

Figure 2.2: Different levels of Gaussian white noise applied to a natural image taken
from the Berkeley Segmentation Data Set [1]. The noise level σ2 determines how heavily
the image is corrupted, with σ2 = 0 having no effect.

Since the pixel-wise distributions are independent of each other, they can easily be
combined into one multivariate Gaussian distribution for the whole image. This is
called the likelihood for observation y, given the image x:

p(y | x) =
∏
i

N (yi;xi, σ
2)

= N (y; x, σ2I) (2.5)

In line with this assumption, the training data used to learn the model parameters
later on will consist of natural images corrupted with artificial Gaussian noise of a
certain noise level σ2.

2.2.3 Blurred Images

If the perturbations applied to an image are not independent for each pixel, but
can instead be described at each position as a combination of the content of the
surrounding image region, the result is called a blurred image. Image blur usually
occurs because some objects are out of focus, or because parts of the scene were
moving relative to the imaging system while the image was taken. Both are obviously
very common in photographs taken by hand.

Blur can also be caused by phenomena that refract and scatter the incoming light
on its way, as is often the case in astronomical images. Currents of hot air and
transparent objects, like windows, may have a similar effect in everyday scenes.

The discussion in this thesis will be limited to image blur that can be described by
a single blur kernel k applied uniformly across the whole image, as is the case in the
second and third image in Figure 2.3. A blur kernel in this sense is a linear filter with
the additional properties that none of its elements can be negative, and all elements
sum up to one. This is because it represents the effect of an underlying point spread
function, which, simply speaking, models the distribution of light from a single point
in the scene to multiple locations in the image. It is clear that no image location
can receive a negative amount of light in this way, and that the total amount of light
reaching the image remains the same.

2.2 Images and Restoration 19

Figure 2.3: Simulation of different types of blur applied to a natural image taken
from the Berkeley Segmentation Data Set [1]. The original image (left) is subjected
to motion blur with different kernels (center left and center), to depth blur caused by
camera focus (center right) and to radial blur caused by rotation around the camera
axis (right).

Because applying the blur kernel to an image is a convolution operation, its inverse,
the corresponding deblurring operation, is also called deconvolution in this case. In
this thesis it is additionally assumed that the blur kernel is known and does not have
to be estimated from the observation, so the more specific term for the considered
task would be non-blind deconvolution.

The assumption of spatially invariant blur across the whole image fits best for lateral
movements of the camera during exposure, most commonly due to shaking. Although
many blurry natural images also contain some rotational component [29], illustrated
exaggeratedly in the fifth image in Figure 2.3, models based on the former assumption
can still produce good results in practice.

In conjunction with some noise, which should not be neglected when looking at a
blurred image, for each pixel yi of the observed image y it is

yi =

∑
j

Kijxj

+ r (2.6)

with a blur matrix K constructed from the given blur kernel k such that

K · x = k ∗ x

and pixel-independent Gaussian noise r ∼ N (0, σ2). It is easy to see that the simple
Gaussian noise assumption from Equation (2.4) is obtained in the special case where
K = I, that is, when there is no blur in effect. Note however that in general, pixels
on the border of y will contain information from locations outside the observation
“window”. This means that the ground truth xgt is actually larger than the obser-
vation y, and the blur matrix K is not a square matrix. For the deblurring task, it
means that the restored image also needs to be larger than the observation to be a
full estimate of the ground truth.

When combining the pixel-wise terms from Equation (2.6) as it is done in the de-
noising case above, the result is the likelihood for observation y, given an image x,

20 2 Background and Theory

in the form of a multivariate Gaussian distribution:

p(y | x) =
∏
i

N

yi;∑
j

Kijxj , σ
2


= N (y; Kx, σ2I) (2.7)

It should be mentioned that in the absence of noise and under certain boundary
conditions, convolution with a blur kernel can directly be inverted and the original
image fully recovered with the help of the convolution theorem [8]. Unfortunately,
this solution produces very poor results even in the presence of weak noise, which
can generally be assumed to affect all natural images. Different and more robust
approaches must therefore to be employed to find a good estimate of the original
image in real-world applications.

2.2.4 Finding the Restored Image

The noise and blur models introduced in the previous sections serve to describe the
relation between a corrupted observation y and the underlying ground truth x. But
in order to find a good estimate x̂ for the ground truth when only the observation is
known, which is the fundamental task that needs to be solved in image restoration,
knowledge of p(y | x) is not sufficient.

When the effects of blur and noise are applied, many different images might lead to
the same observation, and inverting the process without additional information is an
ill-posed problem. In the denoising case, for example, p(y | y) > p(y | x) for any
x 6= y under the Gaussian assumptions stated above. Without further knowledge
about the nature of x, the most likely candidate for the ground truth is in fact the
observation itself.

For solving the inverse problem of restoration, the real interest lies in the posterior
distribution p(x | y), which, following Bayes’ rule [5, § 1.2.3], can be expressed as

p(x | y) =
p(y | x) · p(x)

p(y)
∝ p(y | x) · p(x) , (2.8)

where p(y) is constant in this setting because the observation y is given as input.

This means that in addition to the likelihood p(y | x) of y being a corrupted version
of x, it is necessary to model the prior distribution p(x), or prior for short, which
can be interpreted as the probability of x being a plausible natural image regardless
of any observation y. In order to maximize Equation (2.8), the restored image x̂
therefore has to strike a balance between maximizing prior and likelihood. Resolving
the ambiguity by constraining x̂ in such a way is called regularization, and it requires
the application of prior knowledge about what should be considered plausible natural
images. A common way to encode this knowledge is covered in the following section.

2.3 Graphical Models

Graphical models, especially the undirected variant first introduced as a model for
problems in statistical mechanics, have been studied and applied as image priors in

2.3 Graphical Models 21

⇐⇒

195.0 162.0 120.0 229.0

240.0 155.0 34.0 104.0

226.0 210.0 104.0 80.0

Figure 2.4: Example of the relation between the pixel intensities in an image and the
configuration of the random variables situated on the nodes of a graphical model. For
conventional 8-bit images, 0.0 corresponds to a black pixel and 255.0 to a white one.

computer vision for a long time [27, 21]. A graphical model describes the conditional
interactions within a set of random variables that are arranged as nodes of a graph
(V,E). In the image restoration context, each node in V represents one pixel xi of
an image x, and the edges between them determine their conditional dependencies.

Each concrete image x, by setting the random variables at each node to specific pixel
values, describes a unique configuration of the model, as illustrated in Figure 2.4. The
model on the other hand assigns a probability p(x) to each configuration according
to its definition and depending on a set of parameters.

2.3.1 Markov Random Fields

One family of undirected graphical models that has been particularly popular for
computer vision tasks are Markov random fields [5, § 8.3]. They owe their name to
the so-called Markov property that must be satisfied by all random variables, that
is, all nodes in the model. This property is a conditional independence property and
can be formulated as follows:

For any two subsets of nodes A,B ⊂ V and a separating subset of nodes C ⊂ V such
that every path connecting a node from A to a node from B must pass through a
node from C, it holds that

p(A | C) · p(B | C) = p(A,B | C) ,

that is, A and B are conditionally independent given C. This is sometimes written
in the short form A ⊥⊥ B | C [5].

Perhaps a better way to think of it is in terms of the Markov blanket of a node xi,
which in Markov random fields is defined as the set of nodes directly connected to
xi via an edge in the graph:

M(xi) = {xj ∈ x | (xi, xj) ∈ E} (2.9)

These nodes are also called the neighbours of xi. The Markov property from above
holds if xi is conditionally independent of all other nodes in the graph given its
Markov blanket, that is,

p(xi | {x} \ {xi}) = p(xi | M(xi)) . (2.10)

22 2 Background and Theory

(a) Each node is connected to its
4 nearest neighbours, yielding max-
imal cliques of size 2.

(b) Each node is connected to its
8 nearest neighbours, yielding max-
imal cliques of size 2× 2.

Figure 2.5: Difference between a pairwise Markov random field (a) and a higher order
model (b). One maximal clique is highlighted in each. Connecting each node to its 24
nearest neighbours would yield a higher order model with maximal cliques of size 3×3,
and so forth.

As might be familiar from graph theory, a clique is any subset of nodes of a graph
that is fully connected, or simply put, where there is an edge connecting each pair
of nodes in the set. A maximal clique is one that is not contained in a larger clique.
The vector of all pixels belonging to a clique c in the graph representation of x may
be denoted by x(c) ∈ R|c|, and the set of all maximal cliques in the graph (V,E) is
called C.

According to the Hammersley-Clifford theorem [23], the joint probability of all vari-
ables in a Markov random field can be expressed as the product of potential functions
ϕc over the cliques c ∈ C,

p(x) =
1

Z

∏
c∈C

ϕc(x(c)) , (2.11)

with the normalization constant

Z =

∫ ∏
c∈C

ϕc(x(c)) dx , (2.12)

which is called the partition function, ensuring that p(x) is a valid probability dis-
tribution. This constant Z is defined as an integral over the range of all possible
images x, and as such cannot be evaluated in any reasonable amount of time even
for discrete-valued images. Since the images handled here are continuous-valued, the
partition function is generally intractable. There are different ways to deal with this
problem, one of which will be presented later on in this chapter.

The most common, and most basic, form of a Markov random field only connects pix-
els which are directly horizontally or vertically adjacent, as illustrated in Figure 2.5a.
This means that maximal cliques consist of only two nodes, leading to so-called pair-
wise potentials. As a result, the random field can only model the statistics of pairs of
neighbouring pixels, which are assumed to be the same across all parts of the image,
allowing the use of the same potential function ϕ for each clique.

It is also generally assumed that adjacent pixels are more likely to have similar than
contrasting values, and ϕ should reflect that by awarding a better “score” to cliques

2.3 Graphical Models 23

c d e

a b

f g

195.0 162.0 120.0

240.0 155.0 34.0

a = exp
(
−0.5 · (195.0− 162.0)2

)
≈ 3.36 · 10−237

b = exp
(
−0.5 · (162.0− 120.0)2

)
≈ 8.96 · 10−384

c = exp
(
−0.5 · (195.0− 240.0)2

)
≈ 1.89 · 10−440

d = exp
(
−0.5 · (162.0− 155.0)2

)
≈ 2.29 · 10−11

e = exp
(
−0.5 · (120.0− 34.0)2

)
≈ 9.53 · 10−1607

f = exp
(
−0.5 · (240.0− 155.0)2

)
≈ 1.29 · 10−1569

g = exp
(
−0.5 · (155.0− 34.0)2

)
≈ 5.59 · 10−3180

Figure 2.6: Example showing all clique potentials defined by the pairwise Markov
random field model for a 2 × 3 image. The resulting numbers are very small and can
not be properly represented by conventional floating point data types. Taking the
product of all clique potentials in the image, as defined in Equation (2.11), exacerbates
the problem, yielding essentially zero even for this minimal example.

with smaller pixel difference. This leads to the common form of the potential function
as an exponential term

ϕ(x(c)) = exp
(
−ρ(f>x(c))

)
, (2.13)

where f> = [−1, 1] is the derivative filter and ρ an even penalty function, for example
the quadratic function ρ(u) = 1

2u
2, penalizing inputs of large absolute value.

Together with Equation (2.11), the pairwise Markov random field thus defines a
probability distribution

p(x) =
1

Z

∏
c∈C

exp
(
−ρ(f>x(c))

)
=

1

Z

∏
c∈C

exp

(
−1

2

(
[−1, 1] · x(c)

)2
)

(2.14)

with the normalization constant becoming

Z =

∫ ∏
c∈C

exp

(
−1

2

(
[−1, 1] · x(c)

)2
)
dx .

For an image to have a high probability under such a random field model, no single
clique may have a very low score, as each potential ϕ(x(c)) has a multiplicative
influence on the result of Equation (2.11). This way, the local assumptions modelled
by the potential function are enforced globally across the whole image.

Figure 2.6 shows an example of the clique potentials arising from this model for a
small image. It also illustrates a central computational problem with the exponential
function used in Equation (2.13), which is that it produces extremely small numbers
when applied without any modification. A common way to address this problem is
presented later on in this chapter.

Overall, the basic Markov random field architecture described so far proved to be
a reliable and useful image model for many applications, but its capacity to reflect
richer image statistics is obviously limited by its restriction to pairwise neighbour-
hood relations. To overcome this restriction, higher order Markov random fields

24 2 Background and Theory

have been proposed which introduce additional edges in the graph, increasing the
size of the Markov blankets and the maximal cliques. An illustration is given in
Figure 2.5b. These additional connections allow relationships between multiple vari-
ables to be modelled by the potential functions, greatly increasing the expressiveness
of the random field model.

2.3.2 Fields of Experts

A higher order random field with particular success in image restoration was intro-
duced by Roth and Black [34, 35] and is called the Field of Experts model. It differs
from the model defined in Equation (2.14) in two important aspects:

Firstly, since the cliques are no longer just pairs of nodes, but usually square image
patches of size 3× 3 up to 7× 7, the simple derivative filter f has to be replaced by
a linear filter of appropriate size. While f will still be written as a vector, it should
be understood as the vector representation of a two-dimensional filter matching the
dimensions of the maximal cliques. Furthermore, filters are constrained to have mean
zero, like the derivative filter. This makes the model align well with the statistics of
natural images [25].

Secondly, since many filters exist which could reasonably take the place of the deriva-
tive filter used before, and they all capture different properties of the image, a set of
N filters fi is used instead of just one. In order to model their respective responses,
an equal number of different penalty functions ρi is needed. Following the original
Field of Experts paper, the number N is usually set to the number of nodes in a
maximal clique less one.

These pairs of a filter fi and the corresponding penalty function ρi are then called
experts, and the joint probability of the resulting model is defined as

p(x) =
1

Z

∏
c∈C

N∏
i=1

exp
(
−ρi(f>i x(c))

)
(2.15)

with the normalization constant

Z =

∫ ∏
c∈C

N∏
i=1

exp
(
−ρi(f>i x(c))

)
dx (2.16)

making it a proper distribution. Note that Z remains intractable.

It is easy to see that the pairwise model from Equation (2.14) is kept as a special case
when N = 1, f = [−1, 1]>, and nodes are only connected to their direct horizontal
and vertical neighbours.

It is also clear that in contrast to the pairwise Markov random field, where the single
filter and penalty function could be defined explicitly, higher order models have many
more parameters that need to be adjusted. How this can be done with the help of
machine learning and training data will be a central theme throughout Chapter 3.

2.3 Graphical Models 25

Figure 2.7: A natural image from the Berkeley Segmentation Data Set [1] (left), and
the same image modified so as to achieve a higher probability under a Gaussian random
field model (right). Object contours and textured regions are smoothed very strongly
to conform with the quadratic penalty function, losing some of the most important
features of the image.

2.3.3 Robust Potentials

In the previous sections, the penalty functions ρ were introduced under no further
assumptions than being even and returning larger values for arguments with larger
absolute value. The only example mentioned so far was the quadratic penalty func-
tion ρ(u) = 1

2u
2, which is a popular choice in many cases as it makes the potential

functions ϕi(x(c)) = exp
(
−ρi(f>i x(c))

)
take on a Gaussian form, which in turn leads

to p(x) resembling a multivariate Gaussian distribution

p(x) ∝
∏
c∈C

N∏
i=1

exp
(
−ρi(f>i x(c))

)
∝
∏
c∈C

N∏
i=1

N
(
f>i x(c); 0, 1

)
∝ N (x; 0,Σx) (2.17)

where the sparse precision matrix Ωx = Σ−1
x can be easily computed [36].

As Section 2.3.4 will demonstrate, this is of great advantage during inference, but
unfortunately, quadratic penalty functions also come with a great disadvantage.

While they enforce smoothness by assigning a very low probability to strong intensity
jumps between neighbouring pixels, jumps like these regularly occur in almost all
natural images, for example at object contours and in strongly textured regions.
Penalizing them too heavily suppresses these image features in any output regularized
with the image model in favour of smooth gradients as can be seen in Figure 2.7,
which is obviously not the desired effect.

The filter responses of a set of zero-mean filters fi, as used in the Field of Experts
model, follow a distribution that is very similar to that of pairwise pixel differences.
One such distribution over a set of 68 natural images is shown in Figure 2.8, along
with the potentials defined by four common penalty functions. The quadratic, or
Gaussian potential can be seen to drastically underestimate the prevalence of stronger

26 2 Background and Theory

filter responses, as does the Laplacian potential based on the `1-norm to a smaller
degree.

This observation gives rise to the application of so-called robust penalty functions [6],
a number of which are illustrated in Figure 2.9. In the first group, Figure 2.9a, the
non-robust quadratic function is plotted against the linear Laplacian loss function
and the quasi-linear Huber function. While the latter two are widely used as robust
functions, they still put a large tax on stronger filter responses.

The second group, shown in Figure 2.9b, includes the logarithm-based Lorentzian
penalty function and the root-based hyper-Laplacian [28] penalty function. Both of
these still assign a larger penalty to inputs of larger absolute value, but are much
more forgiving, or robust, towards outliers and resemble the actual distribution of
the features in question much better (cf. Figure 2.8). The Lorentzian function in
particular is smooth and easily differentiable everywhere, which makes it attractive
for gradient-based optimization methods.

The functions in the last group, shown in Figure 2.9c, are robust by virtue of having
an upper bound. This guarantees that no input can receive an excessively large
penalty. Beyond a certain threshold, all filter responses are in fact assigned an
equal, or nearly equal probabilty by potentials based on these penalty functions.
Unfortunately, the two piecewise-defined functions can lead to difficulties during
gradient-based optimization, as outside the central region their derivatives are zero
and thus of no help when searching for an optimum.

However, the models considered in this thesis do not use any of the proposed func-
tions. Instead, they exploit practically arbitrary penalty functions which will be
introduced in the next chapter. Because the parameters defining their exact shape
are learned, they nevertheless end up being robust as they adapt to model the statis-
tics of the set of training images. Not being tied to any particular family of penalty
functions in this way is one of the strong points of the approaches presented here.

2.3.4 Maximum A-Posteriori Inference

Having specified models for the prior probability p(x) and the likelihood p(y | x) in
Equations (2.7) and (2.15) respectively, one can now start looking for the image x̂
that maximizes the posterior probability from Equation (2.8),

x̂ = arg max
x

p(x | y) = arg max
x

(
p(y | x) · p(x)

)
.

This x̂ is called the maximum a-posteriori estimate.

Under the assumption that the penalty functions are quadratic, and thus the ran-
dom field is Gaussian as in Equation (2.17), the posterior in combination with the
Gaussian likelihood from Equation (2.7) takes on the form

p(x | y) ∝ N (y; Kx, σ2I) · N (x; 0,Ω−1
x) ,

which can be transformed using the information parameterization into

p(x | y) ∝ NI

(
x;

K>y
σ2

,
K>K
σ2

)
· NI (x; 0,Ωx) , (2.18)

200 100 0 100 200
10-6

10-5

10-4

10-3

10-2

10-1

100

200 100 0 100 200
10-6

10-5

10-4

10-3

10-2

10-1

100

Quadratic (`2-norm)

Laplacian (`1-norm)

Hyper-Laplacian
Lorentzian

Figure 2.8: Distribution of filter responses for the DCT filter bank on a set of 68
natural images (left) compared to four common potential functions (right). The robust
hyper-Laplacian and Lorentzian potentials are clearly better suited for modelling a
heavy-tailed distribution such as this.

Quadratic (`2-norm)

Laplacian (`1-norm)

Huber's minimax

(a) Quadratic and linear penalty functions,
in order of legend:

ρ(u) = α · u2

ρ(u) = α · |u|

ρ(u) =

{
u2

2ε if |u| < ε

|u| − ε
2 otherwise

Lorentzian
Hyper-Laplacian

(b) Logarithm and root based penalty
functions, in order of legend:

ρ(u) = α · ln
(
1 + (βu)2

)
ρ(u) = α · |u|γ with 0 < γ < 1

Truncated quadratic
Tukey's Biweight
Leclerc
Geman and McClure
Geman and Reynolds

(c) Penalty functions with upper bound, in
order of legend:

ρ(u) = α ·

{
u2 if |u| < ε

ε2 otherwise

ρ(u) =

{
u2

σ2 − u4

σ4 + u6

3σ6 if |u| < σ
1
3 otherwise

ρ(u) = 1− exp

(
−u

2

σ2

)
ρ(u) =

u2

1 + u2

ρ(u) = 1− 1

1 + |u|

Figure 2.9: Different families of penalty functions used to model image statistics

28 2 Background and Theory

where both Gaussians describe distributions of x.

According to [44], the product of two multivariate Gaussian distributionsNI(x;η1,Ω1)
and NI(x;η2,Ω2) in information parameterization is proportional to a third one
NI(x;η1 + η2,Ω1 + Ω2). Applying this to Equation (2.18) gives

p(x | y) ∝ NI

(
x;

K>y
σ2

,
K>K
σ2

+ Ωx

)
, (2.19)

which can be converted back to the moment parameterization as

p(x | y) ∝ N (x;Ω−1
x|yηx|y,Ω

−1
x|y) (2.20)

with

Ω−1
x|y =

(
K>K
σ2

+ Ωx

)−1

,

ηx|y =
K>y
σ2

.

Like for any other Gaussian, the maximizer x̂ of this distribution is its meanΩ−1
x|yηx|y,

which can be found directly by solving the linear equation system

Ωx|y · x̂ = ηx|y

for the vector x̂.

However, solving the analoguous inference problem exactly for a model with robust
instead of quadratic penalty functions is not as straightforward. For this reason, a
common strategy is to approximate the maximum a-posteriori solution with the help
of iterative methods. But before looking for an estimate, it is useful to reformulate
the problem in a slightly different manner.

2.3.5 Energy Minimization

Because under a Gaussian noise assumption and with a Field of Experts prior, both
the likelihood and the prior part in Equation (2.8) are exponential terms, the poste-
rior probability is often rewritten as

p(x | y) ∝ p(y | x) · p(x)

∝ N (y; Kx, σ2I) · 1

Z

∏
c∈C

N∏
i=1

exp
(
−ρi(f>i x(c))

)
∝ exp

(
−E(x | y)

)
(2.21)

with an energy term of the form

E(x | y) ∝ 1

2σ2
‖Kx− y‖2 +

∑
c∈C

N∑
i=1

ρi(f>i x(c)) . (2.22)

2.3 Graphical Models 29

c d e

a b

f g

195.0 162.0 120.0

240.0 155.0 34.0

a = 0.5 · (195.0− 162.0)2 = 544.5

b = 0.5 · (162.0− 120.0)2 = 882.0

c = 0.5 · (195.0− 240.0)2 = 1012.5

d = 0.5 · (162.0− 155.0)2 = 24.5

e = 0.5 · (120.0− 34.0)2 = 3698.0

f = 0.5 · (240.0− 155.0)2 = 3612.5

g = 0.5 · (155.0− 34.0)2 = 7320.5

Figure 2.10: Continuation of the example from Figure 2.6, this time showing the
energy terms for all cliques of the pairwise Markov random field model for a 2 × 3
image. When the energy formulation is used, all resulting numbers can be represented
by conventional data types. Taking the sum instead of the product over all cliques in
an image further ensures that the numbers remain within a manageable range.

It is common to introduce an additional parameter λ, which can be called the regu-
larization weight, determining the relative importance of likelihood and prior term.
This parameter is multiplied to one of the terms, in this case the likelihood, and can
be taken to subsume the constant factor 1/σ2 in order to simplify the equation:

E(x | y) ∝ λ

2
‖Kx− y‖2 +

∑
c∈C

N∑
i=1

ρi(f>i x(c)) (2.23)

This so-called Gibbs energy of the random field configuration specified by x, which
also originates from statistical physics, circumvents the problem of extremely small
numbers which comes with exponential potential functions, as Figure 2.10 demon-
strates. Nevertheless it retains its extremum in the same location, that is,

x̂ = arg max
x

p(x | y) = arg min
x

E(x | y) . (2.24)

Since the energy function of a non-Gaussian model is generally not convex, there
is no closed-form solution to find its minimum, and iterative techniques need to
be applied instead to find a good estimate. But because only the minimum is of
interest here, and no other details of the underlying distributions are needed, constant
multiplicative terms like the prefactor of the Gaussian distribution p(y | x) and the
problematic normalization constant Z in p(x) can safely be dropped in the energy
formulation, making all further computations much easier.

Minimization of the energy function is commonly undertaken with iterative gradient-
based methods, a popular one of which will be examined in Section 3.3.

3 Learned Inference

With the previous chapter having introduced a range of important general terminol-
ogy and concepts, it is now time to have a look at the specific framework employed
in this work to train an image restoration system, as well as the two approaches to
be compared within that framework.

Recall from Section 2.1 that this thesis is following the numerator layout convention
for all derivatives involving matrices and vectors.

3.1 Bi-level Optimization

Random field models have commonly been used in a generative setting, in which
a prior like the Field of Experts considered here is tuned to model the statistics of
natural images as well as possible, usually by maximizing the likelihood of a set of
training images under the model. This results in a “general-purpose” prior that can
be used in conjunction with many different applications. It also allows for drawing
samples from the distribution of modelled images. A great disadvantage however
is that the partition function Z from Equation (2.16) is usually intractable, which
means that complicated and time-consuming approximation techniques are necessary
for inference and training.

In [39], Samuel and Tappen proposed to instead train the model discriminatively
for a specific application, such that the minimum energy solution for input images,
obtained with some chosen inference method, is as close as possible to the desired
ground truth. The use of ground truth data during training makes this a supervised
learning strategy. There are two main advantages to the discriminative approach:
by focusing on the energy term from Equation (2.23) instead of the full model as
defined in Equation (2.15), the problematic partition function Z is eliminated from
the procedure. Furthermore, optimizing the model to achieve good results when
paired with a specific inference method has been shown to yield better performance
than using a general-purpose model coupled with the same inference method [39, 2,
14].

Following this approach, the central problem of finding the optimal model parameters
Θ∗ can be formulated as a so-called bi-level optimization task

Θ∗ = arg min
Θ

|S|∑
k=1

`(x̂k,xk
gt) , (3.1)

where x̂k is the maximum a-posteriori solution

x̂k = arg min
x

E(x | yk; Θ) . (3.2)

32 3 Learned Inference

Tr
ai

ni
ng

se
t

Inference

Loss

Ground truths

Observations Outputs

parameter
gradients

Figure 3.1: Illustration of the bi-level optimization framework. The model takes ob-
servations yk from the training set S to produce outputs x̂k, which are compared to the
ground truths xk by the loss function. The gradient of the loss function is then used to
adjust the model parameters Θ in an iterative fashion and obtain better outputs.

S is a training data set consisting of pairs (yk,xk
gt) of observation and ground truth

images, and `(x̂,xgt) a loss function determining how well a model’s prediction x̂
for an observation y resembles the corresponding ground truth xgt. An illustration
of the resulting framework is provided in Figure 3.1.

Equation (3.1), minimizing the loss over the training set, is called the upper level of
the bi-level framework and Equation (3.2), minimizing the energy term for a given
observation, is called the lower level. Even though the lower level task is solved
approximately via maximum a-posteriori estimation, which is likely to only arrive
at a local optimum, the results reported in the above cited publications show that
discriminative training still leads to very effective models.

In order to optimize the parameters in the upper level, Chen et al. [14] proposed
applying the L-BFGS algorithm [31], which outperformed the original, less efficient
optimization method used in [39]. L-BFGS is a sophisticated quasi-Newton method
[9] which takes the first derivatives of the target function with respect to all para-
meters in order to construct an approximation of the inverse Hessian matrix, which
in turn is used iteratively to find good search directions in the parameter space.

Implementations of L-BFGS are available in most scientific computing environments,
so the inner workings of the method need not be discussed in detail. What need to
be specified, however, are the first derivatives of the target function ` with respect
to each element of Θ.

3.1.1 Loss Function

The loss function ` plays a critical role in this bi-level framework, acting as both an
arbiter for the results of the lower level optimization and the target function to be
minimized in the upper level.

One widely used measure of the difference between two vectors is their Euclidean
norm or l2-norm, which gives rise to the mean squared error (MSE) metric when

3.1 Bi-level Optimization 33

Figure 3.2: A natural image taken from the Berkeley Segmentation Data Set [1] once
clean (left) and once with added Gaussian noise (right, σ2 = 25.0). The mean squared
error between the two is 603.91, the peak signal-to-noise ratio 20.32.

applied to two m× n images x̂ and xgt:

MSE(x̂,xgt) =
1

mn
‖x̂− xgt‖2

=
1

mn

mn∑
i=1

(x̂i − xgt,i)
2 . (3.3)

Building on that, arguably the most popular difference measure in image restoration
literature is the peak signal-to-noise ratio (PSNR) [40, 13]. It is defined as

PSNR(x̂,xgt) = 10 · log10

(
R2

MSE

)
= 10 · log10(R2)− 10 · log10(MSE)

= 20 · log10(R)− 10 · log10(MSE) , (3.4)

where R is the dynamic range of the images, that is, the difference between the
highest and lowest possible pixel value, which is usually 255.

With the MSE metric, lower values are obviously better when striving for similarity,
as the minimal value of 0 marks identical images. For PSNR however, 0 is the worst
case and the more similar the two images are, the higher their PSNR value goes, up
to infinity for identical images. For this reason, PSNR is usually negated when used
as a loss function to preserve the principle that the loss should be minimized:

`(x̂,xgt) = −PSNR(x̂,xgt) (3.5)

An example of two images and their resulting MSE and PSNR values can be seen in
Figure 3.2.

Another interesting measure that has been proposed for image comparison is the
structural similarity index (SSIM) [43]. While it is designed to better reflect human
perception of structural differences in natural images, it is not as widely used as the
PSNR, perhaps owing to its more complicated definition. It will not be considered
it in this thesis.

34 3 Learned Inference

As mentioned above, the optimization procedure needs the derivative of Equation (3.5)
with respect to the model parameters Θ, which per chain rule is

∂`(x̂,xgt)

∂Θ
=
∂`(x̂,xgt)

∂x̂
· ∂x̂
∂Θ

. (3.6)

The inner derivative will be explored once the inference approaches used to obtain
x̂ have been covered. For now, it will suffice to note that the outer derivative is

∂`(x̂,xgt)

∂x̂
=

∂

∂x̂

(
−10 · log10

(
R2

MSE

))
=

∂

∂x̂

(
− 20

log 10
· ln
(

R√
MSE

))
= − 20

ln 10
· ∂
∂x̂

ln

(
R ·
√
mn

‖x̂− xgt‖

)
=

20

ln 10
· ∂
∂x̂

ln

(
‖x̂− xgt‖
R ·
√
mn

)
=

20

ln 10
·
(
∂

∂x̂
ln ‖x̂− xgt‖ −

∂

∂x̂
(R ·
√
mn)

)
=

20

ln 10
· 1

‖x̂− xgt‖
· ∂
∂x̂
‖x̂− xgt‖

=
20

ln 10
· 1

‖x̂− xgt‖
· (x̂− xgt)

>

‖x̂− xgt‖

=
20

ln 10
· (x̂− xgt)

>

‖x̂− xgt‖2
. (3.7)

3.1.2 Training Data

For the training set S, corresponding pairs (yk,xk
gt) of corrupted observations and

uncorrupted ground truths are needed. The standard way to obtain these is to take
images xk

gt from a data set which are assumed to be uncorrupted, and apply noise
and blur according to the models from Equations (2.4) and (2.6) to get yk.

It is important to have a large enough set of training images, so that the learned
model does not become biased towards features that were overrepresented in the
training data by coincidence, or disregards features that were underrepresented. This
phenomenon is called overfitting and gets more problematic with more expressive and
flexible models, as these are especially prone to adapt to the peculiarities of their
training data. To ensure that the learned model generalizes well to unseen data,
the best solution is to have a training set that accurately represents the distribution
of features in real world data. As a rule of thumb, having more non-redundant
data generally helps in this regard, although Chen and Pock find in [13] that their
denoising results do not significantly improve when going beyond 200 training image
pairs.

Another matter is that of quantization. When noise and blur are applied exactly
as stated above, they will naturally lead to real-valued pixel intensities in the cor-
rupted image. The synthetically corrupted images thus differ from noisy and blurry
images encountered in the real world, because the latter are usually constrained to

3.1 Bi-level Optimization 35

Figure 3.3: The 8 filters of the DCT filter base for filter size 3× 3

integer values by the imaging process. This difference can be eliminated by applying
quantization to the training images as well, that is, by rounding the pixel values in
each image yk to the nearest integer and truncating any values that fall outside the
dynamic range [0, 255]:

quant(yk)i = min

(
255,max

(
0,

⌊
yki +

1

2

⌋))
(3.8)

However, such a step is rarely applied to synthetically corrupted training and test
data in existing literature, so to facilitate a direct comparison with other results it
is better to use the real-valued images as they are.

3.1.3 Model Parameters

The parameters Θ have appeared in Equations (3.1) and (3.2), but it has not yet
been addressed what they actually encompass and how they define their respective
parts of the model. The following sections show how the linear filters fi and the
nonlinear functions ρi that make up the Field of Experts model can be specified in
terms of weights vectors, and in the case of the functions, what their gradients look
like.

Parametrization of Linear Filters

It has been found in [25] that the sum of all elements of a meaningful image filter
should be zero. Intuitively, this ensures that applying the filter to an image does not
modify the mean intensity of the image, which is usually not a desired effect.

In order to still freely learn filter parameters, a practice applied in other works is to
define a basis B of zero-sum filters that is then multiplied with a vector of weights f̃i
to obtain a new zero-sum filter fi = B · f̃i [14, 40, 13]. The elements of these weights
vectors f̃i are the parameters that can then be set to arbitrary values without losing
the zero-sum property.

For the basis B, it seems best to choose the same modified 2D DCT filter basis
used in the works cited above. To construct this basis for filters with k elements, the
second to kth columns of the identity matrix Ik×k are taken as individual vectors and
the inverse discrete cosine transform is applied to each of them. This yields k − 1
orthogonal, zero-sum basis vectors of length k, so each weights vector f̃i must have
k − 1 elements. The resulting filters for k = 9, which are used in models with 3× 3
cliques, can be seen in Figure 3.3.

Since the filters fi do not appear directly in the inference procedures described later
on, the discussion of their gradients will be postponed until the concrete inference
formulations have been stated.

36 3 Learned Inference

400 300 200 100 0 100 200 300 400

1.0

0.5

0.0

0.5

1.0

(a) f(x) = sin (x/100) as the sum of 63
Gaussians on the interval [−310, 310]

15 10 5 0 5 10 15

6

4

2

0

2

4

6

(b) f(x) = signum (x) as the sum of 121
Gaussians on the interval [−15, 15]

Figure 3.4: Radial basis function mixtures approximating two functions. The coloured
curves are the Gaussian basis functions and the black curve is their sum. Although the
signum function can not be approximated perfectly, the result is smooth and differen-
tiable.

Parametrization of Nonlinear Functions

In order to learn practically arbitrary nonlinear functions, a representation that
depends on a manageable number of parameters is needed, which should additionally
be easily differentiable. One solution for this problem is given in the form of Gaussian
radial basis function mixtures [33, 18, 24], in short RBF mixtures, which compose
the function value as a sum of K Gaussian distributions,

ρ(x) =
K∑
i=1

ωi · exp

(
−1

2
· β · ‖x− µi‖2

)
, (3.9)

with weights and means vectors ω,µ ∈ RK and a shared precision parameter β
governing the range of influence of each Gaussian in the mixture. An example of two
functions represented by such radial basis function mixtures is given in Figure 3.4.

It is easy to see that the derivative of Equation (3.9) with respect to weight ωi is

∂ρ(x)

∂ωi
= exp

(
−1

2
· β · ‖x− µi‖2

)
, (3.10)

while the derivative with respect to the input x is

∂ρ(x)

∂x
=

K∑
i=1

ωi · exp

(
−1

2
· β · ‖x− µi‖2

)
·
(
−1

2
· β · 2 · (x− µi)

)

= −β ·
K∑
i=1

ωi · exp

(
−1

2
· β · ‖x− µi‖2

)
· (x− µi)

=: ρ′(x) . (3.11)

Since these nonlinear functions will be applied separately to each element of some

3.1 Bi-level Optimization 37

vector in the final formulation of the inference procedures, it is useful to define

ρ(x) :=


ρ(x1)

...

ρ(xM)

 =


K∑
i=1

ωi · exp (−1
2 · β · ‖x1 − µi‖2)

...
K∑
i=1

ωi · exp (−1
2 · β · ‖xM − µi‖

2)

 (3.12)

and

ρ′(x) :=


ρ′(x1)

...

ρ′(xM)

 =


−β ·

K∑
i=1

ωi · exp (−1
2 · β · ‖x1 − µi‖2) · (x1 − µi)

...

−β ·
K∑
i=1

ωi · exp (−1
2 · β · ‖xM − µi‖

2) · (xM − µi)


(3.13)

for vector-valued arguments x ∈ RM .

Using Equation (3.10) and following the numerator layout convention as described
in Section 2.1, for vector-valued arguments x ∈ RM it is

∂ρ(x)

∂ω
= G ∈ RM×K

with Gij = exp

(
−1

2
· β · ‖xi − µj‖2

)
(3.14)

and similarly from Equation (3.11) it follows

∂ρ(x)

∂x
= D ∈ RM×M

with Dij =
∂ρ(xi)

∂xj

=

−β ·
K∑
k=1

ωk · exp (−1
2 · β · ‖xi − µk‖

2) · (xi − µk), if i = j

0, otherwise,

which together with the definition from Equation (3.13) yields

∂ρ(x)

∂x
= diag

{
ρ′(x)

}
. (3.15)

The result is a diagonal matrix because of the way ρ is applied independently to each
element of x, making the off-diagonal partial derivatives 0.

Constraining Functions to Positive Values

At a later point it will be necessary to approximate functions under the constraint
that their values must not be negative. This can relatively easily be achieved with
Gaussian radial basis functions by replacing the weights with an expression that is

38 3 Learned Inference

10 5 0 5 10
5

0

5

10

15

x

ln(1 + exp(x))

(a) ln and exp

10 5 0 5 10
5

0

5

10

15

x

x2

(b) Naive squaring

Figure 3.5: Two ways of constraining the value of a parameter to be positive while
staying differentiable. The one on the left is a much better approximation of the original
parameter for positive values, but its derivative becomes practically zero for negative
values, which can lead to problems during gradient-based optimization.

always positive, since the unweighted Gaussian components already adhere to the
constraint.

One way this can be done is to substitute the weight ωi in Equation (3.9) by
ln
(
1 + exp (ωi)

)
. This term is practically equal to ωi for large values of ωi, but

converges to 0 as ωi goes to −∞ (see Figure 3.5a). The constrained radial basis
function mixture then looks like

ρ(x) =
K∑
i=1

ln
(
1 + exp (ωi)

)
· exp

(
−1

2
· β · ‖x− µi‖2

)
, (3.16)

while

∂ρ(x)

∂ωi
= − exp (ωi)

1 + exp (ωi)
· exp

(
−1

2
· β · ‖x− µi‖2

)
(3.17)

and

∂ρ(x)

∂x
= −β ·

K∑
i=1

ln
(
1 + exp (ωi)

)
· exp

(
−1

2
· β · ‖x− µi‖2

)
· (x− µi) . (3.18)

Unfortunately, this approach turns out to have adverse effects on training. The factor
exp (ωi)/

(
1 + exp (ωi)

)
in the weights gradient converges to 0 as the weight ωi goes

to −∞, making the gradient disappear. As a result, once a weight has reached a low
enough value, it is stuck there since movement along the gradient can only happen
in such small steps as to be practically negligible.

A different option is to just substitute ωi with ω2
i , which is also guaranteed to be

positive for ωi 6= 0 (see Figure 3.5b). The constrained function is then simply

ρ(x) =
K∑
i=1

ω2
i · exp

(
−1

2
· β · ‖x− µi‖2

)
(3.19)

3.2 Truncated Optimization 39

IN

Step
conver-
ged?

OUT

no

next iteration

yes =⇒

IN

Step 1 Step 2 . . . Step T

OUT

Figure 3.6: Iterative inference, repeated until convergence (left) and truncated infer-
ence, repeated for a fixed number of steps T (right). The process of converting the
former to the latter is sometimes called unrolling, as the loop is broken up into a linear
succession of steps.

with derivatives

∂ρ(x)

∂ωi
= 2 · ωi · exp

(
−1

2
· β · ‖x− µi‖2

)
(3.20)

and

∂ρ(x)

∂x
= −β ·

K∑
i=1

ω2
i · exp

(
−1

2
· β · ‖x− µi‖2

)
· (x− µi) . (3.21)

It is apparent that the gradients again break down when ωi is exactly 0. In practice
however, all computations use floating point arithmetic and this case is almost sure
not to happen by accident. The quadratic substitution therefore lead to better
trainable positive-constrained functions in preliminary experiments, even though the
former variant does look more robust on paper.

In both cases, the derivatives for vector-valued arguments can be constructed like
in Equations (3.14) and (3.15) above, but using the modified scalar derivatives as
building blocks.

3.2 Truncated Optimization

Although the bi-level framework introduced in Section 3.1 simplifies training by re-
moving the intractable partition function, it still requires a solution of the maximum
a-posteriori inference problem in the lower level. Unfortunately, the iterative infer-
ence methods that are generally suited for this task may take a great number of steps
until they converge at an optimum, and it is difficult to say in advance how long this
process will take. Because of this, there is also no clear closed-form solution for the
derivative of the output x̂ with respect to the model parameters Θ. In addition, the
reached optimum is still likely to be a local one dependent on initialization, so the
solution can not be expected to be exact in the first place.

Following this train of thought, Barbu proposed a truncated optimization scheme for
the lower level in [2], limiting the iterations of the inference procedure to a small

40 3 Learned Inference

Tr
ai

ni
ng

se
t

Inference

Step 1 Step 2 . . . Step T

Loss

Ground truths

Observations Outputs

parameter gradients

Figure 3.7: The framework from Figure 3.1 with truncated number of inference steps.

number of steps T by unrolling it as illustrated in Figure 3.6. This obviously results
in a less accurate estimate of the energy minimum, but by training the whole model
so as to minimize the total loss over a training set, this estimation error can be
compensated by a “biased” model. While the resulting model performs on par with
non-truncated architectures, its great advantage lies in the much faster computation
time both during inference and learning.

The bi-level optimization task formulated in Equations (3.1) and (3.2) is modified
for this truncated model and can be written as

Θ∗ = arg min
Θ

|S|∑
k=1

`(x̂k,xk
gt) , (3.22)

with x̂k now being the result of the truncated maximum a-posteriori inference

x̂k = x̂k
T (x̂k

T−1(· · · x̂k
1(x̂0; yk,Θ) · · · ; yk,Θ); yk,Θ) . (3.23)

A related concept is that of unfolding a recurrent neural network [7], sometimes also
called unrolling, which goes back all the way to the inventors of the backpropagation
algorithm [37]. In that case, some nodes in the network feed their output back as
input for themselves or predecessors, creating a loop which bears some similarity to an
iterative procedure. By unfolding the loop into a fixed number of conventional nodes,
usual neural network algorithms can be applied in a setting they would otherwise
not support.

An illustration of the truncated bi-level optimization framework is provided in Fig-
ure 3.7. Later works developed Barbu’s approach from [2] further by allowing each
of the limited number of inference steps to have a separate set of model parameters
Θt [40, 13]. The truncated optimization then resembles a cascade or pipeline of spe-
cialized models, where each step refines the output of its predecessor. The speed of
inference is not diminished by this modification, as the same amount of computation
is needed to generate an output. Model capacity however is clearly increased with
the gained flexibility, as is shown by the improved results in several image restoration
applications.

3.2 Truncated Optimization 41

Tr
ai

ni
ng

se
t

Inference

Step 1 Step 2 . . . Step T

Loss

Ground truths

Observations Outputs

chain rule term

chain rule termchain rule termchain rule term

Figure 3.8: Application of the backpropagation algorithm to the truncated model from
Figure 3.7. The forward pass begins at the first step and ends at the loss function, while
the backward pass starts with the calculated loss and propagates its derivatives all the
way back to the first step, making repeated use of the chain rule.

3.2.1 Computing Gradients with Backpropagation

A succession of T steps in this cascade model works such that the output of one step
constitutes the input for the next one, until the final step produces the output of the
overall model. Viewed the other way around, the output of each step depends only
on that step’s parameters and the output of the previous one, except for the first
step which takes as input an initial guess x̂0:

x̂ = x̂T (x̂T−1(· · · x̂1(x̂0; y,Θ1) · · · ; y,ΘT−1); y,ΘT) (3.24)

This chain can also be compared to a simple feed-forward neural network [5, § 5.1].
The standard technique to calculate parameter gradients for the different nodes in
such a network is the backpropagation algorithm [37][5, § 5.3] mentioned above. It
works by calculating the error of the output x̂ produced by a forward pass of the
network, compared to the desired output xgt via a loss function, and then performing
a backward pass to compute the derivatives in each node using the chain rule. During
this backward pass, the output error is propagated back through the network and
parameters can be adjusted depending on how they contributed to this error. An
important prerequisite for this is that the operations performed in each node must
be differentiable.

Applied to the formulation in Equation (3.24), the derivative of the loss with respect
to the parameters Θt of the tth step is

∂`(x̂,xgt)

∂Θt
=
∂`(x̂,xgt)

∂x̂t
· ∂x̂t

∂Θt
, (3.25)

where the chain rule term

ĉ>t :=
∂`(x̂,xgt)

∂x̂t
= ĉ>t+1 ·

∂x̂t+1

∂x̂t
= ĉ>t+2 ·

∂x̂t+2

∂x̂t+1
· ∂x̂t+1

∂x̂t
= . . . (3.26)

can be computed iteratively by starting with the last step, which gets its chain rule
term

ĉ>T =
∂`(x̂,xgt)

∂x̂

42 3 Learned Inference

directly from the derivative of the loss function in Equation (3.6).

Since the update functions x̂t(x̂t−1; y,Θt) of the iterative inference approaches con-
sidered in this thesis are all differentiable with respect to x̂t−1, this yields an efficient
way to obtain the parameter gradients for all steps in one go. As a result, it is pos-
sible to perform end-to-end training, which means that all parts of the system from
input to output can be trained simultaneously.

The interactions between the steps of a truncated inference model when applying
this backpropagation scheme are illustrated in Figure 3.8.

3.2.2 Greedy and Joint Training

As seen above, the backpropagation algorithm can produce derivatives of the loss
function with respect to each parameter in the whole model. These can then be
concatenated into one large gradient vector ∂`(x̂,xgt)/∂Θ, averaged over all image
pairs in the training set, and passed to the L-BFGS solver to update the parameters
all at once, for as many iterations as required or feasible. Training all parameters at
the same time like this is called joint training.

The obvious advantage is that parameters in earlier steps can be adjusted so as to
produce the most useful output for the following steps. On the other hand, the
number of derivatives that have to be computed for each iteration of the L-BFGS
solver can become very large, which may lead to long computation times.

An alternative way to train the model is to start with only one step and optimize
its parameters on their own. Once they have converged, a second step is added
and trained on its own, keeping the parameters of the first step fixed. This can be
continued until the model has the desired number of steps, but only the parameters
of the last step in the chain are optimized at any time. This approach is called
greedy training, since the output of each step is maximized without considering its
interaction with later steps.

Training a model in this way has the advantage of breaking the optimization down
into more manageable chunks. It also means that the model output when stopping
after any individual step will be optimized in this greedy manner, so the trained
model automatically contains trained versions of each “shorter” model. With joint
training, this is not the case, as intermediate steps are optimized to support their
successors and not to produce a good output. Lastly, the model obtained with greedy
training can of course be used as initialization for further joint training, which can
be seen as fine-tuning the interactions of the steps.

Both Schmidt and Roth [40] and Chen and Pock [13] find in their respective ex-
periments that joint training without a greedy initialization produces measurably
worse results than greedy training alone, whereas tuning a greedily trained model
by additional joint training only marginally improves results. For this reason, the
greedy approach is preferred during the experiments conducted for this thesis. The
derivations in the following sections nonetheless cover both approaches. The main
difference in this regard is the need for the input gradients ∂x̂t/∂x̂t−1 when training
jointly.

3.3 Inference via Gradient Descent 43

3.3 Inference via Gradient Descent

After introducing all of these definitions and concepts to properly set the context,
everything is in place to have an in-depth look at the two concrete inference ap-
proaches mentioned in the first chapter, the comparison of which is at the heart of
this work.

First to be examined is the gradient descent approach for minimizing the energy func-
tion defined in Section 2.3.5. Its suitability for the truncated optimization framework
has been shown repeatedly [2, 13], but no results have yet been published for the
deblurring problem.

Although the derivations for this approach can already be found in a similar form
in [13] and partly in [40], they are reproduced here, with adapted notation, as they
play a very crucial role in solving the optimization task.

3.3.1 Motivation

As could be seen in Section 2.3.5, a maximum a-posteriori estimate of the restored
image x̂ can be found by minimizing the energy term from Equation (2.23). Be-
cause there is no closed-form solution for this minimum, the most direct strategy is
searching for it with an iterative gradient-based procedure.

Perhaps the most obvious such procedure, given a previous estimate x̂t−1, is to
move through the search space by taking steps in the direction of steepest descent,
indicated by the gradient of the target function E at the current position. This
results in an iteration step

x̂t = x̂t−1 − αt ·
(
∂E(x̂t−1 | y)

∂x̂t−1

)>
(3.27)

with αt determining the size of the step to be taken.

This approach is called gradient descent or steepest descent. In its elegant simplicity,
it is one of the classical methods of optimization, going all the way back to the work
of the French mathematician Cauchy [10]. All it requires in order to be applied is
the gradient of the energy function.

3.3.2 Energy Gradient

Differentiating the energy term with respect to the previous estimate x̂t−1, keeping
in mind that each iteration t gets its own set of parameters, yields

∂E(x̂t−1 | y)

∂x̂t−1
=

∂

∂x̂t−1

(
λt
2
‖Kx̂t−1 − y‖2 +

∑
c∈C

N∑
i=1

ρti(f>ti x̂(c)t−1)

)

=
∂

∂x̂t−1

(∑
c∈C

N∑
i=1

ρti(f>ti x̂(c)t−1)

)
+ λt ·

(
K>(Kx̂t−1 − y)

)>
=
∑
c∈C

N∑
i=1

ρ′ti(f
>
ticx̂t−1) · f>tic + λt ·

(
K>(Kx̂t−1 − y)

)>

44 3 Learned Inference

with

f>ticx̂t−1 = f>tiMcx̂t−1 = f>ti x̂(c)t−1 (3.28)

via an easy to construct masking matrix Mc that reduces the vector representation
x̂t−1 of an image to the clique vector x̂(c)t−1 of clique c. The clique-specific filter f>tic
can therefore be constructed as f>tic = f>ti ·Mc.

Since from here on out, only the derivatives ρ′ti of the penalty functions will be used
and the original functions ρti will not appear again, the parameterized functions
ρti can just be set to model the derivatives directly, yielding the modified energy
derivative

∂E(x̂t−1 | y)

∂x̂t−1
=
∑
c∈C

N∑
i=1

ρti(f>ticx̂t−1) · f>tic + λt ·
(
K>(Kx̂t−1 − y)

)>
. (3.29)

To eliminate the summation over all cliques from the equation, a common trick [14,
40] is to introduce a filter matrix Fti condensing all clique-specific filters f>tic as

Fti =

 f>tic1
...

f>ticend

 , (3.30)

which helps to reduce the double sum as follows

∑
c∈C

N∑
i=1

ρti(f>ticx̂t−1) · f>tic =
N∑
i=1

∑
c∈C

ρti(f>ticx̂t−1) · f>tic

=
N∑
i=1

ρti(Ftix̂t−1)> · Fti

=

(
N∑
i=1

F>ti · ρti(Ftix̂t−1)

)>
, (3.31)

recalling from Section 3.1.3 that ρti is applied element-wise to vector-valued argu-
ments by definition.

3.3.3 Update Formula

Putting all of this together and plugging it into Equation (3.27) leads to an update
formula for one iteration of gradient descent of the form

x̂t = x̂t−1 − αt ·

(
N∑
i=1

F>ti · ρti(Ftix̂t−1) + λt ·K>(Kx̂t−1 − y)

)
.

For the initial estimate x̂0, one can simply use the observation y as the best available
guess. The regularization weight λt that has been introduced from Equation (2.23)
is handled as an additional model parameter and will be learned alongside the filters
and functions.

3.3 Inference via Gradient Descent 45

Since every additive term inside the energy gradient is either multiplied by λt or by
one of the ρti, which are freely scalable and will be learned from training data, the
step size αt is in fact redundant and can simply be dropped.

Furthermore, it would not make sense to have the regularization weight be negative
or zero. To ensure that λt > 0 at all times, it will be constrained as λ+t in the same
way that was considered to constrain the function weights to be positive in Section
3.1.3, that is,

λ+t = ln (1 + expλt) . (3.32)

For an illustration, see Figure 3.5a.

With these changes, the update formula for the tth gradient descent step is obtained
as

x̂t = x̂t−1 −

(
N∑
i=1

F>ti · ρti(Ftix̂t−1) + λ+t ·K>(Kx̂t−1 − y)

)
. (3.33)

3.3.4 Derivative of the Loss Function

Recall from Section 3.2 that back-propagation is utilized to learn the parameters
of each step according to an overall loss function ` (cf. Equation (3.5)), so it is
necessary to compute the derivative of each parameter with respect to `. As per
chain rule, the general derivative of ` with relation to any variable vt occurring in x̂t

from Equation (3.33) is

∂`(x̂,xgt)

∂vt
= ĉ>t ·

∂x̂t

∂vt
,

where ĉ>t =
∂`(x̂,xgt)

∂x̂t
(3.34)

is the outer derivative or chain rule term, passed back by the next step in the model
or, in case of the last step, directly from the loss function as derived in Equation (3.7).

3.3.5 Input Gradient

Since the whole backpropagation approach for joint training hinges on using the
chain rule, the step update formula from Equation (3.33) must be differentiated not
only with respect to the parameters that are to be learned, but also with relation to
the previous step’s output x̂t−1:

∂`(x̂,xgt)

∂x̂t−1
= ĉ>t ·

∂x̂t

∂x̂t−1

= ĉ>t ·
∂

∂x̂t−1
·

(
x̂t−1 −

(
N∑
i=1

F>ti · ρti(Ftix̂t−1) + λ+t ·K>(Kx̂t−1 − y)

))

= ĉ>t ·

(
I−

(
N∑
i=1

F>ti ·
∂ρti(Ftix̂t−1)

∂Ftix̂t−1
· ∂Ftix̂t−1

∂x̂t−1
+ λ+t ·K>K

))

46 3 Learned Inference

= ĉ>t ·

(
I−

(
N∑
i=1

F>ti · diag
{
ρ′ti(Ftix̂t−1)

}
· Fti + λ+t ·K>K

))

= ĉ>t −

(
N∑
i=1

F>ti · diag
{
ρ′ti(Ftix̂t−1)

}
· Ftiĉt + λ+t ·K>Kĉt

)>
(3.35)

This derivative is then passed back to the previous step to serve as ĉ>t−1 as described
in Section 3.2.1.

3.3.6 Parameter Gradients

The following passages show how the loss function `(x̂,xgt) can be differentiated
with respect to the model parameters λt, ωti and f̃ti of the tth step.

Regularization Weight

The derivative of the loss with respect to the regularization weight λt is then given
as

∂`(x̂,xgt)

∂λt
= ĉ>t ·

∂x̂t

∂λt

= ĉ>t ·

(
∂λ+t
∂λt

·K>(Kx̂t−1 − y)

)

= ĉ>t ·
(
− expλt

1 + expλt
·K>(Kx̂t−1 − y)

)
=

expλt
1 + expλt

· (Kĉt)> · (y−Kx̂t−1) . (3.36)

Note how for the first iteration t = 1 in the context of denoising, where x̂0 = y and
K = I, the above will always be 0. In this case there is no difference between the pre-
vious estimate x̂t−1 and the observation y, so the likelihood part of Equation (2.23)
does not matter for the energy and, as a result, the regularization weight λ1 becomes
meaningless.

Nonlinear Function Weights

Differentiating ` with respect to the function parameters ωti yields

∂`(x̂,xgt)

∂ωti
= ĉ>t ·

∂x̂t

∂ωti

= ĉ>t ·
(
−F>ti ·

∂ρti(Ftix̂t−1)

∂ωti

)
= −(Ftiĉt)> ·

∂ρti(Ftix̂t−1)

∂ωti
, (3.37)

where the appropriate derivative from Section 3.1.3 can simply be plugged in.

3.3 Inference via Gradient Descent 47

Filter Weights

Recall from Section 3.1.3 that the filters represented by the matrices Fti are built
from a filter basis B with weight vectors f̃ti as fti = B · f̃ti.

However as [40] points out, learning both the function weights ωti and the filter
weights f̃ti at arbitrary scale can lead to problems during training, because the pa-
rameters have too many degrees of freedom. The proposed solution is to constrain
the filters to always have unit norm:

f =
Bf̃
‖Bf̃ ‖

= Bf̃ ·
(
f̃
>
B>Bf̃

)− 1
2

For differentiating ` with respect to the filter weights f̃ti under this constraint, the
technique applied in [40] is to introduce a clique matrix [x]C with Fx = (f> [x]C)

> =

[x]>C f.

Note that [x]C is straightforward to construct from the image x, as its columns are
exactly the vectors x(c) corresponding to the maximal cliques c ∈ C of the image, so
that

[x]>C f =

 x>(c1)
...

x>(cend)

 · f =

 x>(c1)f
...

x>(cend)f

 =

 f>x(c1)
...

f>x(cend)

 =

 f>c1x
...

f>cend
x

 = Fx .

Then, still following [40], the derivative of a term Fx with respect to the weights f̃
becomes

∂Fx
∂ f̃

=
∂ [x]>C Bf̃ ·

(
f̃
>

(B>B)̃f
)− 1

2

∂ f̃

=
(

[x]>C − Fx · f>
) B
‖Bf̃ ‖

, (3.38)

which can be used in

∂`(x̂,xgt)

∂ f̃ti
= ĉ>t ·

∂x̂t

∂ f̃ti

= ĉ>t ·

(
−∂F

>
ti · ρti(Ftix̂t−1)

∂ f̃ti

)

= −∂(Ftiĉt)> · ρti(Ftix̂t−1)

∂ f̃ti

= −
(

(Ftiĉt)> ·
∂ρti(Ftix̂t−1)

∂ f̃ti
+ ρti(Ftix̂t−1)> · ∂(Ftiĉt)

∂ f̃ti

)
= −

(
(Ftiĉt)> ·

∂ρti(Ftix̂t−1)

∂Ftix̂t−1
· ∂Ftix̂t−1

∂ f̃ti
+ ρti(Ftix̂t−1)> · ∂Ftiĉt

∂ f̃ti

)
= −

(
(Ftiĉt)> · diag

{
ρ′ti(Ftix̂t−1)

}
· ∂Ftix̂t−1

∂ f̃ti
+ ρti(Ftix̂t−1)> · ∂Ftiĉt

∂ f̃ti

)

48 3 Learned Inference

to obtain

∂`(x̂,xgt)

∂ f̃ti
= −

(
(Ftiĉt)> · diag

{
ρ′ti(Ftix̂t−1)

}
·
(

[x̂t−1]>C − Ftix̂t−1 · f>ti
)

+

ρti(Ftix̂t−1)> ·
(

[ĉt]>C − Ftiĉt · f>ti
))
· B
‖Bf̃ti ‖

. (3.39)

3.3.7 Summary

With all of these gradients specified, the parameters of a truncated optimization
model using gradient descent inference can be trained with respect to the loss over the
training set, according to the bi-level framework explained in Section 3.1. A compact
overview of the resulting equations for all quantities that need to be computed during
training is provided in Figure 3.10.

It is important to note that neither the filter matrices Fti nor the blur matrix K
need to be explicitly constructed for the computations. Both only ever appear in
conjunction with an image vector multiplied from the right, as in Ftix̂t−1 or Kĉt.
The result of such an expression can be computed efficiently via a convolution of the
image with the filter or blur kernel the matrix was based on, as in fti ∗ x̂t−1 or k ∗ ĉt.
Multiplication of the transpose of a matrix with an image vector, such as K>(Kĉt),
is equivalent to convolution of the image with the kernel rotated by 180 degrees
and correct boundary handling [40, 13]. In both cases, the equality only holds for
the central part of the image and artifacts are introduced at the image borders. To
address these, in practice images are padded before applying the model and cropped
before evaluating the loss, which is addressed in Section 4.1.2.

The results of a number of experiments with gradient descent models trained in this
fashion are reported in Sections 4.2.1 and 4.3.1.

3.4 Half-Quadratic Inference 49

3.4 Half-Quadratic Inference

The second inference method to be considered here is a multiplicative variant of half-
quadratic inference first explored in [11]. Its combination with the Field of Experts
model has not been examined before in this truncated optimization framework.

In contrast to the gradient descent approach, the half-quadratic approach is not based
on minimizing the energy function from Equation (2.23) directly, but rather seeks
to exploit the advantages that come with a quadratic, Gaussian model by solving
quadratic approximations of the actual model.

3.4.1 Motivation

Section 2.3.4 has shown how quadratic penalty functions ρ in the Field of Experts
prior lead to Gaussian potential functions and thus to a Gaussian posterior distri-
bution. The maximum a-posteriori solution in this case was simply the mean of
the distribution and could be computed directly, without the need for an iterative
method.

On the other hand, Section 2.3.3 explained how quadratic functions are a bad fit for
modelling natural image statistics. What’s more, the radial basis function mixtures
used here, which were introduced in Section 3.1.3, are fully flexible and certainly not
quadratic.

In order to still take advantage of the closed-form solution for Gaussian models, it is
possible to formulate a non-Gaussian model in such a way that it becomes Gaussian
when a set of specially introduced auxiliary variables is held fixed. This strategy is
known as half-quadratic augmentation, and was first established in [19]. The term
“half-quadratic” stems from the fact that the augmented model is quadratic only
under specific conditions and otherwise retains its robust properties. An alternative
form is described in [20] and provides the basis for the Cascade of Shrinkage Fields
model in [40].

The specific half-quadratic variant that is relevant here can be found in [11], where
a half-quadratic approach was first used to do maximum a-posteriori estimation.

Without going into too much detail, the augmentation works as follows. Each penalty
function ρi(u), at the location of each filter response u, is replaced by a function
φi(u, z) that is quadratic for fixed z and approximates ρi(u) at u. Distinct auxiliary
variables zic are therefore needed for each filter fi and each image clique c to cover
all occuring values of u. Together, these auxiliary variables form one large auxiliary
vector z ∈ RN ·|C|. When replacing the penalty functions like that, the prior from
Equation (2.15) becomes

p(x, z) ∝
∏
c∈C

N∏
i=1

exp
(
−φi(f>i x(c), zic)

)
. (3.40)

To eliminate the auxiliary variables and again arrive at a distribution over x, the type
of half-quadratic augmentation considered here, which has been called the envelope

50 3 Learned Inference

20 10 0 10 20
10-3

10-2

10-1

100

20 10 0 10 20
10-3

10-2

10-1

100

Figure 3.9: Half-quadratic approximation exp
(
−φ(u, z)

)
of the robust Lorentzian po-

tential exp
(
−ρ(u)

)
= exp

(
− log (1 + 1

2x
2)
)
, as seen in Figure 2.8, for a specific value

of z that is determined by u (left) and the tight lower bound induced by multiple such
augmented potentials (right)

type, takes the maximum of Equation (3.40) over all z,

p(x) ∝ max
z
p(x, z)

∝ max
z

∏
c∈C

N∏
i=1

exp
(
−φi(f>i x(c), zic)

)
, (3.41)

which also means that

exp
(
−ρi(f>i x(c))

)
∝ max

zic
exp

(
−φi(f>i x(c), zic)

)
(3.42)

and

ρi(f>i x(c)) ∝ min
zic

φi(f>i x(c), zic) . (3.43)

Following the multiplicative form of half-quadratic augmentation introduced in [19],
the augmented penalty functions are of the general form

φ(u, z) =
1

2
u2z + ψ(z) , (3.44)

where the term ψ(z) is added to ensure that Equation (3.42) holds. Its exact form
depends on the penalty function ρ(u) that is being approximated. Details on this
can be found in [19] and [6] among others.

Plugging Equation (3.44) into Equation (3.43) then yields a minimization task which
can be solved to find the value of zic that will be used to approximate ρi for the filter-
clique combination f>i x(c).

Essentially, when the model is specified in this way, the augmented potential func-
tions exp

(
−φi(u, zi)

)
combine to form a tight lower bound on each original potential

function exp
(
−ρi(u)

)
, as illustrated in Figure 3.9 for a common robust potential.

The resulting probability p(x), as the product of all potentials, can therefore never
be overestimated be the augmented model, and maximizing the tight lower bound
at the same time also maximizes this probability.

3.4 Half-Quadratic Inference 51

3.4.2 Update Formula

According to [11], maximum a-posteriori inference to find the pair

(x̂, ẑ) = arg max
x,z

p(x, z)

can be carried out by alternating between the steps of finding the image x̂ that
maximizes p(x | y, ẑ) and finding auxiliary variables ẑ that maximize p(z | x̂,y).

The respective update formulae for ẑ and x̂ can be stated as

ẑt,ic =
ρ′i(f

>
i x̂(c)t−1)

f>i x̂(c)t−1

(3.45)

and

x̂t =

(
K>K
σ2
t

+

N∑
i=1

F>i · diag{ẑt,ic | c ∈ C} · Fi

)−1

·

(
K>y
σ2
t

)
, (3.46)

the latter of which should be familiar from the Gaussian random field model in
Section 2.3.4. Together, they form one iteration of half-quadratic inference in the
sense of this thesis.

The filter responses f>i x̂(c)t−1 in Equation (3.45) can again be written more concisely
with the filter matrix formulation from Section 3.3.2, yielding an auxiliary vector

ẑt,i =
ρ′i(Fix̂t−1)

Fix̂t−1
. (3.47)

In addition, the penalty functions ρi again only appear in the form of their derivatives
ρ′i, so the derivatives could once more be modelled directly as in Section 3.3.2. But
in this case, the whole of Equation (3.47) is a function of the filter response vector
Fix̂t−1 and can thus be modelled directly by a nonlinear function as

ẑt,i = ρi(Fix̂t−1) =
ρ∗i
′(Fix̂t−1)

Fix̂t−1
(3.48)

with ρ∗(u) denoting the actual penalty function.

With these changes, the consolidated update formula for one iteration of half-quadratic
inference takes the form

x̂t =

(
K>K
σ2
t

+

N∑
i=1

F>ti · diag{ρti(Ftix̂t−1)} · Fti

)−1

·

(
K>y
σ2
t

)
(3.49)

= Ω−1
t · ηt

with

Ωt =
K>K
σ2
t

+

N∑
i=1

F>ti · diag{ρti(Ftix̂t−1)} · Fti and

ηt =
K>y
σ2
t

.

52 3 Learned Inference

As before in the truncated optimization scheme, each step t uses a separate set of
parameters. In addition to the linear filter weights f̃ti and nonlinear function weights
ωti, the half-quadratic inference steps have a parameter σt that is connected to the
noise level present in the processed images and will be learned as well.

Note that the update formula stated above can be transformed by introducing a
redundant term (σ2

t)−1 · σ2
t = 1 to obtain

x̂t = Ω−1
t · (σ2

t)−1 · σ2
t · ηt

=

(
K>K + σ2

t ·
N∑
i=1

F>ti · diag{ρti(Ftix̂t−1)} · Fti

)−1

·K>y ,

where it becomes clear that σ2
t takes the place of a regularization weight in the

update formula, and could itself be subsumed in the scaling of the nonlinear functions
ρti. In practice however, it would require the simultaneous scaling of every single
weight parameter in each function to mimic the effect of σ2

t , which may take a
long time to achieve for the training algorithm. The noise level parameter σt can
thus be interpreted as an additional shared scaling factor affecting all nonlinear
functions, possibly making training easier. Whether that is the case in practice was
not investigated in this thesis.

3.4.3 Solving Systems of Linear Equations

For each step of half-quadratic inference, it is necessary to calculate x̂t = Ω−1
t · ηt.

While the previous section showed a straightforward way to construct Ωt ∈ Rmn×mn,
the computational complexity of finding its inverse Ω−1

t is cubic1 in the number m ·n
of pixels in the image – even for everyday photographs, inverting Ωt quickly becomes
prohibitive.

To alleviate this problem, Ωt can be multiplied from the left on both sides to get
Ωtx̂t = ηt, which is a system of linear equations. Such systems can often be solved
more efficiently by finding a suitable decomposition of the system matrix Ωt into two
triangular matrices. Then only two very simple systems of linear equations need to
be solved instead of a single more difficult one.

The usual decomposition of choice, both for speed and for numerical stability, is the
Cholesky decomposition [16]. It produces a lower-triangular matrix L such that

Ωt = LL> .

Solving the system Ωtx̂t = LL>x̂t = ηt is then equivalent to first solving

Lµ = ηt

for µ, and then

L>x̂t = µ

1While this is true for dense matrices, it does not generally hold for sparse matrices. Determining
the complexity of algorithms on sparse matrices, however, is often not trivial, and the details of
this problem are skipped in this thesis.

3.4 Half-Quadratic Inference 53

for x̂t, both of which are easy to compute via forward and back substitution, re-
spectively. The same factorization LL> can then be used to solve further equation
systems characterized by Ωt, one of which will come up during parameter learning.

It is important to note that although this decomposition grants an improvement
in computation time of factor 2 to 3 over matrix inversion and some other direct
methods, it does not solve the general issue of cubic computational complexity. Its
speedup is nonetheless of great help, and worth a bit of extra effort.

Namely, in order to use the Cholesky decomposition, it is necessary to first make sure
that Ωt is both symmetric and positive-definite. The former, which means nothing
else than Ωt = Ω>t , is easy to see:

Ω>t =

(
K>K
σ2
t

+
N∑
i=1

F>ti · diag{ρti(Ftix̂t−1)} · Fti

)>

=

(
K>K

)>
σ2
t

+
N∑
i=1

(
F>ti · diag{ρti(Ftix̂t−1)} · Fti

)>
=

K>K
σ2
t

+
N∑
i=1

F>ti · diag{ρti(Ftix̂t−1)} · Fti

= Ωt . (3.50)

For a matrix M to be called positive-definite, it has to hold that

x> ·M · x > 0 for any x 6= ~0 . (3.51)

If the product can also be equal to zero, M is called positive-semidefinite instead.
The vector x in this definition is not related to the images discussed in the rest of
this thesis.

To ensure positive-definiteness of the matrix Ωt, the values of the nonlinear functions
ρti need to be constrained to be strictly positive, as explained in Section 3.1.3. Then
it is possible to write

diag{ρti(Ftix̂t−1)} = D>D with D = diag
{√

ρti(Ftix̂t−1)
}
, (3.52)

which helps decompose the term inside the sum from Equation (3.49) to find

x> · (F>ti · diag{ρti(Ftix̂t−1)} · Fti) · x = x> · F>ti ·D>D · Fti · x
= (DFtix)> · (DFtix)

= ‖DFtix‖2

≥ 0 for any x 6= ~0 , (3.53)

meaning that each matrix F>ti · diag{ρti(Ftix̂t−1)} · Fti is positive-semidefinite.

Recall from Section 2.2.3 that the blur matrix K represents the effect of a point
spread function, so it can not have negative entries and not all of its entries can be

54 3 Learned Inference

zero. As a result,

x> · K
>K
σ2
t

· x =
1

σ2
t

· x> ·K>K · x

=
1

σ2
t

· (Kx)> · (Kx)

=
1

σ2
t

· ‖Kx‖2

> 0 for any x 6= ~0 (3.54)

shows that (K>K)/σ2
t is a positive-definite matrix.

Putting it all together, it holds that

x> ·Ωt · x = x> ·

(
K>K
σ2
t

+

N∑
i=1

F>ti · diag{ρti(Ftix̂t−1)} · Fti

)
· x

= x> · K
>K
σ2
t

· x +
N∑
i=1

x> · (F>ti · diag{ρti(Ftix̂t−1)} · Fti) · x

=
1

σ2
t

· ‖Kx‖2 +
N∑
i=1

‖DFtix‖2

> 0 for any x 6= ~0 . (3.55)

So Ωt, being the sum of a positive-definite matrix and N positive-semidefinite matri-
ces, is itself again positive-definite and the Cholesky decomposition can be employed
to solve Ωtx̂t = ηt for x̂t.

3.4.4 Derivative of the Loss Function

In the next few sections, the gradients needed for parameter training as explained in
Section 3.2 will be derived. Since the multiplicative half-quadratic approach has not
yet been examined in a truncated optimization setting, the derivations that follow
are new contributions to the field of image restoration.

The first step, like in the gradient descent case, is to differentiate the overall loss
`(x̂,xgt) with respect to all model parameters of a specific step t. For this purpose,
it helps to first find a more general derivative and proceed from there with the
individual parameters.

The derivative of `(x̂,xgt) with respect to any variable vt occurring in x̂t from Equa-
tion (3.49) will generally be of the form

∂`(x̂,xgt)

∂vt
=
∂`(x̂,xgt)

∂x̂t
·
∂
(
Ω−1

t · ηt
)

∂vt

= ĉ>t ·
(
Ω−1

t

∂ηt
∂vt

+
∂Ω−1

t

∂vt
ηt

)
= ĉ>t ·

(
Ω−1

t

∂ηt
∂vt
−Ω−1

t ·
∂Ωt

∂vt
·Ω−1

t · ηt
)

3.4 Half-Quadratic Inference 55

= −
(
ĉ>t ·Ω−1

t

)
·
(
∂Ωt

∂vt
·
(
Ω−1

t · ηt
)
− ∂ηt
∂vt

)
= ς̂>t ·

(
∂Ωt

∂vt
· x̂t −

∂ηt
∂vt

)
(3.56)

with vector

ς̂t = −
(
ĉ>t ·Ω−1

t

)>
= −Ω−1

t · ĉt , (3.57)

where the last transformation is possible because Ωt is a symmetric matrix (cf. Equa-
tion (3.50)) and thus it holds that (Ω−1

t)> = Ω−1
t .

The chain rule term

ĉ>t =
∂`(x̂,xgt)

∂x̂t
(3.58)

plays the same role it had in the gradient descent case (cf. Equation (3.34)).

Since x̂t is already computed in the forward pass of the backpropagation algorithm
and can be reused when computing the gradients, and the same factorization of Ωt

used to find x̂t can be reused to compute ς̂t = −(Ω−1
t · ĉt). All that is left to do is

to find the derivatives of Ωt and ηt with respect to the noise level parameter σt, the
weights defining each ρti and Fti, as well as the previous estimate x̂t−1.

3.4.5 Input Gradient

To pass a chain rule term back to the previous step for backpropagation, it is once
more necessary to find the derivative of the loss function with respect to the current
step’s input x̂t−1. At first glance, this involves the derivative of a matrix with
respect to a vector, which would yield a three-dimensional object and make the
whole derivation unnecessarily difficult.

Fortunately, this problem can be sidestepped with the use of the element-wise oper-
ator introduced in Section 2.1:

∂`(x̂,xgt)

∂x̂t−1
= ς̂>t ·

∂Ωt

∂x̂t−1
· x̂t

= ς̂>t ·
∂

∂x̂t−1

(
N∑
i=1

F>ti · diag{ρti(Ftix̂t−1)} · Fti

)
· x̂t

= ς̂>t ·
∂

∂x̂t−1

(
N∑
i=1

F>ti ·
(
ρti(Ftix̂t−1)� Fti

))
· x̂t

At this point, ς̂>t and x̂t can be drawn into the sum. Note however that they will not
be differentiated with respect to x̂t−1 as they are not part of the actual differential.
It is best to think of them as arbitrary vectors for the purpose of this derivation.

∂`(x̂,xgt)

∂x̂t−1
=

∂

∂x̂t−1

N∑
i=1

(Ftiς̂t)
> ·
(
ρti(Ftix̂t−1)� Fti

)
· x̂t .

56 3 Learned Inference

Equations (2.2) and (2.3) now allow the transformations

=
∂

∂x̂t−1

N∑
i=1

(Ftiς̂t)
> ·
(
ρti(Ftix̂t−1)� (Ftix̂t)

)
=

N∑
i=1

(Ftiς̂t)
> · ∂

∂x̂t−1

(
ρti(Ftix̂t−1)� (Ftix̂t)

)
=

N∑
i=1

(Ftiς̂t)
> ·
(

(Ftix̂t)�
∂ρti(Ftix̂t−1)

∂x̂t−1

)

=
N∑
i=1

(Ftiς̂t)
> ·
(

(Ftix̂t)�
(
∂ρti(Ftix̂t−1)

∂Ftix̂t−1
· ∂Ftix̂t−1

∂x̂t−1

))

=

N∑
i=1

(Ftiς̂t)
> ·
(

(Ftix̂t)�
(
diag

{
ρ′ti(Ftix̂t−1)

}
· Fti

))
=

N∑
i=1

(Ftiς̂t)
> ·
(
(Ftix̂t)� ρ′ti(Ftix̂t−1)� Fti

)
(3.59)

to arrive at a solution for the input gradient of the tth step.

The result of this can now be passed back as an updated chain rule term ĉ>t−1 to the
previous step, to assist in computing that step’s parameter gradients as explained in
Section 3.2.1.

3.4.6 Parameter Gradients

The following passages show how the loss function `(x̂,xgt) can be differentiated
with respect to the model parameters σt, ωti and f̃ti of the tth step.

Noise level

The derivative of Equation (3.49) with respect to σt is straightforward to obtain from
Equation (3.56) as

∂`(x̂,xgt)

∂σt
= ς̂>t ·

(
∂Ωt

∂σt
· x̂t −

∂ηt
∂σt

)
= ς̂>t ·

(
∂K>K/σ2

t

∂σt
· x̂t −

∂K>y/σ2
t

∂σt

)

= ς̂>t ·
(
−2

1

σ3
t

K>K · x̂t + 2
1

σ3
t

K>y
)

= −2
1

σ3
t

· ς̂>t ·
(
K>K · x̂t −K>y

)
= 2

1

σ3
t

· (Kς̂t)> · (y−Kx̂t) . (3.60)

3.4 Half-Quadratic Inference 57

An alternative option here would be to replace 1/σ2
t in Equation (3.49) with a

positive-constrained term σ+t = ln
(
1 + exp (σt)

)
, like it was done with the regu-

larization weight λ+t in Section 3.3.3. This would result in a gradient

∂`(x̂,xgt)

∂σt
=

exp (σt)

1 + exp (σt)
· (Kς̂t)> · (y−Kx̂t)

instead, which does not contain σt in a cubic form and can practically not become
zero. But since Equation (3.60) caused no problems during the experiments con-
ducted for this thesis and the positivity constraint may introduce new difficulties as
described in Section 3.1.3, this option was not investigated further.

Nonlinear Function Weights

In a way that is very similar to the derivation of the input gradient in Section 3.4.5,
the loss `(x̂,xgt) can be differentiated with respect to the weights ωti of function ρti
as follows:

∂`(x̂,xgt)

∂ωti
= ς̂>t ·

∂Ωt

∂ωti
· x̂t

= ς̂>t ·
∂

∂ωti

(
F>ti · diag{ρti(Ftix̂t−1)} · Fti

)
· x̂t

Here ς̂>t and x̂t can be drawn in without any trouble as they do not depend on ωti:

∂`(x̂,xgt)

∂ωti
=

∂

∂ωti

(
ς̂>t · F>ti · (ρti(Ftix̂t−1)� Fti) · x̂t

)
Then the associativity from Equation (2.3) and the product rule from Equation (2.2)
can be used to obtain

∂`(x̂,xgt)

∂ωti
=

∂

∂ωti
(Ftiς̂t)

> · (ρti(Ftix̂t−1)� (Ftix̂t))

= (Ftiς̂t)
> · ∂

∂ωti
(ρti(Ftix̂t−1)� (Ftix̂t))

= (Ftiς̂t)
> ·
(

(Ftix̂t)�
∂ρti(Ftix̂t−1)

∂ωti

)
. (3.61)

Just as in the gradient descent case, it only remains to plug in the appropriate
derivative for ρti from Section 3.1.3 to complete the gradient.

Filter Weights

For differentiating the update formula with relation to the filter weights f̃ti that
define the filter matrix Fti, the general from from Equation (3.56) can be expanded

58 3 Learned Inference

as

∂`(x̂,xgt)

∂ f̃ti
= ς̂>t ·

∂Ωt

∂ f̃ti
· x̂t

= ς̂>t ·

(
∂F>ti · diag{ρti(Ftix̂t−1)} · Fti

∂ f̃ti

)
· x̂t

=
∂(Ftiς̂t)

> · diag{ρti(Ftix̂t−1)} · (Ftix̂t)

∂ f̃ti

=
∂u> · diag{v} ·w

∂ f̃ti

with the three vectors

u = Ftiς̂t , v = ρti(Ftix̂t−1) , w = Ftix̂t . (3.62)

This can be rewritten using the element-wise operator � and exploiting the product
rule from Equation (2.2) to get

∂`(x̂,xgt)

∂ f̃ti
=
∂u> · (v�w)

∂ f̃ti

= u>
∂(v�w)

∂ f̃ti
+ (v�w)>

∂u
∂ f̃ti

= u>
(
v� ∂w

∂ f̃ti
+ w� ∂v

∂ f̃ti

)
+ (v�w)>

∂u
∂ f̃ti

= u>
(
v� ∂w

∂ f̃ti

)
+ u>

(
w� ∂v

∂ f̃ti

)
+ (v�w)>

∂u
∂ f̃ti

, (3.63)

where for the first part, it simply is

u>
(
v� ∂w

∂ f̃ti

)
= (Ftiς̂t)

>
(
ρti(Ftix̂t−1)� ∂Ftix̂t

∂ f̃ti

)
= (Ftiς̂t)

> · diag{ρti(Ftix̂t−1)} · ∂Ftix̂t

∂ f̃ti
. (3.64)

For the second part, it is

u>
(
w� ∂v

∂ f̃ti

)
= (Ftiς̂t)

>
(

(Ftix̂t)�
∂ρti(Ftix̂t−1)

∂ f̃ti

)
= (Ftiς̂t)

>
(

(Ftix̂t)�
(
∂ρti(Ftix̂t−1)

∂Ftix̂t−1
· ∂Ftix̂t−1

∂ f̃ti

))
= (Ftiς̂t)

>
(

(Ftix̂t)�
(

diag
{
ρ′ti(Ftix̂t−1)

}
· ∂Ftix̂t−1

∂ f̃ti

))
= (Ftiς̂t)

>
(

(Ftix̂t)� ρ′ti(Ftix̂t−1)� ∂Ftix̂t−1

∂ f̃ti

)
. (3.65)

3.4 Half-Quadratic Inference 59

And, finally, for the third part, it is

(v�w)>
∂u
∂ f̃ti

=
(
ρti(Ftix̂t−1)� Ftix̂t

)> · ∂Ftiς̂t

∂ f̃ti

=
(
diag{ρti(Ftix̂t−1)} · Ftix̂t

)> · ∂Ftiς̂t

∂ f̃ti

= (Ftix̂t)
> · diag{ρti(Ftix̂t−1)} · ∂Ftiς̂t

∂ f̃ti
. (3.66)

Like in the gradient descent case, the filters need to be learned in a normalized form,
so that the scaling of the filters and nonlinear functions does not create ambiguity
during training.

To this end, it is again possible to use Equation (3.38), taken from [40], to replace
each instance of ∂Fti(·)/∂ f̃ti in the above expressions and obtain the final formula
for the filter weights gradient as

∂`(x̂,xgt)

∂ f̃ti
= (Ftiς̂t)

> · diag{ρti(Ftix̂t−1)} ·
(

[x̂t]
>
C − Ftix̂t · f>ti

) B
‖Bf̃ti ‖

+

(Ftiς̂t)
>
(

(Ftix̂t)� ρ′ti(Ftix̂t−1)�((
[x̂t−1]>C − Ftix̂t−1 · f>ti

) B
‖Bf̃ti ‖

))
+

(Ftix̂t)
> · diag{ρti(Ftix̂t−1)} ·

(
[ς̂t]
>
C − Ftiς̂t · f>ti

) B
‖Bf̃ti ‖

. (3.67)

While this turns out to be a relatively complex calculation, in practice many parts
can be precomputed or reused, as they are the same for each training image or are
shared with other equations from this section.

3.4.7 Summary

This concludes the derivations for the training of a half-quadratic model under the
truncated bi-level framework that is the context for this thesis. In comparison to
the gradient descent approach, it is already clear that the computational demands of
this variant of half-quadratic inference are much higher. Each iteration requires the
solution of an equation system that can become very large for even moderate image
sizes. Solving this system with a direct method, such as the Cholesky decomposition,
makes it necessary to explicitly construct the filter matrices Fti and the blur matrix
K instead of short-cutting their application via convolution operations as described
in Section 3.3.7. Construction and multiplication of these sparse matrices is both
time and memory consuming, as the number of their non-zero entries grows with the
size of the filters, blur kernels and processed images.

Experimental results for both types of model considered here are presented in the
next chapter, followed by a discussion of their respective weak and strong points.

A compact overview of all equations needed for training the truncated half-quadratic
model presented here is given in Figure 3.11. This overview omits the definitions of
some additional variables for brevity, these definitions can be found in the appropriate
sections above.

x̂t = x̂t−1 −

(
N∑
i=1

F>ti · ρti(Ftix̂t−1) + λ+t ·K>(Kx̂t−1 − y)

)

∂`(x̂,xgt)

∂x̂t−1
= ĉ>t −

(
N∑
i=1

F>ti · diag
{
ρ′ti(Ftix̂t−1)

}
· Ftiĉt + λ+t ·K>Kĉt

)>
∂`(x̂,xgt)

∂λt
=

expλt
1 + expλt

· (Kĉt)> · (y−Kx̂t−1)

∂`(x̂,xgt)

∂ωti
= −(Ftiĉt)> ·

∂ρti(Ftix̂t−1)

∂ωti

∂`(x̂,xgt)

∂ f̃ti
= −

(
(Ftiĉt)> · diag

{
ρ′ti(Ftix̂t−1)

}
·
(

[x̂t−1]>C − Ftix̂t−1 · f>ti
)

+

ρti(Ftix̂t−1)> ·
(

[ĉt]>C − Ftiĉt · f>ti
))
· B
‖Bf̃ti ‖

Figure 3.10: Equations needed for training the truncated gradient descent model.

x̂t =

(
K>K
σ2
t

+
N∑
i=1

F>ti · diag{ρti(Ftix̂t−1)} · Fti

)−1

·

(
K>y
σ2
t

)

∂`(x̂,xgt)

∂x̂t−1
=

N∑
i=1

(Ftiς̂t)
> ·
(
(Ftix̂t)� ρ′ti(Ftix̂t−1)� Fti

)
∂`(x̂,xgt)

∂σt
= 2

1

σ3
t

· (Kς̂t)> · (y−Kx̂t)

∂`(x̂,xgt)

∂ωti
= (Ftiς̂t)

> ·
(

(Ftix̂t)�
∂ρti(Ftix̂t−1)

∂ωti

)
∂`(x̂,xgt)

∂ f̃ti
= (Ftiς̂t)

> · diag{ρti(Ftix̂t−1)} ·
(

[x̂t]
>
C − Ftix̂t · f>ti

) B
‖Bf̃ti ‖

+

(Ftiς̂t)
>
(

(Ftix̂t)� ρ′ti(Ftix̂t−1)�((
[x̂t−1]>C − Ftix̂t−1 · f>ti

) B
‖Bf̃ti ‖

))
+

(Ftix̂t)
> · diag{ρti(Ftix̂t−1)} ·

(
[ς̂t]
>
C − Ftiς̂t · f>ti

) B
‖Bf̃ti ‖

Figure 3.11: Equations needed for training the truncated half-quadratic model.

4 Experiments and Results

The aim of this thesis is the implementation and comparison of the two truncated
inference approaches presented in the previous chapter, for the applications of image
denoising and non-blind image deconvolution. This chapter describes the setup for
the different experiments that were carried out to this end, and reports their results
in comparison to each other and to related work.

4.1 Training and Test Setup

For the implementation of the two models and their inference and training algo-
rithms, The Julia Language [4, 3] was chosen, as it provides uncomplicated syntax
similar toMATLAB or Python while promising C -level speed due to its sophisticated
just-in-time compiler and type system. As the language was created with technical
computing in mind, it comes with most mathematical functions already available
and many more accessible through additional packages.

While implementing half-quadratic inference, a problem manifested itself in that
sparse matrix operations, which constitute the computational backbone of the half-
quadratic approach, are not particularly well optimized in native Julia. Thanks to
Julia’s support for calling Python functions, however, it was possible to exploit the
much faster sparse matrix multiplication provided by the SciPy library.

Two other bottlenecks encountered were the evaluation of the nonlinear functions and
convolution with the linear filters, chiefly because these operations need to be carried
out very many times during each iteration of the training procedure. Although
the function evaluation is already sped up by the use of lookup tables, finding the
interpolated lookup table value for each filter response on an image still proved
to be time consuming. A further improvement is achieved with the direct use of
parallelized C code, called from within Julia. Convolutions are sped up with the
help of Julia’s powerful metaprogramming capabilities and optimized handling of
the image borders. Both the C code and the fast convolution implementation were
provided by Uwe Schmidt.

Yet even after these improvements, the overall runtime of the code used here re-
mained significantly worse than that of other published approaches, in particular
the MATLAB implementation of truncated gradient descent denoising by Chen and
Pock [13]. Where they report a training time of about 21 hours for a model with
five steps and 48 experts of size 7 × 7 when using 180 × 180 patches from all 400
training images, the code used here takes almost as much time to train a five step
model with 8 3× 3 experts on the same data set, using a similar machine. The main
reason for this large difference may be found in their heavy use of parallelization over
the training images with eight CPUs. Although parts of the implementation for this

62 4 Experiments and Results

Figure 4.1: (Left to right) The first ground truth image in the deblurring test set,
courtesy of [29], blurred with the third, fourth and eighth blur kernel of the same set
respectively. The kernels shown here are scaled up by a factor of three for visibility.

thesis make use of parallelization, in general it lacks this kind of efficiency. A further
speedup of the gradient descent approach is possible by moving computations to the
GPU, which was not part of this thesis.

The half-quadratic inference variant employed by Schmidt and Roth in [40] differs
from the one investigated here, in that although it requires the solution of large
equation systems, these can be solved very fast with the help of discrete Fourier
transforms. The difference in computational complexity means that the approach
here could not be applied to the same size of input images or amount of training
data, putting a limit on the results that could be achieved.

4.1.1 Data Sets

To enable a sensible comparison with the results of existing methods, the denoising
experiments for this thesis were carried out with data from the same image set
used in the majority of related work [35, 39, 2, 40, 13]. This data set is called the
Berkeley Segmentation Data Set, or BSDS500 [1], and is a collection of 500 coloured
photographs of natural scenes divided into a training, a test and a validation portion.
In [35], Roth and Black established a set of 68 images from the validation portion as
a common denoising benchmark, which also constitute the test set for the denoising
experiments reported here. These test images were used at full resulution, which
is 321 × 481 pixels or vice versa depending on orientation. They were converted to
grayscale, and an effort was made to apply the exact same noise as in the MATLAB
implementations of other authors. A sample image from this set can be seen in
Figure 3.2.

For the training set in the denoising experiments, a certain number of images from
the training and test portions of BSDS500 were taken and central patches of a fixed
size extracted. Due to the technical limitations mentioned above, it was not feasible
to exploit as many and as large patches as other, more efficient implementations
managed to do [40, 13].

For deblurring, a set of 4 different grayscale images and 8 different blur kernels,
yielding a total of 32 test image pairs, was introduced by Levin et al. in [29] and
has been used by Schmidt et al. to compare results in [41] and [40]. Example images
from this set can be seen in Figure 4.1. The same test set was used here to measure
the performance of both approaches for deblurring. As in the denoising experiments,
the images in the test set were used at their full resolution, which is 255 × 255

4.1 Training and Test Setup 63

Figure 4.2: Some of the realistic blur kernels generated for the training set in [41] and
used here for the same purpose.

pixels. However, the ground truths and observations in this data set do not perfectly
align with the provided kernels, so the predicted deblurred images need to be shifted
slightly to account for this. A function adapted from [29] was used here to find the
shift which best aligns prediction and ground truth. This function also dismisses the
outer 16 pixels of both images, but since an identical or very similar function was
used in other works as well, it should not undermine the comparison.

Training was carried out on image patches from the Berkeley Segmentation Data
Set, which were blurred with a subset of the realistic blur kernels generated by the
authors of [41]. Each image was blurred with a different kernel. These kernels range
in size from 15× 15 to 37× 37 pixels, but since the largest kernel in the test set is of
size 27×27, larger kernels were cropped to this size and re-normalized for training in
order to reduce computational cost. A few of the kernels used in this way are shown
in Figure 4.2.

4.1.2 Boundary Handling

As mentioned in the previous section, the application of filters in each inference step
leads to undesirable effects at the image border. The easiest solution to this problem
is to pad input images with an artificial border region that is of no interest, and
then crop the output to remove the then distorted and superfluous border before the
loss is computed. This leaves the actual image unaffected, provided the padding was
large enough with respect to the filter size.

In the case of deconvolution, an additional matter is the size difference between
ground truth and observation mentioned in Section 2.2.3. Here, the observations
need to be padded already to obtain initial guesses of sufficient size for use as input
images. Since the reconstruction of this added border region from the observation
and the known blur kernel is usually poor in the first place and will be discarded
before loss computation, it can simultaneously fill the role of the artificial border
region described above. The padding and cropping operations taking place in the
denoising and deblurring models, respectively, are illustrated in Figure 4.3.

In both cases, the model output is cropped before calculating the loss value, which
can be expressed mathematically as multiplication with a sparse cropping matrix
denoted by T in [40] and [13]. Inclusion of this matrix changes the loss function
from Section 3.1.1 to

`(x̂,xgt) = −10 · log10

(
R2 ·mn
‖Tx̂− xgt‖2

)

= − 20

ln (10)
· ln
(

R ·
√
mn

‖Tx̂− xgt‖

)
,

64 4 Experiments and Results

Ground
truth

Obser-
vation

Input Inference Output

Loss

noise & pad

crop

Ground
truth

Obser-
vation

Input Inference Output

Loss

blur & noise

pad

crop

Figure 4.3: Workflow of adding and removing artificial border regions to reduce bound-
ary artifacts for the denoising task (left) and for the deblurring task (right). In both
cases, an input image is padded with a border that accumulates artifacts and inaccu-
racies during inference and is removed from the output image before comparison with
the ground truth.

assuming the ground truth image xgt already has the correct dimensions. The deriva-
tive of the loss with respect to the model output x̂ then becomes

∂`(x̂,xgt)

∂x̂
=

20

ln (10)
· (Tx̂− xgt)

>

‖Tx̂− xgt‖2
·T

=

(
20

ln (10)
· T
>(Tx̂− xgt)

‖Tx̂− xgt‖2
·T

)>
=: ĉ>T ,

which requires multiplication with the transposed cropping matrix T>. As it turns
out, multiplication of an image vector with T> is equivalent to padding the image’s
border with zeros up to the size of an uncropped image. Since this operation as well
as the cropping operation can be carried out directly, it is not necessary to construct
the matrix T in practice.

The size of the added border region was chosen to be twice the size of the maximal
cliques for the denoising experiments, which amounted to 6 pixels on each side, and
half the kernel size, rounded down, for deblurring, which amounted to 13 pixels on
each side. While this is not a lot of padding, and larger borders would certainly
improve prediction quality, there is a very real tradeoff with respect to computation
time, as the complexity of the Cholesky decomposition described in Section 3.4.3 is
superlinear in the number of image pixels.

4.1.3 Initialization

Chen and Pock note in [13] that their method, which is essentially the same as
the truncated gradient descent model examined here, is not particularly sensitive
to initialization when trained greedily. Nonetheless, they propose to initialize the
penalty function derivatives modelled by the RBF mixtures ρti with a sensible guess.
The initial function they choose, which is replicated in the experiments presented

4.1 Training and Test Setup 65

300 200 100 0 100 200 300

1.0

0.5

0.0

0.5

1.0

(a) ρ(u) ≈ 2·(u/20)
1+(u/20)2

15 10 5 0 5 10 15

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(b) ρ(u) ≈ 0.06
1+0.5·u2

Figure 4.4: Initial configuration of each radial basis function mixture for one step of
(a) gradient descent and (b) half-quadratic inference. Both initializations are based on
the robust Lorentzian loss function shown in Figure 2.9b.

here, is the derivative of the Lorentzian loss shown in Figure 2.9b:

ρ∗(u) = α · ln
(
1 + (βu)2

)
ρinit(u) =

∂ρ∗(u)

∂u
= ρ∗′(u) =

2αβ2 · u
1 + (βu)2

An RBF mixture initialized in this way, with α and β adjusted for the expected
range of incoming filter responses, is shown in Figure 4.4a.

Recall from Section 3.4.2 that in the half-quadratic inference model, the RBF mix-
tures ρti model the derivative of the penalty functions divided once more by the
argument, that is, the filter response. When the same Lorentzian penalty function
as above is chosen for initialization, this yields

ρinit(u) =
ρ∗′(u)

u
=

2αβ2

1 + (βu)2
.

This function transferred to an RBF mixture is illustrated in Figure 4.4b, again with
adjusted α and β. Note that the interval covered by this mixture function is much
smaller, reflecting the assumption that for stronger filter responses u the value of
ρ∗′(u)/u can be approximated by zero.

For both the gradient descent and the half-quadratic model, the N filter weights
vectors f̃ti of every step t are initialized as the columns of the identity matrix IN×N .
This way, the resulting set of initial filters for one step is just the set of filters provided
in the filter bank B as seen in Figure 3.3.

The regularization weight λt for the gradient descent model is initially chosen such
that λ+t = ln

(
1 + exp (λt)

)
= 1/10, a value that is also used in the implementation

from [13].

The parameter σt in the half-quadratic model is theoretically related to the noise level
σ2 present in the images that need to be restored, and in consequence is initialized
to that value. As mentioned in Section 3.4.2, the effect of σt could also be achieved
by a uniform scaling of the nonlinear functions, so the exact value chosen for it is
not of crucial importance.

66 4 Experiments and Results

Observation
(20.18 dB)

GD8
3×3 (29.06 dB) HQ8

3×3 (29.14 dB) Ground truth

Figure 4.5: Sample output of the two models trained for denoising at noise level
σ2 = 25.0, compared to observation and ground truth. The PSNR between each image
and the ground truth is given in parentheses. The subtle differences may only be visible
when zoomed in on a digital screen.

Steps T 1 2 3 4 5 6 7 8

GDT
3×3 27.59 28.04 28.16 28.20 28.22 28.25 28.27 28.28

HQT
3×3 26.90 27.90 28.14 28.20 28.23 28.24 28.24 28.25

ARFT
5×5 [2] 27.77 28.10 28.17 28.24

CSFT
3×3 [40] 28.29

CSFT
5×5 [40] 28.58

TNRDT
5×5 [13] 28.58 28.78 28.83

Table 4.1: Image denoising results for the gradient descent model GDT3×3 and the half-
quadratic model HQT3×3, along with results from similar approaches on the same test
set, at noise level σ2 = 25.0. All values are in decibels. The half-quadratic model shows
convergence after 5 steps, whereas the gradient descent model appears to still improve
with additional steps. Overall, gradient descent achieves a better average PSNR on the
test set. The results in the lower half should be compared with the caveat that they
used more training data and, excepting CSFT3×3, operated on larger maximal cliques.

4.2 Image Denoising

For the Gaussian denoising task, a gradient descent model GDT
3×3 and a half-quadratic

model HQT
3×3 were trained under the exact same conditions. While the same gradi-

ent descent approach was investigated by Chen and Pock in [13], the half-quadratic
approach in this form is new. Both trained models have the same capacity, being
based on a Field of Experts prior with 3× 3 cliques and 8 experts, and were trained
greedily for T = 1 up to T = 8 steps. The training set for both models consisted
of 50 image patches of size 128 × 128 and the noise level applied to training and
test data was σ2 = 25.0. The average PSNR loss over the 68-image denoising test
set, evaluated after each step of greedy training, is reported in the upper portion
of Table 4.1. The lower portion repeats the results of related work for comparison.
Note that these were generally trained on a larger data set, which was not feasible
with the half-quadratic model for the reasons stated earlier.

300 200 100 0 100 200 300
6

4

2

0

2

4

6

300 200 100 0 100 200 300
1.5

1.0

0.5

0.0

0.5

1.0

1.5

300 200 100 0 100 200 300

0

100

200

300

400

500

600

300 200 100 0 100 200 300

0

10

20

30

40

50

Figure 4.6: Learned nonlinear function ρt3(u) modelling the response of the third filter
in the first step (upper left) and last step (upper right) of the model GD8

3×3. Pictured
in the lower row are the implied penalty functions ρ∗t3(u), obtained by approximate
integration.

15 10 5 0 5 10 15

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

15 10 5 0 5 10 15

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

15 10 5 0 5 10 15

0

1

2

3

4

5

6

15 10 5 0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 4.7: Learned nonlinear functions ρt5(u) modelling the response of the fifth filter
in the first step (upper left) and last step (upper right) of the model HQ8

3×3. Pictured
in the lower row are the implied penalty functions ρ∗t5(u), obtained by multiplication
with u and approximate integration.

68 4 Experiments and Results

Steps T 1 2 3 4 5 6 7 8

GDT
3×3 0.07 0.11 0.15 0.19 0.26 0.30 0.34 0.38

HQT
3×3 3.79 7.58 11.37 15.15 18.93 22.71 26.50 30.28

Table 4.2: Average test time of the trained denoising models for one image of the test
set, in seconds, when stopping after step T . These numbers should be treated with
caution, as the code is not well optimized.

4.2.1 Gradient Descent

A sample prediction by the gradient descent model GD8
3×3 for an image from the

test set can be seen in Figure 4.5. While the contours of the building and treetops
are recovered very clearly, the sky and the lake show a noticeable pattern that has
been hallucinated from the noise in the input. A similar effect could be observed
in the predictions for several other images with large textureless areas, which are
not pictured here. Finer structures of the original image, like the brickwork on the
building, are also lost to this pattern. However, these details might be impossible to
recover at all when obscured by this level of noise.

The linear filters learned by the model GD8
3×3 can be seen in Figure 6.2. They

differ greatly, both between the steps and when compared to the initial filters from
Figure 3.3. Two representatives of the nonlinear functions learned by the model are
shown in Figure 4.6, along with approximations of the penalty functions they imply.
These implied penalty functions correspond to the types (c) and (d) identified by
Chen and Pock in [13, Figure 5], suggesting that they have been tuned to sharpen
the image and encourage certain textures, respectively. An overview of all penalty
functions learned by this model can be found in Figure 6.3, where it can be seen that
many diverge from the traditional shape of penalty functions, especially in the later
steps of the model.

To investigate this behaviour, which may be connected to the hallucinated textures
observed above, the pattern synthesis experiment mentioned in [13, § 4.3] was repro-
duced with the learned denoising model. To this end, the iteration step defined by a
single step of the model was repeated until convergence on an input consisting only
of uniform noise. The likelihood part λ+t ·K>(Kx̂t−1−y) of the step update formula
in Equation (3.33) was dropped here to preclude the influence of the observation y,
which is not of interest for this experiment. The results for the second and fifth step
of the model GD8

3×3 can be seen in Figure 4.8. Note how the procedure created not
only visible, but visibly different textures for these two steps.

While the nonlinear functions learned for the first step display a relatively smooth, at
times even piecewise-linear behaviour, the ones belonging to later steps appear much
more jagged, as witnessed by the examples in Figure 4.6 and the implied penalty
functions shown in Figure 6.3. This may point towards a higher level of specialization
in later steps, as their purpose is to correct small errors that are still present in the
predictions of their predecessors.

4.2 Image Denoising 69

Figure 4.8: Patterns synthesized from uniform noise in the range [0, 255] (left) by
applying the second step (center left) or the fifth step (center right) of the trained
denoising model GD8

3×3, without the likelihood term, until convergence. When the
same is done using trained step parameters of the denoising model HQ8

3×3, the image
merely converges to a smooth patch of uniform gray (right).

4.2.2 Half-Quadratic Inference

Figure 4.5 also presents the output of the half-quadratic model HQ8
3×3 for the same

test image. The result is very similar to that of the 3 × 3 gradient descent model,
but contains visibly less hallucinated structure in the sky and the lake. This trend is
also exhibited in the predictions for other images from the test set. The outputs of
the half-quadratic model might therefore appear more pleasing to a human observer,
although the overall difference in PSNR values would suggest otherwise. It is pos-
sible that a measure more closely modelling human perception, like the Structural
Similarity Index, would rate these outputs higher. However, the more subtle textures
could not be recovered with the half-quadratic approach, either.

The filters learned for each step of the model are presented in Figure 6.4. Notably,
the filters learned for all but the first step are essentially unchanged from their ini-
tialization, depicted in Figure 3.3. Two nonlinear functions learned by the model,
one from the first and one from the last step, are plotted in Figure 4.7. Again,
the representative from the last step stayed very close to its initialization, shown in
Figure 4.4b. The representative from the first step on the other hand changed signif-
icantly. The particularly large weights on the outermost Gaussian RBF components
suggest that the function would continue in a similar fashion if was defined on a
larger domain. In the lower half of the same figure, reconstructions of the implied
penalty functions ρ∗ti can be seen. Both of these bear a strong resemblance to the
truncated quadratic function and Tukey’s Biweight, which were shown in Figure 2.9c.

An overview of all implied penalty functions learned by this model can be found in
Figure 6.5 of the Appendix. In contrast with the functions learned by the gradient
descent model, all of them exhibit the behaviour normally associated with penalty
functions, that is, they assign a higher penalty to inputs of higher absolute value.
As Chapter 5 will show, this is a consequence of the positivity constraint placed
on the learned nonlinear functions. As a result, no generated textures can be ob-
served when conducting the pattern synthesis experiment described above. The steps
of the trained half-quadratic denoising model systematically remove noise instead,
converging to the uniform gray image seen on the right in Figure 4.8.

70 4 Experiments and Results

Steps T 1 2 3 4 5 6 7 8 30 50

GDT
3×3 24.08 25.99 27.15 27.99 28.61 29.14 29.56 29.96 33.17 33.92

HQT
3×3 32.30 33.42 33.60 33.65 33.69 33.71 33.69 33.71

Gausspw. 32.48
GDT

3×3,init 33.37 33.52 33.67 33.71 33.76 33.81 33.84 33.88

HQT
3×3,base 33.22 33.76 33.54 33.39 33.29 33.23 33.19 33.16

HQT
pw.,base 32.92 32.44 32.19 32.07 32.00 31.96 31.93 31.91

RTFT
5×5 [41] 32.76 33.81

CSFT
pw. [40] 32.48 33.50 33.48

Table 4.3: Image deblurring results on the deblurring test set from [29] for the gradient
descent model GDT3×3 and the half-quadratic model HQT3×3 (first part), the specially
initialized gradient descent model GDT3×3,init and its Gaussian initialization Gausspw.

(second part), two untrained half-quadratic models HQT3×3,base and HQTpw.,base (third
part) and two related approaches (fourth part). All values are in decibels. When
truncated to 8 steps, the gradient descent model performs very poorly here, while the
trained half-quadratic model can actually compete with other approaches despite its
limited resources. Letting the gradient descent model run for many more steps, or
providing it with strong initial guesses, allows it to achieve much better results on this
test set. The strong performance of the untrained models compared to the trained ones
is discussed in Chapter 5.

4.3 Image Deblurring

For the non-blind deconvolution task, the models GDT
3×3 and HQT

3×3 were again
trained for T ∈ {1 . . . 8} under indentical conditions, using the same model capacity
as in the denoising experiment and a training set of 50 image patches of size 128×
128. Both approaches have not been applied to the deblurring problem before. The
training data were prepared as detailed in Section 4.1.1 and tests carried out on the
test set also described there. The average PSNR achieved by these two models on
the 32-image test set is reported in the first portion of Table 4.3, separately for each
greedily trained step.

The second part of the same table shows an additional gradient descent experiment,
which will be described later on. The third part provides the results of an untrained
half-quadratic model with 3×3-cliques, HQT

3×3,base, and an untrained pairwise model
HQT

pw.,base, on the deblurring test set. In both cases, the filters and nonlinear func-
tions are initialized to those described in Section 4.1.3. These results were intended
to represent a baseline for comparison with the trained models. But as it turns out,
HQT

3×3,base outperforms the trained model HQ8
3×3 in terms of PSNR on the test set,

reaching a peak of 33.76. A detailed explanation for this is offered in Chapter 5.

To investigate how much the difference in image and kernel sources between training
and test set played into this, the models were evaluated again on an alternative test
set. This alternative test set is more similar to the training set, containing 50 images
of size 128×128 from the test portion of the Berkeley Segmentation Data Set, blurred
with another subset of the synthetically generated kernels from [41]. None of these
images and blur kernels are contained in the training data. The results for this test

4.3 Image Deblurring 71

Steps T 1 2 3 4 5 6 7 8 30 50

GDT
3×3 23.80 25.27 25.99 26.58 26.97 27.34 27.59 27.86 29.97 30.52

HQT
3×3 32.27 33.47 33.73 33.81 33.83 33.84 33.81 33.82

Gausspw. 29.32
GDT

3×3,init 31.51 31.56 31.53 31.59 31.56 31.58 31.56 31.61

HQT
3×3,base 29.69 32.19 33.05 33.35 33.44 33.44 33.40 33.34

HQT
pw.,base 31.28 31.89 31.36 30.94 30.65 30.43 30.27 30.13

Table 4.4: Image deblurring results for the gradient descent model GDT3×3, the half-
quadratic model HQT3×3 and the specially initialized gradient descent model GDT3×3,init,
evaluated on an alternative test set which is more similar to the training set. In the
lower part are the results for the two untrained models. All values are in decibels. On
this set, the gradient descent model cannot compete with the trained half-quadratic
model even after 50 steps.

set, which are reported in Table 4.4, indicate that the trained half-quadratic model
does indeed fare better than the untrained ones on test data that is more similar to
its training data. The gradient descent models on the other hand did significantly
worse on the alternative test set.

In the last part of Table 4.3, results from two related approaches taken in [41] and
[40] are given for comparison. Results for the Cascade of Regression Tree Fields
RTFT

5×5 and the Cascade of Shrinkage Fields CSFT
pw. on the same test set were only

available for T ∈ {1, 2} and T ∈ {1, 2, 3}, respectively. It should be noted that the
same RTF model achieved even better results when training was carried out on a
mix of ground truth kernels and estimated kernels, which supports the notion that
the unmodified training data insufficiently resemble the test set. Kernel estimation
however is not within the scope of this thesis.

4.3.1 Gradient Descent

Training the gradient descent model GDT
3×3 for T = 8 steps produced poor results

on both test sets, as reported in Tables 4.3 and 4.4. As a consequence, additional
experiments were carried out to see whether there is capacity for improvement.

For the first experiment, the model was trained greedily for an increased number of
steps, up to T = 50. As the gradient descent approach is many times faster than the
half-quadratic one, it was feasible to do this without a reduction of the training set. It
turns out that the gradient descent model is able to achieve competitive results on the
regular test set when allowed to take many steps to do so. Figure 4.10 suggests that
it has a much slower rate of convergence than the analoguous half-quadratic model.
In the experiments carried out on the regular deblurring test set, GDT

3×3 surpassed
the half-quadratic model HQ8

3×3 after 43 iterations, with an average PSNR of 33.73.
Whether taking that many steps still qualifies as truncated optimization in the sense
of this work may be debatable. However, evaluating all 50 gradient descent steps on
an image from the test set is still much faster than carrying out even one step of the
half-quadratic model, as shown in Table 4.5.

72 4 Experiments and Results

Steps T 1 2 3 4 5 6 7 8 30 50

GDT
3×3 0.14 0.28 0.42 0.56 0.70 0.84 0.98 1.12 4.19 6.98

HQT
3×3 19.18 38.40 57.57 76.81 96.06 115.38 134.62 153.82

GDT
3×3,init 13.56 13.70 13.84 13.98 14.12 14.26 14.40 14.54

Table 4.5: Average test time of the trained deblurring models for one image of the test
set from [29], in seconds, when stopping after step T . These numbers should be treated
with caution, as the code is not well optimized.

All filters and implied penalty functions learned by the model GD8
3×3 are presented

in Figures 6.6 and 6.7. These figures also contain the filters and functions from steps
30 and 50 of the model GD50

3×3. Note that all penalty functions in the first step are
of similar shape and have exactly one minimum at zero. Starting from the second
step, the majority of penalty functions behave more like the contour and texture
encouraging ones described earlier. The trend towards more finely tuned functions
in the later steps, observed in the denoising case, is repeated here.

In the second additional experiment, dubbed GDT
3×3,init, the basic model architecture

again remained the same. But instead of taking the padded observation y for the
initial guess x̂0, as described in Section 4.1.2, the maximum a-posteriori solution
of a simple Gaussian model with only pairwise cliques was used (see Section 2.3.4).
This preparation step involves the solution of a linear equation system, which is fairly
expensive compared to the convolution-based gradient descent steps. Table 4.5 shows
it slowing down inference by an average 13.42 seconds for one test set image. Yet,
as the results in the second part of Table 4.3 show, the strong initial guess greatly
improves the quality of predictions on the regular test set. The average PSNR of the
Gaussian initialization Gausspw. is also shown, and is in fact higher than the average
PSNR after one step of HQT

3×3 on this test set.

The filters and implied penalty functions learned for this model can be seen in Fig-
ures 6.10 and 6.11. Note how the majority of penalty functions in this model is
tuned towards pattern synthesis, starting from the first step. This suggests that the
Gaussian initial guess has already removed most of the blur, and the remaining steps
primarily aim to sharpen contours and restore details.

Sample outputs of all three gradient descent models for the same test set image
are shown in Figure 4.9, along with the Gaussian initialization and the observation,
ground truth and blur kernel. Notably, in this case the gradient descent models pro-
duce visibly smoother images, while the output of the half-quadratic model contains
a certain level of noise. The same trend is also present in other images from this test
set.

4.3.2 Half-Quadratic Inference

In contrast with the gradient descent model, the half-quadratic model HQ8
3×3 pro-

duces good results for the deblurring task with very few steps. As Tables 4.3 and 4.4
and Figure 4.10 show, the average PSNR it achieves on either test set converges
around step six. Additional steps could not further improve the quality of its pre-
dictions. An example of such a prediction can be seen in Figure 4.9.

4.3 Image Deblurring 73

The filters and implied penalty functions learned by this model are shown in Fig-
ures 6.8 and 6.9. Just as was the case with the half-quadratic denoising model,
the filters remained almost unchanged from their initial configuration. The func-
tions however exhibit different behaviours, with none of them taking on the quasi-
quadratic form that was prevalent in the denoising model. Instead, many resemble
the `1-norm or the hyper-Laplacian function depicted in Figure 2.9. The first step
in particular has multiple penalty functions that supress all negative filter responses
and tolerate all positive ones, or vice versa. An example of such a function is shown
in Figure 4.12. Note that once again, all functions learned for the half-quadratic
model are monotonically increasing for inputs of increasing absolute value, which
will be discussed in the next chapter. As a result, the model is not able to perform
for the type of pattern synthesis witnessed in the gradient descent models.

The average inference time of HQT
3×3 for one test image, given in Table 4.5 after

each step of the model, is about two orders of magnitude worse than that of the
analoguous gradient descent model. Even with a more efficient implementation, it
stands to reason that solving the very large equation system based on Ωt during
each step can not be accomplished with a speed comparable to the convolution-
based gradient descent inference. This holds especially for large images, as the
equation system matrix grows quadratically in the number of image pixels whereas
the computational complexity of convolutions grows in a linear fashion.

Observation (21.22 dB) Blur kernel Ground truth

GD8
3×3 (28.39 dB) GD50

3×3 (33.64 dB) HQ8
3×3 (32.90 dB)

Gaussian init. (32.34 dB) GD8
3×3,init (33.88 dB)

Figure 4.9: Predictions by the two basic models GD8
3×3 and HQ8

3×3, as well as the
additional models GD50

3×3 and GD8
3×3,init, all trained for deblurring, for a sample test

image blurred with the kernel shown in the top row (not to scale). The solution of a
simple Gaussian pairwise model used as input for GD8

3×3,init is shown on the bottom
left. Observation and ground truth are printed for reference and the PSNR between
each image and the ground truth is given in parentheses. The more subtle differences
may only be visible when zoomed in on a digital screen.

1 2 3 4 5 6 7 8
23

24

25

26

27

28

29

30

31

32

33

34

35

Gradient descent model GD8
3× 3

Half-quadratic model HQ8
3× 3

Gradient descent model GD8
3× 3, init

0 10 20 30 40 50
23

24

25

26

27

28

29

30

31

32

33

34

35

Logarithmic function

Gradient descent model GD50
3× 3

Figure 4.10: Average PSNR value on the deblurring test set after each step of the
various deblurring models that were trained. While the half-quadratic model and the
quadratically initialized model converge very quickly (left), the pure gradient descent
model steadily improves its output over a long number of steps (right).

300 200 100 0 100 200 300

10

5

0

5

10

300 200 100 0 100 200 300

0

100

200

300

400

500

Figure 4.11: Learned nonlinear function ρ1,7(u) modelling the response of the seventh
filter in the first step of the model GD8

3×3 trained for deblurring (left), and the implied
penalty function ρ∗1,7(u) obtained by approximate integration (right).

15 10 5 0 5 10 15

0.000

0.002

0.004

0.006

0.008

0.010

0.012

15 10 5 0 5 10 15

0.00

0.05

0.10

0.15

Figure 4.12: Learned nonlinear function ρ1,3(u) modelling the response of the third
filter in the first step of the model HQ8

3×3 trained for deblurring (left), and the implied
penalty function ρ∗1,3(u) obtained by multiplication with u and approximate integration
(right).

5 Discussion and Outlook

Although the experiments reported in the previous chapter were carried out on a
limited training set and with relatively small models, their results nonetheless allow
for a number of interesting conclusions and conjectures. These will be presented in
the next three sections, followed by an overview of routes that were not investigated
here and warrant further research, and finally a short summary of the findings in
this thesis.

5.1 Denoising

With the available training data, both the gradient descent and the half-quadratic
approach converged to achieve a very similar performance on the test set, with the
gradient descent model slightly ahead. The fact that both reached essentially the
same ceiling is a hint that more training data and more training iterations may be
necessary to find out their full potential. A comparison of the PSNR after eight
steps of each model, separately for each test image, is given in Figure 5.1. It mainly
demonstrates that none of the two models is consistently better, but that their
relative performance also depends on the image content.

Of note is the drastic difference in the filters and implied penalty functions learned by
the two models. Where the gradient descent model learned very different filters and
functions during each step, the ones learned by the half-quadratic model are much
more uniform, and the filters in particular barely differ from their initialization.

As was detailed in the previous chapter, those functions in the gradient descent
model which have minima in places other than zero have the effect of sharpening
contours and encouraging patterns (see Figure 4.8). The half-quadratic model did
not learn any functions which do this, and there is a straightforward reason. It
cannot do so because of the positivity constraints placed on its nonlinear functions
ρ(u) to ensure that the matrix Ω is always positive-definite. In Equation (3.48), the
nonlinear functions are defined as

ρ(u) =
ρ∗′(u)

u
,

which also means that

ρ(u) · u = ρ∗′(u) .

Because ρ(u) is constrained to be positive, this means that the derivative of the
actual penalty function ρ∗(u) is always positive for u > 0 and negative for u < 0.
Therefore, the penalty function is monotonically decreasing for negative inputs and
monotonically increasing for positive inputs, leading to a global minimum at zero

78 5 Discussion and Outlook

and ruling out pattern-generating functions like the ones observed in the gradient
descent models.

This restriction of the half-quadratic model leads to smoother output images during
denoising, which is visible in the example in Figure 4.5. While the effect is visually
pleasing for this particular image, in many cases the noise in the observations is
actually obfuscating a non-smooth texture present in the ground truth. Learning to
recreate such textures in the right places potentially improves predictions, but it is
a quality the constrained half-quadratic model lacks.

Figure 5.2 shows the two test images where the PSNR difference between gradient
descent model and half-quadratic model was greatest in favour of the former. Both
images contain many finely textured regions and sharp contours, the restoration
of which is aided by those sharpening and pattern-generating functions learned by
the gradient descent model. The opposite effect can be observed in Figure 5.3,
which shows the two test images where the half-quadratic model had the greatest
advantage. These are dominated by large homogeneous areas, which are restored
especially well by the smoothing effect of the half-quadratic model. This difference
serves to highlight the relevance of pattern-generating elements, or lack thereof, in a
denoising model.

The fact that the learned half-quadratic model is using practically the same filters
it was initialized with may be a hint that more training iterations are needed for it
to really adapt to the training data, or that there was a problem with the training
algorithm. On the other hand, the similarity of the penalty functions modelling
the responses of very different filters, as seen in Figure 6.9, suggests that the exact
configuration of each filter may not be as important for this variant of half-quadratic
inference. If all filters are modelled by the same kind of function anyway, there might
be little value in modifying these filters.

Lastly, the findings in [13] show very clearly that larger maximal cliques lead to better
results for the gradient descent denoising model. Whether this also holds for the
investigated half-quadratic variant should be determined by additional experiments.
However, in light of the very long computation times even when training the 3× 3-
model, no such experiments were carried out here.

5.2 Deblurring

The first prominent result of the conducted deblurring experiments is that the direct
truncated gradient descent approach does not work very well. Within eight steps, it
produces worse results on the test set than each of the other models in only a single
step. As Figure 5.6 illustrates, it performes worst for the test images blurred with
kernels 2 and 4, which are the largest and most widely spread kernels in the test
set. The best results of the gradient descent model are obtained on images blurred
with kernels 3 and 5, which are much more densely concentrated and cover a smaller
area. Since the same tendency can also be observed when comparing the PSNR on
each test image individually, visualized in Figure 5.4, the natural conclusion here is
that gradient descent-based truncated models do not work well with larger or more
complicated blur kernels.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
0

5

10

15

20

25

30

35

40

Gradient descent model GD8
3× 3

Half-quadratic model HQ8
3× 3

Figure 5.1: PSNR values of the predictions made by the gradient descent model GD8
3×3

and the half-quadratic model HQ8
3×3, both trained for denoising, for each image in the

denoising test set.

27.61 dB 26.89 dB

27.14 dB 26.78 dB

Figure 5.2: Comparison of denoising predictions by the gradient descent model GD8
3×3

(left) and the half-quadratic model HQ8
3×3 (right) for the test images 51 and 16, where

the PSNR difference was greatest in favour of the gradient descent model. Ground
truths are shown in the middle.

35.26 dB 36.19 dB

31.81 dB 32.28 dB

Figure 5.3: Comparison of denoising predictions by the gradient descent model GD8
3×3

(left) and the half-quadratic model HQ8
3×3 (right) for the test images 66 and 18, where

the PSNR difference was greatest in favour of the half-quadratic model. Ground truths
are shown in the middle.

80 5 Discussion and Outlook

When truncated only after a sizeable number of steps, the gradient descent ap-
proach was shown to produce fairly competitive deblurring results. But as Figures 5.5
and 5.6 show, it still performs worse than the half-quadratic model for the larger ker-
nels 2 and 4, which lends support to the previous point. All in all, for both inference
approaches, the deblurring performance seems to depend more on the characteristics
of the blur kernel than on the contents of the blurred image. This marks a difference
from the denoising problem with constant noise level σ2, where the corruption in
each image is essentially the same, but results vary significantly between different
images.

The novel half-quadratic model achieved better results on the test set than the
pairwise Cascade of Shrinkage Fields model presented in [40], which is based on
a different variant of half-quadratic inference, but is not as strong as the larger
Regression Tree Field model trained in [41]. The model trained here reaches its peak
PSNR after 5 to 6 steps, both on the original test set and on the alternative one,
indicating that it hit a limit imposed either by the available training data or by the
constraints of the model. This convergence can be seen on the left in Figure 4.10. Its
computation time, however, constitutes a major drawback, as it took significantly
longer per test image than even the half-quadratic denoising model, which operated
on larger images. This will be discussed further in the next section.

In contrast with the half-quadratic model, the trained gradient descent model did not
seem to have converged even after 50 steps. The plot on the right in Figure 4.10 shows
that its progress almost follows a logarithmic trajectory. Since the PSNR value,
which is measured in decibels, works on a logarithmic scale, in some sense this means
that the output quality improves linearly with each additional gradient descent step.
This notion is also supported by Figure 6.1, which shows the time taken by different
models to reach a certain PSNR on their respective test sets, on a logarithmic scale.
While the other models clearly show convergent behaviour, the deblurring model
GD50

3×3 appears to have some potential left. The reason it surpasses the half-quadratic
model may again have to do with its more flexible penalty functions. Although its
performance on the training set and on the alternative test set is decidedly worse,
it has not converged there either and may require even more steps to exploit its full
capacity.

Providing the gradient descent model with strong initial guesses for each input image
proved very helpful on the regular test set, but less so on the alternative test set.
On the former, the initial guesses obtained from a pairwise Gaussian random field
are on the same level as 21 steps of ordinary gradient descent (32.49 dB), giving
the specially initialized model a good start. It should be noted that from there, the
model shows faster convergence than the regular gradient descent model after the 21st

step. This suggests that a combination of quadratic or half-quadratic initial guesses
followed by gradient descent-based refinement can yield a strong model, exploiting
the strong points of both approaches. Table 4.5 shows that the inference time of the
combination tested here is dominated by finding the Gaussian solutions. Yet after
carrying out 8 gradient descent steps on top of that, it is still faster than one step
of the half-quadratic model for deblurring. In practice, a fast and powerful model
might be obtained by combining a more efficient method like a Cascade of Shrinkage
Fields or the Wiener filter for the initial guesses with gradient descent refinement.
However, care must be taken as these approaches make different assumptions about

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

35

40

45

Gradient descent model GD8
3× 3

Half-quadratic model HQ8
3× 3

Figure 5.4: PSNR values of the predictions made by the gradient descent model GD8
3×3

and the half-quadratic model HQ8
3×3, both trained for deblurring, for each image in the

deblurring test set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

35

40

45

Gradient descent model GD50
3× 3

Half-quadratic model HQ8
3× 3

Figure 5.5: PSNR values of the predictions made by the gradient descent model GD50
3×3

and the half-quadratic model HQ8
3×3, both trained for deblurring, for each image in the

deblurring test set.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

Gradient descent model GD8
3× 3

Gradient descent model GD50
3× 3

Half-quadratic model HQ8
3× 3

Figure 5.6: Average PSNR values of the predictions made by the gradient descent mod-
els GD8

3×3 and GD50
3×3 and the half-quadratic model HQ8

3×3, all trained for deblurring,
for the eight different blur kernels in the deblurring test set.

82 5 Discussion and Outlook

Application pixels/image nnz(Fti) nnz(K) nnz(Ωt) time/step

Denoising 159 249 1 472 569 159 249 4 079 481 3.6 s
Deblurring 78 961 707 281 7 087 725 28 326 091 19.2 s

Table 5.1: Difference in runtime between half-quadratic denoising and half-quadratic
deblurring. The function nnz(·) counts the number of non-zero elements in a sparse
matrix. The large numbers for nnz(K) and, as a result, nnz(Ωt) are the deciding factor
for the much longer computation time in the deblurring case. The number of pixels in
each padded test image has an influence on nnz(Fti), but is less important than the
blur kernel size with respect to runtime.

blur effects at the image boundary. When the supplied initial guesses are weak, as
is the case in Table 6.1, the combination approach is much less successful.

Finally there is the comparison with the two initialized, but untrained half-quadratic
models. The results in Tables 4.3, 4.4 and 6.1 show that the untrained model
HQT

3×3,base outperforms the trained model HQT
3×3 on the regular test set, but not

on the alternative test set. On the training set, the trained model is significantly
stronger. The reason for these very different results may be found in the discrepan-
cies between training and test data for the deblurring experiments. As laid out in
Section 4.1.1, the training set uses images from the Berkeley Segmentation Data Set,
while the images in the test set taken from [29] have different source. In addition,
the blur kernels used for training are synthetically generated and may not resemble
the kernels in the test set closely enough. For any of these reasons, training that
improves a model’s performance on the training set may lead to decreased perfor-
mance on the test set, which is an instance of the overfitting problem mentioned
in Section 3.1.2. Since the untrained model HQT

3×3,base is initialized with sensible
parameters that are not specialized on any particular data set, it is better able to
generalize to the test set.

This notion is supported by the finding in [41] that the RTF approach yields better
results on the deblurring test set when its training set contains some ratio of imperfect
kernel estimates, helping the model generalize to the slightly different test kernels.

5.3 Computation time

What Tables 4.2 and 4.5 and Figure 6.1 make very clear is the extreme difference in
computation time between the two inference approaches. Excepting any further op-
timization, which will be addressed in the next section, the examined half-quadratic
variant is slower than the gradient descent approach by a factor of roughly 100 for
denoising and even more for deblurring. To reach a desired PSNR value in either
of the applications, the corresponding gradient descent model is consistently much
faster than its half-quadratic counterpart, even if it needs to take many more infer-
ence steps. In addition, there is a factor of roughly 5 between the inference times of
the half-quadratic model for denoising and the one for deblurring.

These large differences have two main reasons. For the difference between gradient
descent and half-quadratic inference, it is the dependence of the latter on costly
multiplication and decomposition operations on large sparse matrices in each step.

5.4 Outlook 83

Since the blur matrix K and the filter matrices Fti are needed to construct the system
matrixΩt, they also have to be explicitly constructed, whereas in the gradient descent
case, their application can be replaced by much more efficient convolutions.

The difference between deblurring and denoising with the half-quadratic model comes
down to the influence of K, which is negligible in the denoising case as K is simply
the identity matrix there. For deblurring, however, the term K>K/σ2 is added
to Ωt in each step. Because the blur kernels used here are much larger than the
linear filters of the models, the sparse blur matrix K has many more non-zero entries
than the filter matrices Fti. As a result, multiplication with its transpose is a lot
more expensive. More importantly, its inclusion greatly increases the number of
non-zero elements in Ωt as well, which leads to much longer computation times for
the Cholesky decomposition. Relevant numbers from the experiments are shown in
Table 5.1 to illustrate this.

5.4 Outlook

The most important matter for further research on these approaches is improving
their runtime, as that is the primary obstacle for more exhaustive and more conclusive
experiments. The work of Chen and Pock has already demonstrated that a great
speedup is possible for the gradient descent approach, mainly through better use of
parallelization and efficient data structures. Although parallelization of the sparse
matrix operations used in the half-quadratic approach is tricky and the topic of much
research, it would already help to do computations for multiple images in parallel,
as these are entirely independent of each other. It is also worth investigating which
parts of the half-quadratic approach could be sped up by transferring computations
to one or more GPUs, a technique exploited to great effect in [40, 13].

Furthermore, the comparison of the two approaches in this thesis suggests that the
potential of the half-quadratic approach is limited by the positivity constraints im-
posed in Section 3.4.3, as it can not restore texture in the same way the gradient
descent model does. It would therefore be interesting to see how the approach fares
without these constraints. Relaxing the model in this way certainly precludes the use
of the Cholesky decomposition, and it is not immediately clear whether Ωt remains
at all invertible with entirely unconstrained nonlinear functions. For these reasons, it
may be worthwhile to instead investigate the performance of iterative solvers to find
x̂t from Ωtx̂t = ηt. These iterative methods usually depend on a good initialization
and a well-conditioned system matrix for fast convergence towards an approximate
solution [38]. The former can easily be supplied in the form of x̂t−1, since the output
of adjacent steps in the model should generally be very similar. However, whether Ωt

has a favourable condition number when the nonlinear functions are unconstrained,
or if some kind of preconditioning is required for acceptable speed, is not clear and
could be the subject of future research.

Once the models are made to run faster, larger maximal cliques may be exploited to
increase the model capacity, and larger training sets to ensure good generalization
to unseen data. Increased clique sizes have been shown to greatly improve denoising
results for the gradient descent model [13], and it can be assumed that they improve

84 5 Discussion and Outlook

gradient descent deblurring and the half-quadratic approaches for both applications
as well.

As to the training procedure, it would be interesting to see what influence jointly
training the models has in each case, both with and without previous greedy training.
Although the findings in related work show only small improvements with joint
training, it is possible that the gradient descent approach to deblurring would benefit
from this. Another training related question is the effect of σ2 in the half-quadratic
models, already mentioned in Section 3.4.2. Whether dropping this parameter, or
keeping it as some fixed value, would lead to better results could be determined with
additional experiments. In addition, the models could be trained and compared again
with the structural similarity index [43] as a loss measure. The better smoothing
effect of the half-quadratic model during denoising, observed in Figure 5.3, might
mean that it scores higher under a measure that better resembles human perception.

Lastly, the concept of truncated optimization can be examined for entirely different
combinations of model and inference approach, and for related computer vision ap-
plications like super-resolution, JPEG deblocking and inpainting. Some of these have
already been considered in the related work. Truncation may also work for many
different tasks, such as semantic segmentation or stereo reconstruction, to obtain
reasonable predictions with a short and fixed inference procedure.

5.5 Conclusion

The findings of Chen and Pock in [13] for the truncated gradient descent approach
to denoising could be reproduced here on a smaller scale. It was also demonstrated
that the pattern-generating properties, which are a strong point of this model, can
still be observed when using only 3× 3 cliques.

The novel half-quadratic model investigated in this thesis proved to be on par with
the identically trained gradient descent model for the denoising task. Its predictions
exhibit a tendency towards smooth surfaces, owing to the constraints placed on the
nonlinear functions it learned. As a result, the two trained denoising models were
shown to be best suited for different types of image content.

The application of the two approaches to the deblurring task has not been reported
before. In the experiments in this thesis, the half-quadratic model consistently pro-
duced strong results on different data sets, reaching its highest score after 6 steps in
each case. The experiments confirmed the expectation that a similar gradient descent
model with the same number of steps is not well suited for deblurring. When trun-
cating after a much larger number of steps, however, it proved able to outperform
the compared models on the test set taken from [29]. Unfortunately, this positive
finding is challenged by the much poorer results of the same model on a second test
set. While no conclusive reason could be found for this disparity, it may be connected
to the different characteristics of the blur kernels in each set, as the quality of the
gradient descent predictions seems to depend on kernel size and spread.

The deblurring results of the gradient descent model were also improved by supplying
it with good initial guesses from a different method. The model might therefore prove
useful as a post-processing step, refining the output of other deblurring systems.

5.5 Conclusion 85

The crucial problem with the otherwise convincing half-quadratic model is its run-
time, which is two orders of magnitude greater than that of an analoguous gradient
descent model. This was to be expected to some extent, since the approach depends
on expensive operations on large matrices in each iteration. Yet unless there is a way
to speed these calculations up dramatically, the half-quadratic models in this thesis
can not deliver on the fast runtime that is one of the core motivations for truncated
inference in general.

A direct comparison with the results obtained by related approaches was not possible,
because the models trained here operate on smaller cliques and smaller training
sets than those previously published. An interesting aside, however, is how well
the untrained half-quadratic model performed on the deblurring test set from [29],
surpassing the CSF model [40] and getting close to the results of the RTF model
[41]. This could mean that the considered half-quadratic variant is especially well
suited for the deblurring task. It could however also mean that there is a flaw with
the test set, which might also explain the immense performance difference for the
gradient descent model in comparison with an alternative test set.

To improve the results of both models, their code should be made more efficient
to allow for larger cliques and data sets. In addition, a modification of the half-
quadratic model relaxing the constraints on its nonlinear functions could improve its
denoising of textured regions. For deblurring, the most obvious improvement may
be found in obtaining more efficient strong initializations for the gradient descent
model.

6 Appendix

This chapter provides space for a selection of plots and data which would have taken
up too much room in the main part of the thesis. Context for these figures and a
discussion of their content can be found in Chapters 4 and 5.

Steps T 1 2 3 4 5 6 7 8 30 50

GDT
3×3 22.70 24.15 24.87 25.40 25.79 26.15 26.40 26.65 28.43 28.85

HQT
3×3 31.55 32.83 33.15 33.28 33.32 33.32 33.31 33.32

Gausspw. 27.29
GDT

3×3,init 28.21 28.44 28.55 28.61 28.66 28.70 28.74 28.76

HQT
3×3,base 28.56 31.26 32.19 32.56 32.71 32.76 32.75 32.72

HQT
pw.,base 30.02 31.06 30.57 30.19 29.92 29.72 29.55 29.41

Table 6.1: Image deblurring results for the gradient descent model GDT3×3, the half-
quadratic model HQT3×3 and the specially initialized gradient descent model GDT3×3,init,
evaluated on the data set they were trained with. The lower part shows the results for
the two untrained half-quadratic models on the same set.

24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0
10-2

10-1

100

101

102

103

Denoising with GD8
3× 3

Denoising with HQ8
3× 3

Deblurring with GD50
3× 3

Deblurring with HQ8
3× 3

Figure 6.1: Time taken by the different trained models to achieve a given average
PSNR on their respective test set. Time in seconds is plotted on a logarithmic scale
to accomodate the extreme differences between gradient descent and half-quadratic
models. Note how the progression for GD50

3×3 is almost linear in this representation,
suggesting that it is not fully converged yet.

Figure 6.2: All filters learned for the gradient descent denoising model GD8
3×3. Each

row represents one step and each column corresponds to one expert.

Figure 6.3: All penalty functions learned by the model GD8
3×3 for denoising, as ob-

tained via approximate integration. Each row represents one step and each column
corresponds to one expert.

Figure 6.4: All filters learned for the half-quadratic denoising model HQ8
3×3. Each

row represents one step and each column corresponds to one expert.

Figure 6.5: All penalty functions learned by the model HQ8
3×3 for denoising, as ob-

tained via approximate integration. Each row represents one step and each column
corresponds to one expert.

Figure 6.6: All filters learned for the gradient descent deblurring model GD8
3×3, and

the ones learned by the model GD50
3×3 for step 30 and 50. Each row represents one step

and each column corresponds to one expert.

Figure 6.7: All penalty functions learned by the model GD8
3×3 for deblurring, and

the ones learned by the model GD50
3×3 for step 30 and 50, all obtained via approximate

integration. Each row represents one step and each column corresponds to one expert.

Figure 6.8: All filters learned for the half-quadratic deblurring model HQ8
3×3. Each

row represents one step and each column corresponds to one expert.

Figure 6.9: All penalty functions learned by the model HQ8
3×3 for deblurring, as

obtained via approximate integration. Each row represents one step and each column
corresponds to one expert.

Figure 6.10: All filters learned for the specially initialized gradient descent deblurring
model GD8

3×3,init. Each row represents one step and each column corresponds to one
expert.

Figure 6.11: All penalty functions learned by the model GD8
3×3,init for deblurring, as

obtained via approximate integration. Each row represents one step and each column
corresponds to one expert.

Bibliography

[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. “Con-
tour Detection and Hierarchical Image Segmentation”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 33.5 (May 2011), pp. 898–916.
doi: 10.1109/TPAMI.2010.161.

[2] Adrian Barbu. “Training an Active Random Field for Real-Time Image Denois-
ing”. In: IEEE Transactions on Image Processing 18.11 (Nov. 2009), pp. 2451–
2462. doi: 10.1109/TIP.2009.2028254.

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia:
A Fresh Approach to Numerical Computing. Nov. 2014. arXiv: 1411 . 1607
[cs.MS].

[4] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. Julia: A
Fast Dynamic Language for Technical Computing. Sept. 2012. arXiv: 1209.
5145 [cs.PL].

[5] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
New York, 2007.

[6] Michael J. Black and Anand Rangarajan. “On the Unification of Line Processes,
Outlier Rejection, and Robust Statistics with Applications in Early Vision”. In:
International Journal of Computer Vision 19.1 (July 1996), pp. 57–91. doi:
10.1007/BF00131148.

[7] Mikael Boden. “A Guide to Recurrent Neural Networks and Backpropagation”.
In: The Dallas Project, SICS Technical Report (2002).

[8] Ronald Bracewell. The Fourier Transform & Its Applications. English. 3rd
Edition. New York: McGraw-Hill, June 1999, pp. 108–112.

[9] Charles G. Broyden. “Quasi-Newton Methods and Their Application to Func-
tion Minimisation”. In: Mathematics of Computation 21.99 (1967), pp. 368–
381. doi: 10.1090/S0025-5718-1967-0224273-2.

[10] Augustin-Louis Cauchy. “Méthode générale pour la résolution des systèmes
d’équations simultanées”. In: Compte Rendu des S’eances de L’Acad’emie des
Sciences XXV S’erie A.25 (Oct. 1847), pp. 536–538.

[11] Pierre Charbonnier, Laure Blanc-Féraud, Gilles Aubert, and Michel Barlaud.
“Two Deterministic Half-Quadratic Regularization Algorithms for Computed
Imaging”. In: IEEE International Conference on Image Processing. Vol. 2. Nov.
1994, pp. 168–172. doi: 10.1109/ICIP.1994.413553.

[12] Priyam Chatterjee, Neel Joshi, Sing Bing Kang, and Yasuyuki Matsushita.
“Noise Suppression in Low-light Images Through Joint Denoising and De-
mosaicing”. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion. Washington, DC, USA: IEEE Computer Society, 2011, pp. 321–328. doi:
10.1109/CVPR.2011.5995371.

http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1109/TIP.2009.2028254
http://arxiv.org/abs/1411.1607
http://arxiv.org/abs/1411.1607
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145
http://dx.doi.org/10.1007/BF00131148
http://dx.doi.org/10.1090/S0025-5718-1967-0224273-2
http://dx.doi.org/10.1109/ICIP.1994.413553
http://dx.doi.org/10.1109/CVPR.2011.5995371

96 Bibliography

[13] Yunjin Chen and Thomas Pock. Trainable Nonlinear Reaction Diffusion: A
Flexible Framework for Fast and Effective Image Restoration. Aug. 2015. arXiv:
1508.02848 [cs.CV].

[14] Yunjin Chen, Thomas Pock, René Ranftl, and Horst Bischof. “Revisiting Loss-
Specific Training of Filter-Based MRFs for Image Restoration”. In: Pattern
Recognition. Ed. by Joachim Weickert, Matthias Hein, and Bernt Schiele. Lec-
ture Notes in Computer Science 8142. Springer Berlin Heidelberg, Sept. 2013,
pp. 271–281. doi: 10.1007/978-3-642-40602-7.

[15] Michael A. Covington. Digital SLR Astrophotography. Cambridge University
Press, Nov. 2007.

[16] Timothy A. Davis. Direct Methods for Sparse Linear Systems. Fundamentals of
Algorithms. Philadelphia, PA, USA: Society for Industrial and Applied Math-
ematics, 2006.

[17] Justin Domke. “Generic Methods for Optimization-Based Modeling”. In: In-
ternational Conference on Artificial Intelligence and Statistics. Ed. by Neil D.
Lawrence and Mark A. Girolami. Vol. 22. 2012, pp. 318–326.

[18] Mário A. T. Figueiredo. “On Gaussian Radial Basis Function Approximations:
Interpretation, Extensions, and Learning Strategies”. In: 15th International
Conference on Pattern Recognition. Vol. 2. Los Alamitos, CA, USA: IEEE
Computer Society, 2000, pp. 618–621. doi: 10.1109/ICPR.2000.906151.

[19] Donald Geman and George Reynolds. “Constrained Restoration and the Re-
covery of Discontinuities”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 14.3 (Mar. 1992), pp. 367–383. doi: 10.1109/34.120331.

[20] Donald Geman and Chengda Yang. “Nonlinear Image Recovery with Half-
quadratic Regularization”. In: IEEE Transactions on Imgage Processing 4.7
(July 1995), pp. 932–946. doi: 10.1109/83.392335.

[21] Stuart Geman and Donald Geman. “Stochastic Relaxation, Gibbs Distribu-
tions, and the Bayesian Restoration of Images”. In: Readings in Computer Vi-
sion. San Francisco (CA): Morgan Kaufmann, 1987, pp. 562–563.

[22] Christine Guillemot and Olivier Le Meur. “Image Inpainting: Overview and
Recent Advances”. In: IEEE Signal Processing Magazine 31.1 (2014), pp. 127–
144.

[23] J. M. Hammersley and P. Clifford. Markov Fields on Finite Graphs and Lat-
tices. Unpublished manuscript, 1971.

[24] Yu Hen Hu and Jenq-Neng Hwang. Handbook of Neural Network Signal Pro-
cessing. Electrical Engineering & Applied Signal Processing. CRC Press, 2001.

[25] Jinggang Huang and David Mumford. “Statistics of Natural Images and Mod-
els”. In: IEEE Conference on Computer Vision and Pattern Recognition. Vol. 1.
IEEE Computer Society, 1999, p. 547. doi: 10.1109/CVPR.1999.786990.

[26] Jeremy Jancsary, Sebastian Nowozin, and Carsten Rother. “Loss-Specific Train-
ing of Non-Parametric Image Restoration Models: A New State of the Art”.
In: European Conference on Computer Vision. Springer, Aug. 2012.

[27] Ross Kindermann and J. Laurie Snell.Markov Random Fields and Their Appli-
cations. Vol. 1. Contemporary Mathematics. Providence, Rhode Island: Amer-
ican Mathematical Society, 1980.

http://arxiv.org/abs/1508.02848
http://dx.doi.org/10.1007/978-3-642-40602-7
http://dx.doi.org/10.1109/ICPR.2000.906151
http://dx.doi.org/10.1109/34.120331
http://dx.doi.org/10.1109/83.392335
http://dx.doi.org/10.1109/CVPR.1999.786990

Bibliography 97

[28] Dilip Krishnan and Rob Fergus. “Fast Image Deconvolution Using hyper-Laplacian
Priors”. In: International Conference on Neural Information Processing Sys-
tems. Vancouver, British Columbia, Canada: Curran Associates Inc., 2009,
pp. 1033–1041.

[29] Anat Levin, Yair Weiss, Fredo Durand, and William T. Freeman. “Understand-
ing and Evaluating Blind Deconvolution Algorithms”. In: IEEE Conference on
Computer Vision and Pattern Recognition. IEEE. 2009, pp. 1964–1971.

[30] Xin Li, Bahadir Gunturk, and Lei Zhang. “Image Demosaicing: A Systematic
Survey”. In: SPIE Conference on Visual Communications and Image Process-
ing. Vol. 6822. Jan. 2008, doi: 10.1117/12.766768.

[31] D. C. Liu and J. Nocedal. “On the Limited Memory BFGS Method for Large
Scale Optimization”. In: Mathematical Programming 45.3 (Dec. 1989), pp. 503–
528. doi: 10.1007/BF01589116.

[32] Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook.
Tech. rep. 2006.

[33] Michael J. D. Powell. “Radial Basis Functions for Multivariable Interpolation:
A Review”. In: Algorithms for Approximation. New York, NY, USA: Clarendon
Press, 1987, pp. 143–167.

[34] Stefan Roth and Michael J. Black. “Fields of Experts: A Framework for Learn-
ing Image Priors”. In: IEEE Conference on Computer Vision and Pattern
Recognition. Vol. 2. IEEE Computer Society, June 2005, pp. 860–867. doi:
10.1109/CVPR.2005.160.

[35] Stefan Roth and Michael J. Black. “Fields of Experts”. In: International Journal
of Computer Vision 82.2 (Apr. 2009), pp. 205–229. doi: 10.1007/s11263-008-
0197-6.

[36] Håvard Rue and Leonhard Held. Gaussian Markov Random Fields: Theory
and Applications. Vol. 104. Monographs on Statistics and Applied Probability.
London: Chapman & Hall, 2005.

[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning
Internal Representations by Error Propagation”. In: Parallel Distributed Pro-
cessing – Explorations in the Microstructure of Cognition. MIT Press, 1986.
Chap. 8, pp. 318–362.

[38] Yousef Saad. Iterative Methods for Sparse Linear Systems. 2nd. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2003.

[39] Kegan G. G. Samuel and Marshall F. Tappen. “Learning Optimized MAP Es-
timates in Continuously-Valued MRF Models”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE Computer Society, June 2009,
pp. 477–484. doi: 10.1109/CVPR.2009.5206774.

[40] Uwe Schmidt and Stefan Roth. “Shrinkage Fields for Effective Image Restora-
tion”. In: IEEE Conference on Computer Vision and Pattern Recognition. June
2014, pp. 2774–2781.

[41] Uwe Schmidt, Carsten Rother, Sebastian Nowozin, Jeremy Jancsary, and Ste-
fan Roth. “Discriminative Non-blind Deblurring”. In: IEEE Conference on
Computer Vision and Pattern Recognition. IEEE Computer Society, Apr. 2013.

http://dx.doi.org/10.1117/12.766768
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1109/CVPR.2005.160
http://dx.doi.org/10.1007/s11263-008-0197-6
http://dx.doi.org/10.1007/s11263-008-0197-6
http://dx.doi.org/10.1109/CVPR.2009.5206774

98 Bibliography

[42] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Pro-
cessing. California Technical Pub., 1997.

[43] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. “Image
Quality Assessment: From Error Visibility to Structural Similarity”. In: IEEE
Transactions on Image Processing 13.4 (Apr. 2004), pp. 600–612. doi: 10.
1109/TIP.2003.819861.

[44] Jianxin Wu. Some Properties of the Gaussian Distribution. Georgia Institute
of Technology, 2004.

[45] Chih-Yuan Yang, Chao Ma, and Ming-Hsuan Yang. “Single-Image Super-Resolution:
A Benchmark”. In: European Conference on Computer Vision. Springer. 2014,
pp. 372–386.

http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861

Erklärung

Hiermit erkläre ich, dass ich die am 12. 09. 2016 eingereichte Masterarbeit zum Thema
Comparison of Learned Inference Approaches for Image Restoration unter Betreu-
ung von Prof. Carsten Rother selbstständig erarbeitet, verfasst und Zitate kenntlich
gemacht habe. Andere als die angegebenen Hilfsmittel wurden von mir nicht benutzt.

Dresden, den 12. 09. 2016 Jakob Kruse

	Introduction
	Related Work
	Outline of Thesis

	Background and Theory
	Notation
	Images and Restoration
	Image Representation
	Noisy Images
	Blurred Images
	Finding the Restored Image

	Graphical Models
	Markov Random Fields
	Fields of Experts
	Robust Potentials
	Maximum A-Posteriori Inference
	Energy Minimization

	Learned Inference
	Bi-level Optimization
	Loss Function
	Training Data
	Model Parameters

	Truncated Optimization
	Computing Gradients with Backpropagation
	Greedy and Joint Training

	Inference via Gradient Descent
	Motivation
	Energy Gradient
	Update Formula
	Derivative of the Loss Function
	Input Gradient
	Parameter Gradients
	Summary

	Half-Quadratic Inference
	Motivation
	Update Formula
	Solving Systems of Linear Equations
	Derivative of the Loss Function
	Input Gradient
	Parameter Gradients
	Summary

	Experiments and Results
	Training and Test Setup
	Data Sets
	Boundary Handling
	Initialization

	Image Denoising
	Gradient Descent
	Half-Quadratic Inference

	Image Deblurring
	Gradient Descent
	Half-Quadratic Inference

	Discussion and Outlook
	Denoising
	Deblurring
	Computation time
	Outlook
	Conclusion

	Appendix
	Bibliography

