Comparison of Learned Inference Approaches for Image Restoration

Jakob Kruse

Master's Thesis Defense, 23.09.2016

Outline

Motivation and Background

Image Restoration Model Parameterization **Discriminative Training Truncated Optimization** Learned Inference Approaches Gradient Descent Half-quadratic Inference **Experiments** Denoising Deblurring

Conclusion

Motivation and Background

Comparison of Learned Inference Approaches for Image Restoration Jakob Kruse

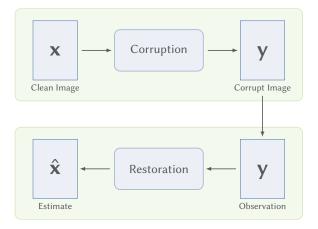
Clean Image

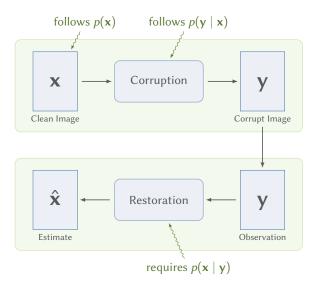
Noisy Image

Blurred Image

Clean image taken from *Berkeley Segmentation Data Set* Blur kernel from Levin *et al.*, "Understanding and Evaluating Blind Deconvolution Algorithms"

Comparison of Learned Inference Approaches for Image Restoration Jakob Kruse





Bayes' Rule

Posterior probability of restored image \mathbf{x} given observation \mathbf{y} is

$$p(\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{x}) \cdot p(\mathbf{x})}{p(\mathbf{y})}$$

Finding the Restored Image

Maximum a-posteriori solution (MAP) is the image **x** with the highest posterior probability given observation **y**:

$$\hat{\mathbf{x}} = \arg\max_{\mathbf{x}} p(\mathbf{x} \mid \mathbf{y}) = \arg\max_{\mathbf{x}} \left(p(\mathbf{y} \mid \mathbf{x}) \cdot p(\mathbf{x}) \right)$$

Assumption for Image Corruption

Each pixel y_i of observation **y** depends on clean image **x** as

$$y_i = \left(\sum_j K_{ij} x_j\right) + r$$

with *blur matrix* **K** and pixel-independent *Gaussian noise* $r \sim \mathcal{N}(0, \sigma^2)$.

Assumption for Image Corruption

Each pixel y_i of observation **y** depends on clean image **x** as

$$y_i = \left(\sum_j K_{ij} x_j\right) + r$$

with *blur matrix* **K** and pixel-independent *Gaussian noise* $r \sim \mathcal{N}(0, \sigma^2)$.

Resulting Gaussian Likelihood

$$p(\mathbf{y} \mid \mathbf{x}) = \prod_{i} \mathcal{N}\left(y_{i}; \sum_{j} K_{ij}x_{j}, \sigma^{2}\right)$$
$$= \mathcal{N}(\mathbf{y}; \mathbf{K}\mathbf{x}, \sigma^{2}\mathbf{I})$$
$$\propto \exp\left(-\frac{1}{2\sigma^{2}} \|\mathbf{K}\mathbf{x} - \mathbf{y}\|^{2}\right)$$

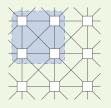
- Iocal smoothness means low difference between neighbouring pixels
- can be extended to filter responses on image patches (*cliques*)

- Iocal smoothness means low difference between neighbouring pixels
- can be extended to filter responses on image patches (*cliques*)

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \prod_{i=1}^{N} \exp\left(-\rho_i(\mathbf{f}_i^{\top} \mathbf{x}_{(c)})\right)$$

- Iocal smoothness means low difference between neighbouring pixels
- can be extended to filter responses on image patches (*cliques*)

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \prod_{i=1}^{N} \exp\left(-\rho_i(\mathbf{f}_i^{\top} \mathbf{x}_{(c)})\right)$$

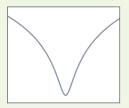


- Iocal smoothness means low difference between neighbouring pixels
- can be extended to filter responses on image patches (*cliques*)

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \prod_{i=1}^{N} \exp\left(-\rho_i(\mathbf{f}_i^{\mathsf{T}} \mathbf{x}_{(c)})\right)$$

- Iocal smoothness means low difference between neighbouring pixels
- can be extended to filter responses on image patches (*cliques*)

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \prod_{i=1}^{N} \exp\left(-\frac{\rho_i}{\mathbf{f}_i^{\top} \mathbf{x}_{(c)}}\right)$$



- Iocal smoothness means low difference between neighbouring pixels
- can be extended to filter responses on image patches (*cliques*)

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \prod_{i=1}^{N} \exp\left(-\rho_{i}(\mathbf{f}_{i}^{\top} \mathbf{x}_{(c)})\right)$$
$$\propto \exp\left(-\sum_{c} \sum_{i=1}^{N} \rho_{i}(\mathbf{f}_{i}^{\top} \mathbf{x}_{(c)})\right)$$

Energy Formulation

Posterior probability $p(\mathbf{x} \mid \mathbf{y})$ can also be written as

$$p(\mathbf{x} \mid \mathbf{y}) \propto p(\mathbf{y} \mid \mathbf{x}) \cdot p(\mathbf{x})$$
$$\propto \exp\left(-E(\mathbf{x} \mid \mathbf{y})\right)$$
with $E(\mathbf{x} \mid \mathbf{y}) = \frac{1}{2\sigma^2} \cdot \|\mathbf{K}\mathbf{x} - \mathbf{y}\|^2 + \sum_c \sum_{i=1}^N \rho_i(\mathbf{f}_i^\top \mathbf{x}_{(c)})$

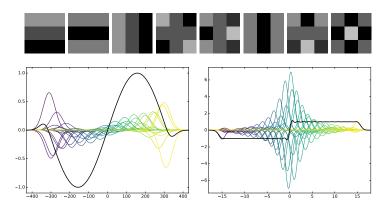
MAP Solution

$$\hat{\mathbf{x}} = \arg\max_{\mathbf{x}} p(\mathbf{x} \mid \mathbf{y}) = \arg\min_{\mathbf{x}} E(\mathbf{x} \mid \mathbf{y})$$

- non-convex for *robust* penalty functions ρ_i
- use iterative minimization method

Model Parameterization

- ▶ linear filters **f**_i constructed from a basis of *zero-mean* filters
- functions ρ_i as flexible Gaussian *radial basis function mixtures*



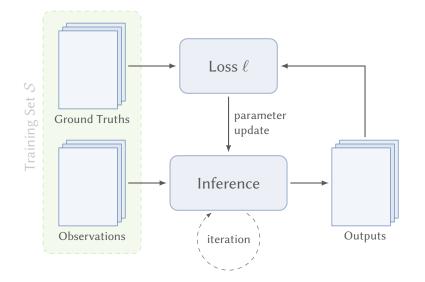
Discriminative Training of Parameters

- \blacktriangleright find parameters Θ that minimize loss ℓ over training set ${\cal S}$
- supervised learning
- negative PSNR as loss function ℓ
- resulting models are application-specific

Bi-Level Optimization Task

$$\Theta^* = \underset{\Theta}{\arg\min} \sum_{k=1}^{|S|} \ell(\hat{\mathbf{x}}^k, \mathbf{x}_{gt}^k) \quad \text{upper level}$$
$$\hat{\mathbf{x}}^k = \underset{\mathbf{x}}{\arg\min} E(\mathbf{x} \mid \mathbf{y}^k; \Theta) \quad \text{lower level (MAF)}$$

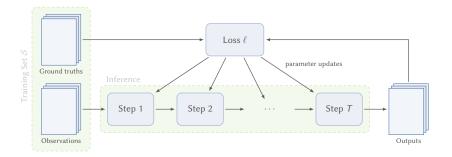
Comparison of Learned Inference Approaches for Image Restoration Jakob Kruse





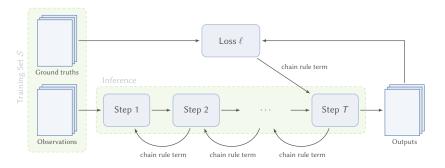
Problems

- inference can take unknown/variable number of iterations
- \blacktriangleright no easy closed-form derivative of ℓ wrt. model parameters



Alternative: Truncated Optimization

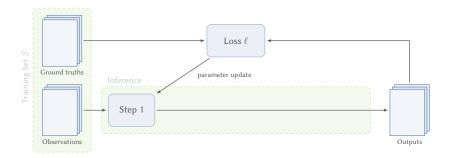
- unroll MAP inference for a small, fixed number of steps
- discriminative training makes up for "incomplete" inference
- better yet: each step gets individual set of parameters Θ_t
- different model at each step, not original problem anymore



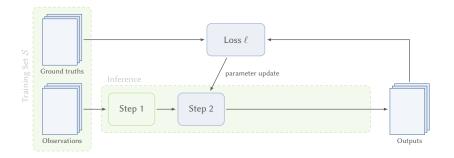
End-to-End Training with Backpropagation

$$\frac{\partial \ell(\hat{\mathbf{x}}, \mathbf{x}_{\text{gt}})}{\partial \Theta_t} = \frac{\partial \ell(\hat{\mathbf{x}}, \mathbf{x}_{\text{gt}})}{\partial \hat{\mathbf{x}}_T} \cdot \frac{\partial \hat{\mathbf{x}}_T}{\partial \hat{\mathbf{x}}_{T-1}} \cdot \cdots \cdot \frac{\partial \hat{\mathbf{x}}_{t+1}}{\partial \hat{\mathbf{x}}_t} \cdot \frac{\partial \hat{\mathbf{x}}_t}{\partial \Theta_t}$$

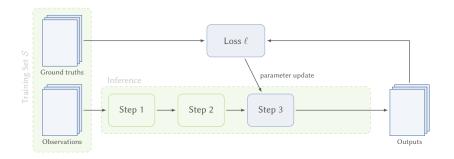
• can be seen as *convolutional neural network* with special operations



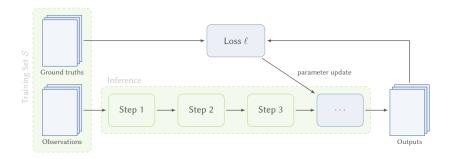
- train each step individually, keeping predecessors' parameters fixed
- output after each step *t* is a viable output $\hat{\mathbf{x}}_t$



- train each step individually, keeping predecessors' parameters fixed
- output after each step *t* is a viable output $\hat{\mathbf{x}}_t$



- train each step individually, keeping predecessors' parameters fixed
- output after each step *t* is a viable output $\hat{\mathbf{x}}_t$



- train each step individually, keeping predecessors' parameters fixed
- output after each step *t* is a viable output $\hat{\mathbf{x}}_t$

Learned Inference Approaches

Approach 1: Truncated Gradient Descent

- done before, most recently by Chen and Pock
- very fast, state-of-the-art results for denoising
- not shown for deblurring before, maybe because of bad results

Approach 1: Truncated Gradient Descent

- done before, most recently by Chen and Pock
- very fast, state-of-the-art results for denoising
- not shown for deblurring before, maybe because of bad results

Approach 2: Truncated Half-quadratic Inference

- variants of this used before e.g. by Schmidt et al.
- very strong results for denoising and deblurring
- Shrinkage Fields also highly efficient and scalable
- HQ variant considered here is much less efficient

Gradient Descent

Minimize energy function by following its gradient, step by step:

$$\mathbf{x}_{t} = \mathbf{x}_{t-1} - \frac{\partial E(\mathbf{x}_{t-1} \mid \mathbf{y})}{\partial \mathbf{x}_{t-1}}$$
$$\stackrel{\frown}{=} \mathbf{x}_{t-1} - \left(\lambda_{t} \cdot \mathbf{K}^{T}(\mathbf{K}\mathbf{x}_{t-1} - \mathbf{y}) + \sum_{i=1}^{N} \mathbf{F}_{ti}^{T} \cdot \rho_{ti}'(\mathbf{F}_{ti}\mathbf{x}_{t-1})\right)$$

Gradient Descent

Minimize energy function by following its gradient, step by step:

$$\mathbf{x}_{t} = \mathbf{x}_{t-1} - \frac{\partial E(\mathbf{x}_{t-1} \mid \mathbf{y})}{\partial \mathbf{x}_{t-1}}$$
$$\stackrel{\frown}{=} \mathbf{x}_{t-1} - \left(\lambda_{t} \cdot \mathbf{K}^{T} (\mathbf{K} \mathbf{x}_{t-1} - \mathbf{y}) + \sum_{i=1}^{N} \mathbf{F}_{ii}^{T} \cdot \rho_{ii}' (\mathbf{F}_{ti} \mathbf{x}_{t-1}) \right)$$

Gradient Descent

Minimize energy function by following its gradient, step by step:

$$\mathbf{x}_{t} = \mathbf{x}_{t-1} - \frac{\partial E(\mathbf{x}_{t-1} \mid \mathbf{y})}{\partial \mathbf{x}_{t-1}}$$
$$\widehat{=} \mathbf{x}_{t-1} - \left(\lambda_{t} \cdot \mathbf{K}^{T} (\mathbf{K} \mathbf{x}_{t-1} - \mathbf{y}) + \sum_{i=1}^{N} \mathbf{F}_{ii}^{T} \cdot \rho_{ii}^{\prime} (\mathbf{F}_{ti} \mathbf{x}_{t-1}) \right)$$

Computation

- in all equations, **K** and \mathbf{F}_{ti} only appear as $\mathbf{K} \cdot \mathbf{v}$ and $\mathbf{F}_{ti} \cdot \mathbf{v}$
- each represents a filter applied to all cliques in an image v, can be done efficiently via convolution as in f_{ti} * v

Half-quadratic Inference: Idea

If penalty functions ρ_i are quadratic, the prior becomes *Gaussian*

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in C} \prod_{i=1}^{N} \exp\left(-\rho_i(\mathbf{f}_i^T \mathbf{x}_{(c)})\right)$$

 $\propto \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{P}^{-1}),$

leading to a Gaussian posterior distribution

$$egin{aligned} p(\mathbf{x} \mid \mathbf{y}) &\propto p(\mathbf{y} \mid \mathbf{x}) \cdot p(\mathbf{x}) \ &\propto \mathcal{N}(\mathbf{y}; \mathbf{K}\mathbf{x}, \sigma^2 \mathbf{I}) \cdot \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{P}^{-1}) \ &\propto \mathcal{N}(\mathbf{x}; \ \mathbf{\Omega}^{-1} \boldsymbol{\eta}, \ \mathbf{\Omega}^{-1}) \,. \end{aligned}$$

Half-quadratic Inference: Idea

If penalty functions ρ_i are quadratic, the prior becomes *Gaussian*

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in C} \prod_{i=1}^{N} \exp\left(-\rho_i(\mathbf{f}_i^T \mathbf{x}_{(c)})\right)$$

 $\propto \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{P}^{-1}),$

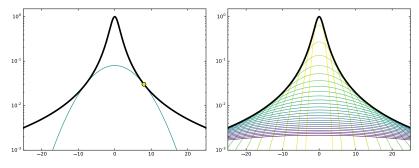
leading to a Gaussian posterior distribution

$$egin{aligned} p(\mathbf{x} \mid \mathbf{y}) &\propto p(\mathbf{y} \mid \mathbf{x}) \cdot p(\mathbf{x}) \ &\propto \mathcal{N}(\mathbf{y}; \mathbf{K}\mathbf{x}, \sigma^2 \mathbf{I}) \cdot \mathcal{N}(\mathbf{x}; \mathbf{0}, \mathbf{P}^{-1}) \ &\propto \mathcal{N}(\mathbf{x}; \ \mathbf{\Omega}^{-1} oldsymbol{\eta}, \ \mathbf{\Omega}^{-1}) \,. \end{aligned}$$

MAP solution is the *mean* vector $\hat{\mathbf{x}} = \mathbf{\Omega}^{-1} \boldsymbol{\eta}$ with $\begin{array}{l} \mathbf{\Omega} = \frac{1}{2\sigma^2} \mathbf{K}^\top \mathbf{K} + \mathbf{P} \\ \boldsymbol{\eta} = \frac{1}{2\sigma^2} \mathbf{K}^\top \mathbf{y} \end{array}$

Half-Quadratic Augmentation (multiplicative form)

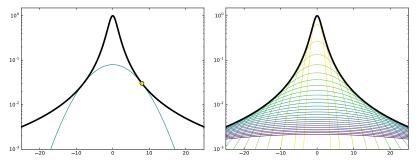
- ▶ approximate robust potentials exp (-ρ_i(u)) by *augmented* potentials exp (-φ_i(u, z)) with auxiliary variable z
- $\phi_i(u, z)$ is a quadratic function if z is held fixed
- distinct values z_{ic} for each filter response $\mathbf{f}_i^T \mathbf{x}_{(c)} \Longrightarrow$ vector \mathbf{z}



Half-Quadratic Augmentation (multiplicative form)

Prior probability is set to be *envelope* of all augmented potentials

$$p(\mathbf{x}) \propto \max_{\mathbf{z}} \left(\prod_{i=1}^{N} \prod_{c \in C} \exp(-\phi_i(\mathbf{f}_i^T \mathbf{x}_{(c)}, z_{ic})) \right)$$



MAP Estimation

 alternate between finding better ẑ for the approximation and solving resulting quadratic model for x̂

MAP Estimation

- alternate between finding better ẑ for the approximation and solving resulting quadratic model for x̂
- since best \hat{z} depends on current \hat{x} , can be combined into one step

$$\hat{\mathbf{x}}_{t} = \boldsymbol{\Omega}_{t}^{-1} \cdot \boldsymbol{\eta}_{t} \quad \text{with}$$

$$\boldsymbol{\Omega}_{t} = \frac{\mathbf{K}^{\top}\mathbf{K}}{\sigma_{t}^{2}} + \sum_{i=1}^{N} \left(\mathbf{F}_{ti}^{\top} \cdot \text{diag} \left\{ \underbrace{\boldsymbol{\rho}_{ti}^{*}(\mathbf{F}_{ti} \hat{\mathbf{x}}_{t-1})}_{\hat{\mathbf{Z}}_{ti}} \right\} \cdot \mathbf{F}_{ti} \right) \qquad \boldsymbol{\eta}_{t} = \frac{\mathbf{K}^{\top}\mathbf{y}}{\sigma_{t}^{2}}$$

MAP Estimation

- alternate between finding better ẑ for the approximation and solving resulting quadratic model for x̂
- since best \hat{z} depends on current \hat{x} , can be combined into one step

$$\hat{\mathbf{x}}_t = \mathbf{\Omega}_t^{-1} \cdot oldsymbol{\eta}_t$$
 with

$$\boldsymbol{\Omega}_{t} = \frac{\mathbf{K}^{\top}\mathbf{K}}{\sigma_{t}^{2}} + \sum_{i=1}^{N} \left(\mathbf{F}_{ti}^{\top} \cdot \operatorname{diag} \left\{ \underbrace{\rho_{ti}^{*}(\mathbf{F}_{ti} \hat{\mathbf{x}}_{t-1})}_{\hat{\mathbf{Z}}_{ti}} \right\} \cdot \mathbf{F}_{ti} \right) \qquad \boldsymbol{\eta}_{t} = \frac{\mathbf{K}^{\top}\mathbf{y}}{\sigma_{t}^{2}}$$

Computation

- need to solve linear equation system for each step, very costly
- construction of $\mathbf{\Omega}_t$ explicitly requires $\mathbf{K}^{\top}\mathbf{K}$ and $\mathbf{F}_{ti}^{\top} \cdot \text{diag}\{\ldots\} \cdot \mathbf{F}_{ti}$
- functions ρ_{ti}^* are constrained non-negative so Ω_t is *positive-definite*

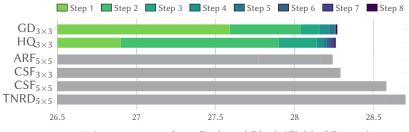
Experiments

Image Denoising

- both approaches trained greedily under identical conditions up to 8 inference steps, using 3 × 3 cliques
- ▶ 50 training images of size 128×128 , noise level $\sigma^2 = 25.0$
- ▶ 100 iterations of *L*-*BFGS* per step to learn parameters

Image Denoising

- both approaches trained greedily under identical conditions up to 8 inference steps, using 3 × 3 cliques
- ▶ 50 training images of size 128×128 , noise level $\sigma^2 = 25.0$
- ▶ 100 iterations of *L*-*BFGS* per step to learn parameters



68 image test set from Roth and Black (Field of Experts)

Ground Truth

Observation (20.20 dB)

$GD_{3\times 3}^{8}$ (27.61 dB)

$HQ_{3\times 3}^{8}$ (26.89 dB)

Ground truth taken from Berkeley Segmentation Data Set

Comparison of Learned Inference Approaches for Image Restoration Jakob Kruse

Gradient descent (27.61 dB)

Half-quadratic (26.89 dB)

Ground Truth

Observation (20.16 dB)

 $GD_{3\times 3}^{8}$ (35.26 dB)

 $HQ_{3\times3}^{8}$ (36.19 dB)

Ground truth taken from Berkeley Segmentation Data Set

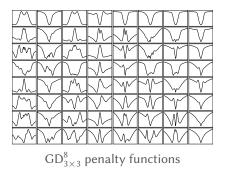
Comparison of Learned Inference Approaches for Image Restoration Jakob Kruse

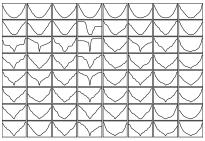
Gradient descent (35.26 dB)

Half-quadratic (36.19 dB)

Learned Penalty Functions

- very flexible for GD model, many "inverted" penalty functions
- quite uniform for HQ model, resemble quadratic and hyper-Laplacian
- reason is the positivity constraint for HQ nonlinear functions





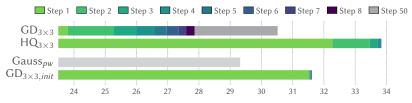
 $HQ^8_{3\times 3}$ penalty functions

Image Deblurring (Non-blind Deconvolution)

- both approaches trained greedily just like in denoising case
- ▶ 50 training images of size 128 × 128, kernels from Schmidt *et al.*
- > 100 iterations of L-BFGS per step to learn parameters

Image Deblurring (Non-blind Deconvolution)

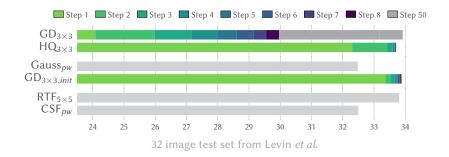
- both approaches trained greedily just like in denoising case
- ▶ 50 training images of size 128 × 128, kernels from Schmidt *et al.*
- 100 iterations of L-BFGS per step to learn parameters



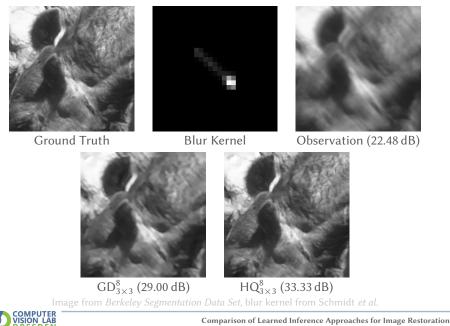
50 image test set similar to training data

Image Deblurring (Non-blind Deconvolution)

- both approaches trained greedily just like in denoising case
- ▶ 50 training images of size 128 × 128, kernels from Schmidt *et al.*
- 100 iterations of L-BFGS per step to learn parameters



Experiments · Deblurring

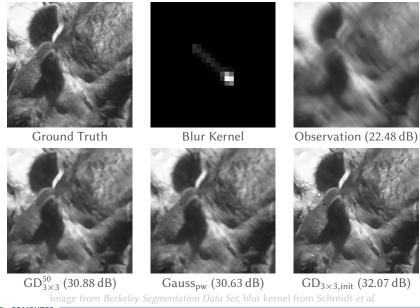


Jakob Kruse

Gradient descent (29.00 dB)

Half-quadratic (33.33 dB)

Experiments · Deblurring



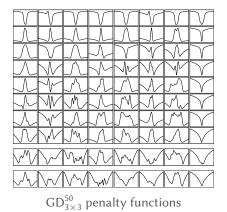
Comparison of Learned Inference Approaches for Image Restoration Jakob Kruse

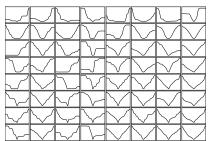
Gradient descent 50 steps (30.88 dB)

Gradient descent with Gaussian init (32.07 dB)

Learned Penalty Functions

- situation similar to denoising models
- later functions in HQ model tend towards ℓ_1 -norm





 $HQ^8_{3\times 3}$ penalty functions

Conclusion

Findings

- both approaches achieved roughly same results for denoising
- truncated GD is less suitable for deblurring (depends of test set?)
- HQ variant is strong, but extremely slow
- constrained penalty functions restrict the model

Findings

- both approaches achieved roughly same results for denoising
- truncated GD is less suitable for deblurring (depends of test set?)
- HQ variant is strong, but extremely slow
- constrained penalty functions restrict the model

Possible Extensions and Further Research

- improve speed by parallelizing over images
- try solving $\mathbf{\Omega}_t \hat{\mathbf{x}}_t = \boldsymbol{\eta}_t$ iteratively instead of directly
- examine other applications and inference approaches

Findings

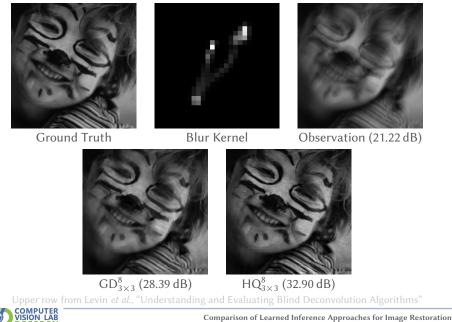
- both approaches achieved roughly same results for denoising
- truncated GD is less suitable for deblurring (depends of test set?)
- HQ variant is strong, but extremely slow
- constrained penalty functions restrict the model

Possible Extensions and Further Research

- improve speed by parallelizing over images
- try solving $\mathbf{\Omega}_t \hat{\mathbf{x}}_t = \boldsymbol{\eta}_t$ iteratively instead of directly
- examine other applications and inference approaches

Thank you!

Bonus



Jakob Kruse

Gradient descent (28.39 dB)

Half-quadratic (32.90 dB)

 $GD_{3\times3}^{50}$ (33.64 dB)

Blur Kernel

Gauss_{pw} (32.34 dB)

Observation (21.22 dB)

 $GD^{8}_{3\times 3,init}$ (33.88 dB)

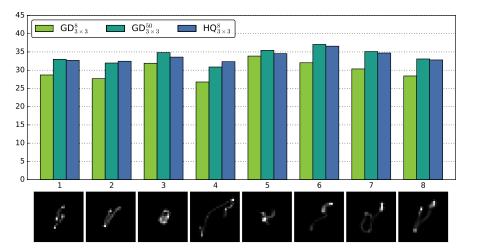
Upper row from Levin et al., "Understanding and Evaluating Blind Deconvolution Algorithms

Comparison of Learned Inference Approaches for Image Restoration Jakob Kruse

Gradient descent 50 steps (33.64 dB)

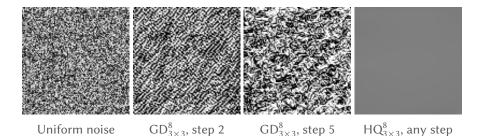
Gradient descent with Gaussian init (33.88 dB)

Bonus



Blur kernels from Levin et al., "Understanding and Evaluating Blind Deconvolution Algorithms"

Comparison of Learned Inference Approaches for Image Restoration Jakob Kruse



Pattern Sythesis Experiment (after Chen and Pock)

- Input is uniform random noise
- Repeatedly apply same step of a trained model until convergence
- Gradient descent steps encourage distinct patterns
- Half-quadratic steps quickly lead to uniform gray image

