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Clean Image Noisy Image Blurred Image

Clean image taken from Berkeley Segmentation Data Set
Blur kernel from Levin et al., “Understanding and Evaluating Blind Deconvolution Algorithms”
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Bayes’ Rule
Posterior probability of restored image x given observation y is

p(x | y) =
p(y | x) · p(x)

p(y)

Finding the Restored Image
Maximum a-posteriori solution (MAP) is the image x with the highest
posterior probability given observation y:

x̂ = arg max
x

p(x | y) = arg max
x

(
p(y | x) · p(x)

)
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Assumption for Image Corruption
Each pixel yi of observation y depends on clean image x as

yi =
(∑

j

Kijxj
)

+ r

with blur matrix K and pixel-independent Gaussian noise r ∼ N (0, σ2).

Resulting Gaussian Likelihood

p(y | x) =
∏
i

N
(
yi;
∑
j

Kijxj, σ2
)

= N (y; Kx, σ2I)

∝ exp
(
− 1

2σ2 ‖Kx− y‖2
)

Comparison of Learned Inference Approaches for Image Restoration
Jakob Kruse



Motivation and Background · Image Restoration 5 / 28

Assumption for Image Corruption
Each pixel yi of observation y depends on clean image x as

yi =
(∑

j

Kijxj
)

+ r

with blur matrix K and pixel-independent Gaussian noise r ∼ N (0, σ2).

Resulting Gaussian Likelihood

p(y | x) =
∏
i

N
(
yi;
∑
j

Kijxj, σ2
)

= N (y; Kx, σ2I)

∝ exp
(
− 1

2σ2 ‖Kx− y‖2
)

Comparison of Learned Inference Approaches for Image Restoration
Jakob Kruse



Motivation and Background · Image Restoration 6 / 28

Assumption for Restored Images
I local smoothness means low di�erence between neighbouring pixels
I can be extended to filter responses on image patches (cliques)

Field of Experts Prior (Roth and Black)

∝ exp
(
−
∑
c

N∑
i=1

ρi(f>i x(c))
)
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Energy Formulation
Posterior probability p(x | y) can also be wri�en as

p(x | y) ∝ p(y | x) · p(x)

∝ exp
(
−E(x | y)

)
with E(x | y) =

1
2σ2 · ‖Kx− y‖2 +

∑
c

N∑
i=1

ρi(f>i x(c))

MAP Solution

x̂ = arg max
x

p(x | y) = arg min
x

E(x | y)

I non-convex for robust penalty functions ρi
I use iterative minimization method
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Model Parameterization
I linear filters fi constructed from a basis of zero-mean filters
I functions ρi as flexible Gaussian radial basis function mixtures
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Discriminative Training of Parameters
I find parameters Θ that minimize loss ` over training set S
I supervised learning
I negative PSNR as loss function `
I resulting models are application-specific

Bi-Level Optimization Task

Θ∗ = arg min
Θ

|S|∑
k=1

`(x̂k , xk
gt) upper level

x̂k = arg min
x

E(x | yk ; Θ) lower level (MAP)
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Tr
ai

ni
ng

Se
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S

Inference

Loss `
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Tr
ai

ni
ng

Se
t
S

Inference

Loss `

Ground Truths

Observations Outputs

parameter
update

iteration

Problems
I inference can take unknown/variable number of iterations
I no easy closed-form derivative of ` wrt. model parameters
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Tr
ai

ni
ng

Se
t
S

Inference

Step 1 Step 2 . . . Step T

Loss `

Ground truths

Observations Outputs

parameter updates

Alternative: Truncated Optimization
I unroll MAP inference for a small, fixed number of steps
I discriminative training makes up for “incomplete” inference
I be�er yet: each step gets individual set of parameters Θt

I di�erent model at each step, not original problem anymore
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Tr
ai

ni
ng

Se
t
S

Inference

Step 1 Step 2 . . . Step T

Loss `

Ground truths

Observations Outputs

chain rule term

chain rule termchain rule termchain rule term

End-to-End Training with Backpropagation

∂`(x̂, xgt)

∂Θt
=
∂`(x̂, xgt)

∂x̂T
· ∂x̂T

∂x̂T−1
· ··· · ∂x̂t+1

∂x̂t
· ∂x̂t

∂Θt

I can be seen as convolutional neural network with special operations
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Tr
ai

ni
ng

Se
t
S

Inference

Step 1

Loss `

Ground truths

Observations Outputs

parameter update

Be�er Results with Greedy Training
I train each step individually, keeping predecessors’ parameters fixed
I output a�er each step t is a viable output x̂t
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Approach 1: Truncated Gradient Descent
I done before, most recently by Chen and Pock
I very fast, state-of-the-art results for denoising
I not shown for deblurring before, maybe because of bad results

Approach 2: Truncated Half-quadratic Inference
I variants of this used before e. g. by Schmidt et al.
I very strong results for denoising and deblurring
I Shrinkage Fields also highly e�icient and scalable
I HQ variant considered here is much less e�icient
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Gradient Descent
Minimize energy function by following its gradient, step by step:

xt = xt−1 −
∂E(xt−1 | y)

∂xt−1

=̂ xt−1 −
(
λt · KT (Kxt−1 − y) +

N∑
i=1

FT
ti · ρ′ti(Ftixt−1)

)

Computation
I in all equations, K and Fti only appear as K · v and Fti · v
I each represents a filter applied to all cliques in an image v, can be

done e�iciently via convolution as in fti ∗ v
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Half-quadratic Inference: Idea
If penalty functions ρi are quadratic, the prior becomes Gaussian

p(x) =
1
Z

∏
c∈C

N∏
i=1

exp
(
−ρi(fTi x(c))

)
∝ N (x; 0,P−1) ,

leading to a Gaussian posterior distribution

p(x | y) ∝ p(y | x) · p(x)

∝ N (y; Kx, σ2I) · N (x; 0,P−1)

∝ N (x; Ω−1η, Ω−1) .

MAP solution is the mean vector x̂ = Ω−1η with
Ω = 1

2σ2 K>K + P
η = 1

2σ2 K>y
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Half-�adratic Augmentation (multiplicative form)
I approximate robust potentials exp

(
−ρi(u)

)
by augmented potentials

exp
(
−φi(u, z)

)
with auxiliary variable z

I φi(u, z) is a quadratic function if z is held fixed
I distinct values zic for each filter response fTi x(c) =⇒ vector z
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Half-�adratic Augmentation (multiplicative form)
Prior probability is set to be envelope of all augmented potentials

p(x) ∝ max
z

(
N∏
i=1

∏
c∈C

exp
(
−φi(fTi x(c), zic)

))
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MAP Estimation
I alternate between finding be�er ẑ for the approximation and solving

resulting quadratic model for x̂

I since best ẑ depends on current x̂, can be combined into one step

x̂t = Ω−1
t · ηt with

Ωt =
K>K
σ2
t

+
N∑
i=1

(
F>ti · diag

{
ρ∗ti(Ftix̂t−1)︸ ︷︷ ︸

ẑti

}
· Fti

)
ηt =

K>y
σ2
t

Computation
I need to solve linear equation system for each step, very costly
I construction of Ωt explicitly requires K>K and F>ti · diag{. . .} · Fti

I functions ρ∗ti are constrained non-negative so Ωt is positive-definite
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Image Denoising
I both approaches trained greedily under identical conditions up to 8

inference steps, using 3× 3 cliques
I 50 training images of size 128× 128, noise level σ2 = 25.0
I 100 iterations of L-BFGS per step to learn parameters

GD3×3
HQ3×3

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

26.5 27 27.5 28 28.5

ARF5×5
CSF3×3
CSF5×5

TNRD5×5

68 image test set from Roth and Black (Field of Experts)
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Ground Truth Observation (20.20 dB)

GD8
3×3 (27.61 dB) HQ8

3×3 (26.89 dB)

Ground truth taken from Berkeley Segmentation Data Set
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Ground Truth Observation (20.16 dB)

GD8
3×3 (35.26 dB) HQ8

3×3 (36.19 dB)

Ground truth taken from Berkeley Segmentation Data Set
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Gradient descent (35.26 dB)



Half-quadratic (36.19 dB)
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Learned Penalty Functions
I very flexible for GD model, many “inverted” penalty functions
I quite uniform for HQ model, resemble quadratic and hyper-Laplacian
I reason is the positivity constraint for HQ nonlinear functions

GD8
3×3 penalty functions HQ8

3×3 penalty functions
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Image Deblurring (Non-blind Deconvolution)
I both approaches trained greedily just like in denoising case
I 50 training images of size 128× 128, kernels from Schmidt et al.
I 100 iterations of L-BFGS per step to learn parameters
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Image Deblurring (Non-blind Deconvolution)
I both approaches trained greedily just like in denoising case
I 50 training images of size 128× 128, kernels from Schmidt et al.
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HQ3×3

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 50

Gausspw
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24 25 26 27 28 29 30 31 32 33 34
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32 image test set from Levin et al.
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Ground Truth Blur Kernel Observation (22.48 dB)

GD8
3×3 (29.00 dB) HQ8

3×3 (33.33 dB)
Image from Berkeley Segmentation Data Set, blur kernel from Schmidt et al.
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Gradient descent (29.00 dB)



Half-quadratic (33.33 dB)
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Ground Truth Blur Kernel Observation (22.48 dB)

GD50
3×3 (30.88 dB) Gausspw (30.63 dB) GD3×3,init (32.07 dB)

Image from Berkeley Segmentation Data Set, blur kernel from Schmidt et al.
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Gradient descent 50 steps (30.88 dB)



Gradient descent with Gaussian init (32.07 dB)
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Learned Penalty Functions
I situation similar to denoising models
I later functions in HQ model tend towards `1-norm

GD50
3×3 penalty functions HQ8

3×3 penalty functions
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Findings
I both approaches achieved roughly same results for denoising
I truncated GD is less suitable for deblurring (depends of test set?)
I HQ variant is strong, but extremely slow
I constrained penalty functions restrict the model

Possible Extensions and Further Research
I improve speed by parallelizing over images
I try solving Ωt x̂t = ηt iteratively instead of directly
I examine other applications and inference approaches

Thank you!
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Ground Truth Blur Kernel Observation (21.22 dB)

GD8
3×3 (28.39 dB) HQ8

3×3 (32.90 dB)
Upper row from Levin et al., “Understanding and Evaluating Blind Deconvolution Algorithms”
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Gradient descent (28.39 dB)



Half-quadratic (32.90 dB)
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Ground Truth Blur Kernel Observation (21.22 dB)

GD50
3×3 (33.64 dB) Gausspw (32.34 dB) GD8

3×3,init (33.88 dB)
Upper row from Levin et al., “Understanding and Evaluating Blind Deconvolution Algorithms”
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Gradient descent 50 steps (33.64 dB)



Gradient descent with Gaussian init (33.88 dB)



Bonus 28 / 28
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3× 3 GD50

3× 3 HQ8
3× 3

Blur kernels from Levin et al., “Understanding and Evaluating Blind Deconvolution Algorithms”
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Bonus 28 / 28

Uniform noise GD8
3×3, step 2 GD8

3×3, step 5 HQ8
3×3, any step

Pa�ern Sythesis Experiment (a�er Chen and Pock)
I Input is uniform random noise
I Repeatedly apply same step of a trained model until convergence

I Gradient descent steps encourage distinct pa�erns
I Half-quadratic steps quickly lead to uniform gray image
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