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1 Introduction

Observing the microbiological processes in the cardiovascular system of zebra�shes help
to achieve greater understanding the development processes of the cardiovascular system
in a living organism and the function of the single cells in this process. Large amount of
microscopy recordings are gathers and need analyzing. Software tool can be designed to
guide such analysis by, for instance, locating the heart muscle cells in the recordings and
separating them from the background.

Biological Context The Max Planck Institute of Molecular Cell Biology and Genetics
(MPI-CBG) in Dresden investigates on the smallest structures of live to �nd how they
form complex structures and to explain their e�ect on living organisms. The Huisken
Lab investigates on development principles in living organisms by observing them under
a microscope in, for instance, zebra�shes. They aim to answer questions like: �What
initializes the heartbeat?� and �How do the heart cells collaborate in this process?�
Answers to these questions also help to understand the human heart [Nemtsas et al.,
2010].

The zebra�sh allows for investigating the cardiovascular processes with selective plane
illumination microscopy (SPIM) [Huisken et al., 2004] in the intact organisms. This
technique records image planes of the 3D space in which the sample is in for a time
period. Therefore, this capturing process returns 4D image sequences - one 3D stack per
time frame. Figure 1.1 depicts one slice out of a single 3D image stack at a certain point
in time. It shows marked heart muscle cells on the tissue of the heart chambers.

Tracking Problem An important issue for the investigations on the cardiovascular
system is to reconstruct the heart structure from the visible cells in the microscopy
recordings to establish a connection between the cell internal process with the dynamics
of the whole heart during the initialization of the heartbeat. Reconstructing the full
structure needs tracking each cell in a video sequence. Tracking all cells in the recording
manually is, however, a tedious task and, therefore, a software tracking tool shall be
deployed to automatically locate the cells in space. A common approach to visual object
tracking is to apply particle �lters [Gordon et al., 1993]. Given de�ned models for motion
and appearance of the targeted object, they analyze a video recording frame by frame and
estimate the object's location based on its previous location. There are usually many
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1 Introduction

Figure 1.1: A slice out of a 3D image stack of a microscopy recording. The heart muscle
cells in the upper left corner form the contour of one heart chamber. On the
bottom right one can see the cells on the upper surface of the second heart
chamber. The whole given recording shows such cells during a full cardiac
cycle, the cells on the heart tissue move during the heartbeat.

reasonable locations where the object could have moved and, therefore, the particle
�ltering framework does not estimate only one location, but models a distribution of
possible location based on the previous positions. Object trajectories are derived from
these distribution such that the likelihood of a estimated trajectory is maximized.

This approach works quite well, if there is just one object or if di�erent object have
di�erent appearance. When working with multiple objects, one can either run a particle
�lter for each targeted object and track them on their own, or one can track all objects
jointly by a single tracker. In the case where multiple objects with similar appearance are
tracked by independent trackers, the trackers are not able to distinguish their target from
other targets. When ever two objects interact, the trackers may switch to the appearance
of a neighbouring object and the original target is lost. If all objects are tracked by a
single tracker, it would be possible to distinguish the cells from another and, therefore,
prevent losing a target. But this approach does not scale with the amount of target
objects and quickly becomes infeasible. These problems are discussed in [Khan et al.,
2004]. Both approaches can not be applied to track more than 200, similar looking heart
cells in the given recordings.

A solution might be to apply pseudo-independent trackers that evaluate more expressive
models - models which are able to handle multiple occurrences -to solve this problem. The
discriminative particle �lter framework, which have been presented in [Hess and Fern,
2009], extends the common particle �ltering framework such that they are able to express
any arbitrary feature of the targeted object in speci�cally designed feature functions.
Such features can de�ne di�erent motion models and they can describe di�erent aspects
of the object's appearance, but they may also describe interactions or relations between
di�erent objects. An important part is, that these trackers are run in parallel and all
their information are shared between each other. Furthermore, the presented framework
is able to automatically learn the importance of the features that are necessary to describe
a speci�c tracking problem.

An alternative to �ltering is tracking by assignment, the Feature Point Tracker [Sbalzarini
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1 Introduction

and Koumoutsakos, 2005] provides one such implementation. The trajectories of multiple
similar looking objects are found by, �rst, detecting cell appearances independently in
each frame and, afterwards, linking the detected appearances through time. The Feature
Point Tracker has been successfully applied to many biological problems.

Response This thesis examines the discriminative particle �ltering framework of [Hess
and Fern, 2009]. It establishes the connection between the generative models of the
common particle �lters and explains speci�cally designed features that explain the heart
muscle cells. An implementation as Fiji1 plug-in is provided and tested on simulated
data. This approach is evaluated on the heart cell tracking problem, the results are
compared to the Feature Point Tracker - a Fiji plugin is provided by [Sbalzarini and
Koumoutsakos, 2005] in the MosaicSuite2.

The experiments show that the Feature Point Tracker detects cells more precisely and
the estimated locations are closer to the true appearances in the image than the locations
which are output by the implemented discriminative particle �lter. However, the provided
collection of feature functions help the implemented discriminative particle �lter to �nd
better trajectories for the whole video sequence, where the linking algorithm of Feature
Point Tracker is distracted by appearances of the di�erent cells and jumps between
them.

Structure The basic foundations are explained in Chapter 2. This chapter covers the
theory on �ltering, introduces the particle �lter framework, and explains the di�culties
that occur when tracking multiple objects. Chapter 3 illustrates how the particle �lters
can be extended by discriminative feature functions as it is done in [Hess and Fern, 2009].
Chapter 4 de�nes speci�cally designed feature functions, each of them models a single
characteristic of the targeted cells. After de�ning these feature functions they are applied
on to the heart tracking problem and compared to the Feature Point Tracker in Chapter
5. At last, this thesis concludes with a summary in Chapter 6.

1http://fiji.sc/Fiji
2http://mosaic.mpi-cbg.de/?q=downloads/imageJ
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2 Preliminaries

This chapter explains the basic principles and how they relate to the task of tracking
heart muscle cells in a video. It covers the Hidden Markov Model that is used to explain
the target objects, the Bayes �lter that explains how to estimate hidden states in Hidden
Markov Models, the particle �lter as a sampling-based approximation to the Bayes �lter,
and the problem of applying particle �lters to multi-object tracking.

2.1 Hidden Markov Model

The underlying model that is used in this thesis to track the heart muscle cells is the
Hidden Markov Model. It describes a time-dependent process that has an inherent system
state xt, which is not directly observable and therefore also called hidden state. It can
only be captured by an indirect and noisy observation yt. Tracking moving objects in
videos aims to estimate a sequence of object locations frame by frame. The object's time-
dependent 3D locations are modeled by the hidden states xt. But it also needs adding
more parameters to the system state, if also the appearance of each object changes over
time. The heart muscle cells can be approximately pictured by a Gaussian blob with a
�xed point spread function; however, the illumination intensity of two cells di�ers and
it may even change from frame to frame. Therefore, the hidden state xt becomes a
4-dimensional vector that represent the 3D location and the illumination intensity of a
heart muscle cell. The observation yt is the image of the video at time t.

To compute a state estimate from the observations, the Hidden Markov Model requires
that the relation between a system state xt and an observation yt is speci�ed. This means
a probabilistic observation model p(yt|xt) must be de�ned. This model describes how an
observation looks like, given the system state is known. Also a motion model p(xt|xt−1)
of the system state must be speci�ed in advance. It describes how the system changes
over time, that is, it explains how the targeted object moves between two frames.

Figure 2.1 graphically depicts modeled state sequence. Starting at time t = 0 with
an a-priori given state estimate, the motion model connects the hidden states in time.
The initial location at time t = 0 is either given by the user or can also be determined
by an upstream blob detector. The observation likelihood is computed by comparing
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2 Preliminaries

Figure 2.1: Hidden Markov Model

the observed image yt with an arti�cial Gaussian blob which is placed at the estimated
position x̂t. Therefore it determines how well the estimate �ts the image.

2.2 Recursive Bayes Filter

The recursive Bayes �lter is a framework that is to sequentially determine state estimates
x̂t by computing their probability distribution p(xt|y1:t). Starting with the given initial
location and illumination intensity the Bayes �lter iterates through the video, it estimates
the next state by integrating the motion p(xt|xt−1), and it evaluates the probability of
the next observation p(yt|xt) for each frame t. A target location and its intensity value
can be estimated from the posterior distribution.

At time t = 1 the �lter takes the probability of the initial state p(x0) as prior knowledge.
The posterior distribution p(x1|y1) can be calculated using Bayes theorem p(x1|y1) =
p(y1|x1)p(x1)

p(y1)
. The probability p(x1) can be calculated by marginalizing over all previous

states and move them according to the motion model, i.e., p(x1) =
´
x0
p(x1|x0)p(x0)dx0.

The denominator p(y1) depicts the probability of the observation itself. It is constant
for each point in time, because the observation image is recorded and will not change.
Therefore the posterior distribution of the �rst state estimate can be determined by
p(x1|y1) ∝ p(y1|x1)

´
x0
p(x1|x0)p(x0)dx0.

For the following time points t the posterior distribution p(xt|y1:t) is still based on that
initial state estimate, but also on each other observation that has been seen until t. To
incorporate the previous observations the posterior likelihood at time t is given by:

13



2 Preliminaries

Figure 2.2: Particles in the Hidden Markov Model

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(y1:t)
(2.1)

∝ p(yt|xt)
ˆ
xt−1

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

Since the posterior likelihood at time t is based on the previous posterior likelihood,
the Bayes �lter can calculate a posterior likelihood of any state recursively starting at
t = 1.

2.3 Particle Filter

The Bayes �lter requires integrating over all previous states. But when the object makes
non-linear moves or has a non-linear appearance, then the posterior distribution becomes
complex and therefore analytically intractable. Instead of computing the exact posterior
distribution for each time t the particle �lters approximate this distribution by sampling

a set of particles that are to represent it. Each particle is a sample x
(i)
t of the system

state and each particle has a weight π
(i)
t attached. The particle weight represents the

likelihood of the sampled system state according to the posterior distribution, hence it

holds that π
(i)
t ∝ p(x

(i)
t |y1:t). Therefore, the whole set of weighted particles {(x(i)

t , π
(i)
t )}

approximate the posterior distribution p(xt|y1:t).

Just like the Bayes �lter, the particle �lter approximates the posterior distribution se-
quentially. Starting with the given initial state at the �rst frame, the particles are moved
from frame to frame by sampling new states according to the motion model. In each
frame the weights of the newly sampled particles are updated according to the current
observation. However, this might lead to a situation where only few highly probable par-
ticles and many improbable particles are drawn. To avoid these situations the particles
can be resampled after updating the weights. Therefore a new set of equally weighted
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2 Preliminaries

particles are drawn with replacement from a set of weighted particles - the particles are
drawn with a probability that is proportional to their weights.

The Algorithm 1 is an implementation of this approach, which is called Sampling Im-
portance Resampling (SIR) algorithm and which has been reviewed in [Doucet et al.,
2000].

� Starting at t = 0 with a set of equally weighted particles {(x(i)
0 , 1

N )}Ni=1.

1. Set t := t+ 1.

2. Move particles according to motion model x̂
(i)
t ∼ p(xt|x

(i)
t−1) and retrieve

intermediate particles x̂
(i)
t .

� Note: x̂
(i)
t is intermediate, because the observation has not been

considered yet.

3. Re-weight the particles according to the observation model π̂
(i)
t ∝ p(yt|x̂

(i)
t ).

4. If necessary: Resample a set of equally weighted particles {(x(i)
t ,

1
N )}Ni=1 from

the set {(x̂(i)
t , π̂

(i)
t )}Ni , where each particle is drawn with a probability that is

proportional to its weight π̂
(i)
t . Otherwise continue with the weighted

particles {(x̂(i)
t , π̂

(i)
t )}Ni .

Algorithm 1: Sampling Importance Resampling (SIR)

2.4 Sampling from a Proposal Distribution

When new particles are sampled according to the motion model p(xt|xt−1), then these
particles might easily be drawn from areas of low probability. To create a set of mean-
ingful particles it is advised, according to [Rui and Chen, 2001], to draw them from a

more focused proposal distribution q(xt|x(i)
t−1,yt). Such distribution can take the current

observation to into account and generate particle that will have higher particle weight.
Therefore, the posterior distribution can be better approximated by fewer particles and
the overall number of necessary particles can be reduced.

Using the proposal distribution in the Sampling Importance Resampling algorithm needs
replacing Step 2 by

x̂
(i)
t ∼ q(xt|x

(i)
t−1,yt). (2.2)

To stick to the Bayes �lter framework the in�uence of the proposal distribution must
be canceled out and the original motion must be taken into account in the particle re-
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2 Preliminaries

weighting step. Thus, the equation for particle re-weighting in Step 3 of Algorithm 1
must be changed to

π
(i)
t ∝ p(yt|x

(i)
t )

p(x
(i)
t |x

(i)
t−1)

q(xt|x(i)
t−1,yt)

. (2.3)

2.5 Multi-Object Tracking

Section 2.1 describes the underlying model and speci�es the state space of a single target
cell. However, the given microscopic recording of the heart contains more than 200
individual cells, which are of a similar nature. They look alike, they move alike, and
they a�ect each other when they approach each other. In the given recording all cells
are always present; no cell appears or disappears neither at the image border nor due to
occlusion or any interaction.

A naive idea to track a �xed-sized set of objects is to expand the system state by the
number of target cells. The system state would describe the location and intensity
of each cell in separate dimensions and a single estimate of the system state would
estimate the locations and intensities of all cells jointly. However, a single sample from a
high-dimensional space can easily be drawn from a low-probability-area of the posterior
distribution and, therefore, exponentially many particles are needed to su�ciently cover
the whole distribution.

Keeping the state space small is desirable to keep the number of needed particles low.
Running an independent tracker for each heart cell would keep the state space to four
dimensions, as described in Section 2.1. However, any interaction between cells can not
be considered by independent trackers. The estimate of an independent tracker could
easily slip away when two neighbouring cells come close.

To address this issue of drifting, [Rasmussen and Hager, 2001] present a Joint Likelihood
Filter (JLF) in which single targets are tracked by single target tracker, but the probabil-
ities of their estimates are evaluated in a joint measurement process. Therefore, particles
can be drawn independently from a small state space, but the interaction between cells
can be considered by a joint image likelihood. This prevents that the estimates of di�er-
ent trackers overlap.

[Khan et al., 2004] argue that this kind of joint measurement focus only on the visual
observation and does not capture information about joint behaviour of the targets, be-
cause the individual particles are drawn independently. They introduced a multi-object
particle �lter that has an additional interaction term in the motion model. This term
is inspired by the clique potentials of Markov Random Fields (MRF); the interaction
between cells can be evaluated using a penalty function ψ(x̂i,t, x̂j,t) ∝ exp(−g(x̂i,t, x̂j,t)),
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2 Preliminaries

Figure 2.3: Ant tracking example from [Khan et al., 2004] for multi-object tracking.

where x̂i,t and x̂j,t are state estimates of two di�erent targets. This function does not
need to be evaluated for all targets, but only for neighbouring objects. Figure 2.3 shows
an example from [Khan et al., 2004], it shows how the neighbourhood of multiple targets
can be determined by circular in�uence area. The joint motion model need to be eval-
uated only for this neighbouring ants. Furthermore, it is stated that samples from the
temporary joint space can be e�ciently obtained using MCMC sampling techniques.

Comparing the problem of ant tracking from [Khan et al., 2004] with the problem of
tracking heart muscle cells, it strikes out that an ant can move �freely,� and therefore be
tracked independently, until it encounters another ant. Heart muscle cells move jointly,
because they are part of a steadier cellular tissue. The in�uence area must be large enough
to capture the joint motion of cells, but once a neighbourhood of cells is de�ned it will
not separate over time. Therefore, particles must be drawn from the joint neighbourhood
during the whole time. In addition, [Hess and Fern, 2009] argue that sampling from a
joint motion model always increases the computational e�ort, even for small groups of
neighbouring objects. Their idea is to extend the independent object tracker by sharing
their state estimate between all trackers. The advantage is that particles are always
independently drawn, but the interaction of objects can be considered in the particle
re-weighting process using the shared information. They note that their kind of pseudo-
independent trackers are more restricted in the types of dependencies which can be
represented.

This thesis investigates how the approach of [Hess and Fern, 2009], the pseudo-independent
discriminative particle �lter, can be applied to the given problem of cell tracking. The
following chapter focuses on how to integrate the shared information into the re-weighting
process of the pseudo-independent particle �lter.
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3 Discriminative Particle Filter

In in contrast to the particle �lter framework, which describes an observed process by
specifying the process dynamics and de�ning a measurement for its observation as proba-
bilistic models, the discriminative particle �lter aims to abstract from this representation
by using discriminative feature functions, which are real-value functions that can de-
scribe any arbitrary characteristics of the observed process. Generalizing the models by
specifying universal feature functions makes it easier to adapt the discriminative parti-
cle �lter to other problems. Feature functions can be adjusted to a speci�c problem by
weighting them. Each feature function gets a weight assigned that represents its relative
importance. These feature weights are then automatically adjusted to a given problem
by learning them from example data.

This chapter introduces the discriminative particle �lter framework as it has been pro-
posed in [Hess and Fern, 2009]. This approach evaluates feature functions in the particle
weighting step after the new particles have been drawn. Other than that, it sticks to
the particle �ltering framework and calculates the posterior distribution p(xt|y1:t) for a
given observation sequence. This approach is covered in Section 3.1.

An alternative approach to discriminative �lters whose parameters can be learned are
the CRF-�lter, which have been presented in [Limketkai et al., 2007]. The CRF-�lter
generalizes from the Bayes model by replacing the underlying directed model by an
undirected conditional random �eld (CRF). In the undirected model, the conditional
likelihood p(x1:T |y1:T ) of the entire state sequence can be computed at once. The feature
functions represent clique potentials in that CRF model. Since this �lter is still based
on the original Bayes model, the feature functions are divided into two kinds: On the
one hand it has features that represent the transition between the process states xt and
xt+1. They are called prediction potentials and replace the motion model in the Bayes
�lter. On the other hand it uses features to evaluate the transitions between the process
states xt and the observations yt. These are the measurement potentials and replace the
observation model of the Bayes �lter. The CRF-�lters are not further observed in this
thesis.

Both approaches weighted the features by their importance. Proper importance weights
for features are found by an automatic learning process. This saves the user from the
complex and error-prone manual search for optimal parameters for the selected models.
To automate this learning process it needs, on the one hand, an objective that de�nes
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3 Discriminative Particle Filter

what optimal parameters are and, on the other hand, a method that adjusts the param-
eters such that they meet this objective. Both these aspects are considered in Section
3.2 of this chapter.

At last, this chapter concludes with the composition of the �ltering framework in the
provided tracking plug-in in Section 3.3. This chapter only introduces the concepts of
discriminative particle �lters. The design of feature functions that can be applied to
tracking heart muscle cells is covered in the next chapter.

3.1 Discriminative Particle Filter

Applying and learning a discriminative function that calculates the particle weights in
the particle �ltering framework was introduced in [Hess and Fern, 2009]. In the particle

�lter framework a particle's weight π
(i)
t was determined by the observation likelihood

p(yt|x(i)
t ) as de�ned in Equation 2.2 and Equation 2.3. Thus, the particle weight presents

the likelihood that the state estimate x
(i)
t of the given particle describes the observed

process yt. Since the discriminative framework abstracts from that model, the particle
weights do not represent the observation likelihood of this particle anymore. As denoted
in this chapter's introduction, each part of the observed process can be modeled by a
speci�c feature function. A feature function takes a particle estimate and the current
observation to calculate a feature value.

De�nition 1. Discriminative Feature Function [Hess and Fern, 2009]. Let x
(i)
t

be a state estimation of the process state xt by particle i and yt an observation of this

process. A feature function is an user-de�ned function fj(x
(i)
t ,yt) ∈ R that compares

the particle's estimate x
(i)
t with the observation yt and returns a real value, which is the

feature value.

Given two feature values fj(x
(k)
t ,yt) and fj(x

(l)
t ,yt), the particle with the higher feature

value is a better representation of yt with respect to this feature function fj(·).

Denote that the observation is written as a vector which encapsulates all information that
is necessary to compute the function and is not limited to the observation image at time
t anymore. It might also, for instance, contain the state estimates of other objects as well

as the previous particle history x
(i)
1:t−1. This is, because there is no strong independence

assumption for the features.

Given a set of feature functions it can be used to evaluate the particles weights. However,
feature values of di�erent feature functions might not be comparable and, in addition, a
feature function's model might have di�erent impact in the description of the observed
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3 Discriminative Particle Filter

process. Therefore, each feature function is weighted according to its importance by an
individual feature weight. These feature functions and their weight are combined in the
discriminative particle weighting function.

De�nition 2. Discriminative Particle Weighting Function [Hess and Fern,

2009]. Let F be a set of feature functions, yt be an observation, and x
(i)
t be a

particle estimate. The discriminative weight π
(i)
t of the given particle is de�ned by:

π
(i)
t ∝ exp

∑
j

wj · fj(x(i)
t ,yt)

 . (3.1)

Here, wj is the weight of the feature fj(·).

The relation between the common particle �lters and the discriminative �lters can still
be established by choosing the logarithm of the observation likelihood as the only fea-
ture function and setting its feature weight to 1. Therefore, the particles are again

weighted according to the observation likelihood p(yt|x(i)
t ). Even when the particles

were drawn from the proposal distribution this model can be expressed in terms of
discriminative features. Using the logarithms of the observation model, the motion
model, and the proposal distribution as discriminative features. Again, all feature

functions are weighted by 1. Then particle weight is calculated according to π
(i)
t =

exp
(
log p(yt|x(i)

t ) + log p(x
(i)
t |x

(i)
t−1)− log q(x

(i)
t |x

(i)
t−1)

)
, which equals Equation 2.3.

Computing the Particle Weighting Function The computation of the discriminative
particle weighting function combines various kinds of feature functions, each of them can
return any real value. But very large or very small feature values can easily introduce
numerical problems. However, the ultimate purpose of a particle's weight is to determine
the quality of this particle's estimate in relation to all other particle estimates; thus, it is
su�cient to normalize the particle weights. Normalized weights are still consistent with
De�nition (2), because they are de�ned as being proportional to the particle weighting
function.

The weights are normalized using Algorithm (2). First, it determines the maximal sum
of weighted feature values. Second, it shifts all these values into the interval (−∞; 0]
in log-space by subtracting this maximal sum. Third, the normalized weights can be

computed on the the intermediate values π̃
(i)
t .

This algorithm shifts the intermediate values π̃
(i)
t into (−∞; 0], because the �oating point

data types are limited to an �nite range. The returned value of the exponential function
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Cmax ← argmax
i

∑
j

wj · fj(x(i)
t ,yt)


for all i : π̃

(i)
t ←

∑
j

wj · fj(x(i)
t ,yt)− Cmax

for all i : π
(i)
t ←

exp
(
π̃
(i)
t

)
∑

k exp
(
π̃
(k)
t

)
Algorithm 2: Normalization of the feature weights.

might just become in�nity, if the intermediate values π̃
(i)
t is su�cient large. Furthermore,

by the rules of the IEEE 754 arithmetic, dividing an in�nite value by another in�nite
value returns NaN. In addition, when dealing with only very small sums of feature values,

then step two of this procedure saves us from exp
(
π̃
(i)
t

)
becoming zero for all particles.

This case is problematic, because then the denominator in step three evaluates to zero,
and the division of zero by zero also return NaN.

Claim 1. The particle weights that are computed with Algorithm (2) are consistent with
the weights that are de�ned in De�nition (2).

A proof for this claim can be found in the appendix.

3.2 Learning Process

The learning process is to adapt the feature weights of the discriminative function au-
tomatically to the observed data. It takes annotated ground truth data and runs a
discriminative particle �lter. The particle �lter's performance is continuously observed.
Therefore, the error between the �lter prediction and the ground truth data is measured.
After each pass through the training data, a gradient descent step is performed on the
feature weights for which they are updated such that the measured error is reduced.

This learning process requires, �rst, an objective that measures the �lter's performance
concerning the prediction of the ground truth location. Any adjustment of the param-
eters shall increases the particle �lter's performance with respect to this objective. For
example, an objective can de�ne an error between estimate and ground truth which shall
be minimized. Second, the process needs the gradients regarding the feature weight on
the objective. The gradient describes the direction of the strongest increase of the objec-
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tive function for a speci�c location. Section 3.2.1 presents three di�erent objectives and
the gradients on them. Third, a concrete update step for the feature weights is needed.
These updates are calculated on the gradients such that the overall objective is better
satis�ed with the new parameters than before. Section 3.2.2 depicts how the update
steps look like.

3.2.1 Learning Objectives and their Gradients

Four de�nitions follow: First, an objective that is to maximize the posterior likelihood
of the ground truth on the observed data, second, an approximation of this maximum
likelihood, third, an objective that is to minimize the squared error between the �lter's
estimation and the ground truth, and, at last, an objective that is to minimize the mean
squared error between the estimations of the �lter's particles and the ground truth.

Maximizing the Likelihood of the Training Data The prediction of a state sequence
x1:T of the discriminative particle �lter is based on the inherent posterior likelihood
p(x1:T |y1:T ). Given a speci�c observation sequence y1:T and the related ground truth

trajectory x
(GT )
1:T , the value of the posterior likelihood p(x

(GT )
1:T |y1:T ) only depends on the

set of unknown feature weights θ = (w1, ..., wJ). This objective is to tune the parameters
such that this posterior likelihood becomes maximal for the training data.

The De�nition 3, which is given in [Sutton and McCallum, 2006], provides a density
function of the posterior likelihood using discriminative feature functions. Furthermore,
a detailed explanation of the relations between the naive Bayes classi�er, the Hidden
Markov Model, and a linear-chain Conditional Random Field and how all this leads to
the given posterior likelihood can be found in the mentioned article.

De�nition 3. Linear-Chain Conditional Random Field [Sutton and McCallum,
2006]. Let x1:T ,y1:T be random vectors, θ = {wj} ∈ RJ be a parameter vector, and
{fj(xt,yt)}Jj=1 be a set of real-valued feature function. Then a linear-chain conditional
random �eld is a distribution p(x1:T |y1:T ) that takes the form

p(x1:T |y1:T ) =
1

Z(y1:T )
exp

∑
t

∑
j

wjfj(xt,yt)

 , (3.2)

where Z(y1:T ) is an instance-speci�c normalization function
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Z(y1:T ) =
∑
x′1:T

exp

∑
t

∑
j

wjfj(x
′
t,yt)

 . (3.3)

Denote again that the observation is is not only an image anymore, but also contains

the particle history x
(i)
1:t−1. Therefore, pairwise features as the particle's motion can

be expressed by these feature functions fj(xt,yt), even though the they are de�ned by

fj(x
(i)
t ,x

(i)
t−1,yt) in [Sutton and McCallum, 2006]. This chosen representation allows for

features which depend on many more arguments that are not listed here and, also, it is
consistent with the one in [Hess and Fern, 2009].

It is mentioned in this article that optimizing the likelihood directly is a complex task.
One can simplify the calculations by optimizing the conditional log-likelihood
log p(x1:T |y1:T ) instead, as logarithm has its maximum where also the likelihood is maxi-

mal. Applying the given observation sequence z1:T and the ground truth trajectory x
(GT )
1:T

to the conditional log-likelihood, it reads as

log p(x
(GT )
1:T |y1:T ) =

∑
t

∑
j

wjfj(x
(GT )
t ,yt)−

∑
i

logZ(y1:T ). (3.4)

The gradient with respect to the feature weight wj reveals as

δ log p(x
(GT )
1:T |y1:T )

δwj
=

∑
t

fj(x
(GT )
t ,yt)−

∑
x′1:T

∑
t

fj(x
′
t,yt)p(x

′
t|yt) (3.5)

= EGT−data [fj(x1:T ,y1:T )]− Emodel [fj(x1:T ,y1:T )|y1:T ] .

This gradient can be interpreted as the balance between the expected value of the fea-
ture function on the modeled distribution and the expected value for the ground truth
data, which is the empirical distribution. When the di�erence becomes zero, then the
parameter is optimally adjusted.

Approximated Maximum Likelihood The posterior likelihood p(x1:T |y1:T ) de�nes the
joint probability for an entire observation sequence and all process states in time. Particle
�lter, as a realization of the Bayes �lter, calculate the posterior distribution step-by-step
for each point t in time; starting at t = 0 it runs until t = T . Moreover, in [Hess and
Fern, 2009] the posterior likelihood of a speci�c target i at the time t is given as
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p(x
(i)
t |yt) =

1

Z(yt)
exp

∑
j

wjfj(x
(i)
t ,yt)

 , (3.6)

where Z(yt) =
∑
x′t

exp

∑
j

wjfj(x
′
t,yt)

 .

That is, the likelihood of a particle is solely determined by its estimate x
(i)
t and the single

observation yt.

As mentioned in this section's introduction, the parameters are to be tuned on-the-
�y while running a particle �lter. Therefore, the parameters of posterior likelihood is
optimized step-wise, that is, the gradient is computed on only one training sample at
a time. This is �a drastic simpli�cation� [Bottou, 2012] of the Gradient 3.5, which is
used for stochastic gradient optimization. The stochastic gradient with respect to the
parameter wj is, just as the gradient on the joint posterior likelihood, formulated on the
log-likelihood of the training data:

d log p(x
(GT )
t |yt)

dwj
= fj(x

(GT )
t ,yt)−

∑
x′t

fj(x
′
t,yt)p(x

′
t|yt) (3.7)

= fj(x
(GT )
t ,yt)− Emodel

[
fj(x

′
t,yt)|yt

]
.

The Perceptron update in [Hess and Fern, 2009] further simpli�es this gradient. It is
proposed to approximate the estimation of the feature value in Equation 3.7 by the feature

value of the state's MAP estimate x
(MAP )
t . This idea is based on the Perceptron update

in [Collins, 2002], which they use to optimize the parameters of a maximum-entropy
tagger. Also in [Limketkai et al., 2007] this Perceptron update is used to approximate
the gradient of the conditional log-likelihood. The characterized gradient approximation
is

d log p(x
(GT )
1:T |y1:T )

dwj
≈ fj(x

(GT )
t ,yt)− fj(x(MAP )

t ,yt). (3.8)

Minimizing the Squared Residual Error of the Mean The second objective that is
presented in [Hess and Fern, 2009] focuses on tuning the performance of the particle �lter
directly. The particles of the particle �lter estimate a cell's location and its illumination
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over time. The �lter's estimate E[xt] can be computed by averaging the on the particles'
estimated locations and illumination values. The ground truth trajectory contains the
true location and illumination intensities of the targeted cell. Intuitively, a particle �lter
shall be con�gured such that it predicts the true location and the true illumination in
each frame.

The distance between these two, the predicted state E[xt] and the ground truth x
(GT )
t ,

de�nes the residual error εr = ||E[xt]−x
(GT )
t ||. The objective is to adjust the parameters

such that squared residual error becomes minimal:

wopt = argmin
w
||E[xt]− x

(GT )
t ||2. (3.9)

The parameter vector wopt = (w1, ..., wJ) contains all feature weights, but each weight
is optimized on its own. The optimum is found by searching in the negative direction of
the gradient using gradient descent. The gradient with respect to the parameter wj is

d||E[xt]− x
(GT )
t ||2

dwj
=

(
E[xt]− x

(GT )
t

)>
(3.10)

· (E[xt · fj(xt,yt)]− E[xt] · E[fj(xt,yt)]) .

Minimizing Mean Squared Error In [Hess and Fern, 2009] it is argued that the resid-
ual error is based only on the estimation which is computed on all particles, but the
performance of a single particle on its own is not considered by this error. The residual
error εres = ||E[xt] − xGT,t||2 is equal to E[||xt − xGT,t||2] − v̂ar(xt), which is again the
mean squared error of the particles minus the variance of the particles. The minimum
of the squared error can be found where the mean squared error and the variance are in
balance and cancel each other out. This allows the particles of the discriminative �lter
to be distributed far away from the ground truth as long as their center of mass is close
to the ground truth.

Since each of the particles shall represent a valid estimation of the object's location, they
propose to optimize the mean squared error of all particles instead. This requires that
each particle is close to the ground truth to meet this goal. The optimal parameters are
then found by computing

wopt = argmin
w

E[||xt − xGT,t||2]. (3.11)

The derivation with respect to each weight wj yields the gradient
1

1The derivation can be found in the Appendix 6.
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dE[||xt − xGT,t||2]
dwj

= E[||xt − xGT,t||2 · fj(xt,yt)]− E[||xt − xGT,t||2] · E[fj(xt,yt)].(3.12)

3.2.2 Update Step

Once the objective is de�ned and the gradients are derived, the feature weight update can
be computed. Minimizing an error needs adjusting the weights in the negative direction
of the gradient; that is, the new weight is determined by wj ← wj−γ ·∇wj ε. Maximizing
a probability needs adjusting the parameters in the direction of the positive gradient,
which is setting wj ← wj + γ · ∇wjp(...). In both cases the factor γ is a learning rate
that scales an update step to a reasonable size.

� Starting at t = 0 with a set of equally weighted particles.

� For each frame t:

1. Move particles according to motion model/proposal distribution.

2. Re-weight the particles according to particle re-weighting function.

3. Compute estimate from set of particles.

4. If ε = ||E[xt]− x
(GT )
t || > τupdate:

� Update parameters according to either wj ← wj − γt · ∇wj ε or
wj ← wj + γt · ∇wjp(...).

5. If ε = ||E[xt]− x
(GT )
t || > τreset:

� Re-initialize particles with ground truth.

Algorithm 3: Sampling Importance Resampling (SIR) with parameter tuning as in
[Hess and Fern, 2009].

In the training algorithm, which is given in [Hess and Fern, 2009], this kind of update
may be applied to the parameters in every frame after the particle �lter estimated a new
state, but only if the error between this estimate and the ground truth is larger than a
speci�ed threshold τupdate (see modi�cation to the SIR algorithm in Algorithm 3). To
prevent that the tracker adjusts the parameters to estimates which are too far away from
the original target, the tracker is reset to the latest ground truth location.

These kind of frame-wise updates are motivated by the Perceptron update and are simi-
lar to stochastic gradient updates. In [Bottou, 2012] it is argued that stochastic gradient
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methods can only be applied successfully when updates are computed on randomly se-
lected training examples. However, the sequential �lters do not allow for picking random
frames and updating the parameters only according to them. Furthermore, since the
given video sequence is not exceedingly long, it is reasonable to accumulate the frame-
wise gradients and delay the update until the whole training video has been processed.
A single run through the whole training video is considered as one training epoch. The
resulting epoch-wise update is given by

wj,k+1 = wj,k − γk ·
1

N

T∑
t

N∑
i

∇wj ε, (3.13)

where k indicates the number of training epochs. This follows the gradient update step
that is given in [Bottou, 2012]. Denote that this given update is to minimize an error
function ε; to maximize a probability the sign must be changed. The learning rate γk
is adjusted to control the convergence speed such that the parameters can smoothly
approach to their optimal value. It is determined by γk = γ0

1+kγ0λdecay
and therefore

decrease with each training epoch.

3.3 Tracking Plug-In

Algorithm 4 summarizes this chapter and depicts the program �ow that has been imple-
mented as ImageJ plug-in. It is based on Janick Cardinale's PFTracking3D plugin that
can be found in [Cardinale, 2008]. The training process is repeated for a �xed number of
epochs. For each epoch the training video is processed and the gradients for the updates
are computed, afterwards all feature weights wj are updated using these gradients, and
at last the new feature weights are evaluated on a set of validation videos.

The object trackers for all target objects are processed independently frame by frame,
but previous estimates are shared can be accessed by the feature functions fj(·) as it has
been explained after De�nition 1. Once all particles have been moved and evaluated,
the trackers estimate can be computed on them and its distance to the ground truth can
be measured. As in the Algorithm 3, the gradients are calculated only if the error is
above a certain threshold, which motivated by the Perceptron updates that focus only
on correcting errors. However, unlike Algorithm 3 the gradients are stored for the single
update step as explained in Section 3.2. The second if-clause is to reset a tracker in case
it drifted completely o�.

After adjusting all feature weights wj ∈ w the validation videos are processed using the
updated weights.
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for k = 1, . . . , max. epochs do

t← 1

for each target object obj do
for each particle i do

x
(i)
t,obj ← x

(GT )
t,obj

end

end

for each frame t in training video do

for each target object obj do

for each particle i do

x
(i)
t,obj ∼ q(xt,obj |x(i)

t−1,obj ,yt)

π
(i)
t,obj ∝ exp

(∑
j wj · fj(x(i)

t,obj ,yt)
)

end

ε = |E[xt,obj |yt]− x
(GT )
t |

if ε > λupdate then

gt,obj ← ∇wε
end

if ε > λreset then

for each particle i do

x
(i)
t,obj ← x

(GT )
t,obj

end

end

end

end

wk+1 ← wk − γk · 1
N

∑T
t

∑N
obj gt,obj

ValidateAndMeasureError(w, validation videos)
end

Algorithm 4: Implementation of the discriminative particle �lter.
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4 Discriminative Features that Model

the Heart Muscle Cells

The problem at hand is to track heart muscle cells in 3D microscopic images. Figure
4.1 shows 4 example z-slice out of the given image stack. The two heart chambers are
outlined by their muscle cells. These cells appear as blobs in 3D space and move in 3D
space. The heart chambers expand quickly, then rest for a brief moment before they
contract. At the end they are back in their initial position. By that, the heart muscle
cells change their motion during the di�erent stages of the cardiac cycle. The cells shall
be tracked through the whole cycle and shall be separated from their neighbours during
the whole time.

This chapter describes the discriminative feature functions that model the problem. It
will cover features that explain the observation of a single cell and observations of a
neighbourhood, features that describe interaction between cells which therefore create
a neighbourhood, and features that express the motion of single cells and neighbour-
hoods.

It is important to remember that the feature functions, which are described in this

chapter, adhere to De�nition 1. That is, each feature is a function of the form fj(x
(i)
t ,yt)

that takes a particle estimate x
(i)
t , which is to be evaluated, and any observation yt

to return a real feature value. Denote that the observation yt contains not only the
current observation image, but also the current object's particle history and the previous
estimates of all other objects that are shown in the video.

Figure 4.1: Example data: These images shows one z-slice out of the image stack di�erent
times during the cardiac cycle.
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Figure 4.2: Sketch of the arti�cial image of a single cell.

4.1 Observation Features

A generative observation model compares an arti�cially generated image of the targeted
cell to the appearance in the given image. The targeted heart cell is approximated by a
Gauss blob with a known point spread function (PSF), its the center and the illumination
of this blob is determined by the state estimate. The variance of the Gauss blob is �xed
by the point spread function. The observation image contains additional noise, which is
not drawn into the generated images. To compensate this noise in the arti�cial image, a
constant background value is added. This value is set to the mean of background noise
in the observation image. Figure 4.2 depicts the generation of an arti�cial observation
for a given state estimate.

The observation likelihood p(yt|x(i)
t ) determines how well the original observation is rep-

resented by the particle estimate. Therefore, it compares the original observation yt with

the arti�cially generated image g(x
(i)
t ), which is expressed by the normal distribution

p(yt|x(i)
t ;σobservation) =

1√
2πσ2observation

exp

(
− 1

2σ2

∑
k

(yt,k − gk(x
(i)
t ))2

)
. (4.1)

Here, gk(x
(i)
t ) is the kth pixel of the generated image g(x

(i)
t ) and yt,k is the kth pixel

of the observation image yt. Each pixels of an image is considered to be conditionally
independent from the other pixels of that image given the state xt.

Single-Object Observation Feature To express this observation likelihood in terms of
a feature, �rst, it is translated into the log-likelihood:

ln p(yt|x(i)
t ;σ) = − 1

2σ2

∑
k

(yt,k − gk(x
(i)
t ))2 − lnC(σ). (4.2)
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That is, because feature functions are evaluated in the exponent of the particle weighting
function, see De�nition 2, and therefore a log-likelihood feature re�ects the role of the
original likelihood.

Second, to simplify the feature function the term − lnC(σ) is omitted in the feature
function. In the likelihood function, this term normalizes the whole function such that
the area beneath sums up to 1. However, the feature value can be any real value and it is
only necessary that it maintains the relation of original likelihood between two particle
estimates.

At last, the remaining term can be expressed by the feature function

fsingle observation(x
(i)
t ,yt) = −

1

2

∑
k

(yt,k − gk(x
(i)
t ))2. (4.3)

The parameter σ is pulled out and, therefore, it is represented by the feature weight
wsingle obsv =

1
σ2
obsv

, which is part of the particle weighting function. Since the parameters

wj in the particle weighting function are to be adjusted by parameter learning, the
optimal σ of the observation log-likelihood can now be obtained from data.

Clipped Observation Feature The generated image of a cell g(x
(i)
t ) shows a single cell

in an image that is of the same size as the original observation. However, as the Gaussian

blob is only apparent within a close range around the estimate x
(i)
t and the remaining

image is almost constantly �lled with the value of the background noise µnoise. This
introduces two problems for the implementation, which can be solved using a clipped
version of the observation feature.

The �rst problem is that the comparison of the constant noise model µnoise to the real
noise in the observation yt adds up many di�erences. This does not express how well the
estimated blob �ts to the observed cell, but only how bad the simple noise model explains
the observed noise and other unexplained objects. Therefore, the summed di�erence can
easily become very large. Even though the feature values can be any real value, working
with very large or very small values lead to numerical problems in the implementation.

The second problem is that calculating the sum of di�erences needs looping over all image
pixels. Therefore, the computation of the observation feature for the whole 3D image
takes very long time.

The following solution computes the observation image only for a small section around
the particle estimate. It does not punish any particle for lying too close to another
unexplained observation or for di�erent noise in this image section. The size of such
image section can be �xed such that it covers, for instance, 4 · σPSF of the Gauss blob
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4 Discriminative Features that Model the Heart Muscle Cells

Figure 4.3: Image of a single Gaussian blob and excerpt from an observation image.

in any direction from its center. Outside of this section, the in�uence of the blob is
negligible small.

The image section around the particle estimate is determined by the bounding box

B(x
(i)
t ). If a pixel is inside this bounding box, the function gk(x

(i)
t ) creates the Gaussian

blob image as described before. If the pixel is outside this box and the function returns
only the constant background noise µnoise. When applying this bounding box to the
single observation feature, then it translates to

f(x
(i)
t ,yt) = −

1

2

∑
k∈B(x

(i)
t )

(yt,k − gk(x
(i)
t ))2 +

∑
k/∈B(x

(i)
t )

(yt,k − µnoise)2. (4.4)

The next step is to make the second term independent from a particle's estimate. It
can be computed once for the whole image and afterwards subtracted again only for the

pixels in the bounding box B(x
(i)
t ) as follows

f(x
(i)
t ,yt) = −

1

2

∑
k∈B(x

(i)
t )

[
(yt,k − gk(x

(i)
t ))2 − (yt,k − µnoise)2

]
+

∑
yt,k∈y

(i)
t

(yt,k − µnoise)2.

(4.5)
The last term c(yt) =

∑
k(yt,k − µnoise)2 is a constant term in the log-likelihood feature

and a factor in the observation likelihood. It is shared by all particles. To speed-up the
computations and to decrease the feature values, this term is removed from the clipped
observation feature:

fclipped single observation(x
(i)
t ,yt) = −

1

2

∑
k∈B(x

(i)
t )

[
(yt,k − gk(x

(i)
t ))2 − (yt,k − µnoise)2

]
.

(4.6)

Multi-Object Observation Feature The observation feature for single cells compares
just a single blob image with an observation that contains multiple objects. Thus, the
particles may try to explain other appearances by trying to cover multiple cells (e.g.,
lying in between them) or just slip away to the next best appearance. To avoid such
errors it is necessary to consider other appearances in the arti�cial images.
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4 Discriminative Features that Model the Heart Muscle Cells

Figure 4.4: Ant tracking using interaction potentials, from [Khan et al., 2004]

Let assume the estimates of all the other object's particle �lters are known at time t.
They might be either approximated by their previous estimates at time t−1 or estimated
by taking their previous motion into account. Details on such estimations are postponed
to Section 4.4. The given estimated locations of the other objects can be considered in
a multi-object observation feature just as the background noise is taken into account in
the single observation feature. That means that foreign appearances are removed from
the observation and each particle must only explain the �cleared� observation:

fmulti−object observation(x
(i)
t ,yt) = (4.7)

−1

2

∑
k∈B(x

(i)
t )

(yt,k − g′k(x(i)
t ))2 − (yt,k − µnoise −

∑
l∈N (x

(i)
t )

hk(E[xl,t]))2

 .
In this equation, xl,t is understood as the state of object l at time t and E[xl,t] is its
estimate, which is computed by the particle �lter that is associated to object l. The
function hk(xt) generates the pixel value that explains the Gaussian blob for the input

state xt. In contrast to function gk(x
(i)
t ), it does not model the background noise. The

observation function gk(xt) of a single object is extended to g′k(x
(i)
t ) such that it explains

other objects by their estimates, i.e., g′k(x
(i)
t ) = hk(x

(i)
t ) +

∑
l∈N (x

(i)
t )

hk(E[xl,t]) +µnoise.

The set N (x
(i)
t ) determines all objects in the neighbourhood of the respective particle

estimate x
(i)
t . Since the feature function is clipped by the bounding box B(x

(i)
t ), it is

su�cient to consider only objects whose bounding boxes overlap.

4.2 Interaction Features

The multi-object observation feature aims to explain object appearances, which can not
be explained with a particle estimate, by taking external knowledge into account. It
removes the unexplained appearances from the observation images so that the particles
can be evaluated only on the actual target object. However, it needs precise estimates
of the neighbouring cells to get an accurately cleared observation image. An alternative
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4 Discriminative Features that Model the Heart Muscle Cells

to the multi-object observation feature is to model the interactions between cells. This
approach is more robust to small deviations as interaction features are not evaluated
on the image, but only on distances between a particle's estimate and the estimates of
neighbouring objects.

Using interaction potentials has been proposed in [Khan et al., 2004] to enhance the
joint motion model of interacting ants. It considers the single motions of each ants, but
additionally aims to distinguish the ants from each other. Therefore, the joint motion
likelihood is given as

p(xt|xt−1) ∝
∏

n∈Objects
p(xn,t|xn,t−1)

∏
n,m∈Objects

ϕinteract(xn,t, xm,t). (4.8)

The interaction term
∏
n,m∈Object ϕinteract(xn,t, xm,t) is motivated by the edge-potentials

of a Markov Random Field (MRF) and they are de�ned such that overlapping motions
are punished. However, it is not necessary to generate an MRF that connects all visible
objects, but only neighbouring, i.e., interacting objects. Figure 4.4 depicts an example
from [Khan et al., 2004]. The yellow circles de�ne an in�uence area around each ant; the
neighbourhood is de�ned by ants that enter the areas of other ants. The red lines sketch
the connected edges of the MRF that is created for this neighbourhood. There is no edge
connecting the bottom-right ant, as it is too far from the thee ants in the center.

Edge Potential as Pseudo-Independent Interaction Feature The edge potentials are
de�ned by

ϕinteract ∝ exp(−g(xn,t, xm,t)), (4.9)

where g(xn,t, xm,t) is a penalty function. The interaction feature is based on this inter-
action potential. However, it does not create the MRF to sample from a joint motion,
since the discriminative particle �lter is de�ned as pseudo-independent �lter. This fea-

ture is used to evaluate single particles x
(i)
t by their distance to the neighbouring object

estimates E[xl,t] and it is de�ned as follows:

finteraction(x
(i)
t ,yt) = −

∑
l∈N (x

(i)
t )

g(x
(i)
t ,E[xl,t]). (4.10)

Similar to the in�uence region in the ant example, the neighbourhood N (x
(i)
t ) of a

particle can be de�ned a radius around this particle in 3D space. The feature functions
are evaluated in the exponent of the particle re-weighting function and, therefore, the
interaction feature constitutes the interaction term of the joint motion model in Equation
4.8.

Penalty Functions The penalty function g(x
(i)
t ,xl,t) can be any function that assesses

the particle location x
(i)
t and punishes it when it comes close to another object's location
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4 Discriminative Features that Model the Heart Muscle Cells

Figure 4.5: Three penalty functions.

xl,t. It shall not punish any cells that is outside of the in�uence area. The following
functions have been implemented in the heart cell tracker and are depicted in Figure
4.5:

� g1(x
(i)
t ,xl,t) =

1

||x(i)
t −xl,t||

,

� g2(x
(i)
t ,xl,t) = max(−

√
||x(i)

t − xl,t||+ a, 0),

� g3(x
(i)
t ,xl,t) = −1 ·exp(−a ·exp(−b · ||x

(i)
t −xl,t||))+1 (Gompertz sigmoid function).

For all these functions, the feature weight scales their amplitude.

4.3 Motion Features and Proposal Distribution

Next to its appearance in the observation and its interaction with neighbouring objects,
a particle can be evaluated by its motion between two frames. A simple approach is

to look at the di�erence between the current particle state x
(i)
t and its state x

(i)
t−1 at

time t− 1. However, it is also possible to predict the current object's location and then

compare the particles estimate x
(i)
t with this prediction x

(guess)
t . In this section presents

two di�erent motion features.
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4 Discriminative Features that Model the Heart Muscle Cells

Random Motion Feature The random motion model is based on the assumption that

a particle can move from its position previous x
(i)
t−1 in any direction to its new location

x
(i)
t in the current frame. The probability of the particle's location decreases the farther

away it is from the location x
(i)
t−1.

This feature evaluates the Gaussian log-likelihood of the motion:

frandommotion(x
(i)
t ,yt) = −

1

2

3∑
k=1

(x
(i)
k,t − x

(i)
k,t−1)

2, (4.11)

where the feature weight constitutes the factor 1
σ2
motion

of the likelihood.

Intensity Feature Also the intensity of a particle is sampled around its previous value,
just as the new locations. However, location and intensity are not comparable and so
they are modeled by two separated features. Therefore, their feature weight is trained
independently.

fintensity(x
(i)
t ,yt) = −

1

2
(x

(i)
intensity,t − x

(i)
intensity,t−1)

2 (4.12)

This approach can also be extended to each of the 3 dimension of the location such that
each dimension gets its own feature function and its own feature weight.

Linear Motion Feature The linear motion feature assumes that any particle continu-
ously moves as it moved before. A motion vector mt can be computed from two con-
secutive states by mt−1 = xt−1 − xt−2. The linear motion feature compares the current

particle estimate x
(i)
t with the linearly moved estimates x

(guess)
t from the previous frame,

which is x
(guess)
t = x

(i)
t−1 +mt−1.

flinearmotion(x
(i)
t ,yt) = −

1

2

3∑
k=1

(x
(i)
k,t − x

(guess)
k,t )2 (4.13)

There are di�erent ways how the motion vector mt−1 can be computed. One approach
is to use the particle history and see how the particle itself has moved in the past. Such

motion vector can be computed by mp,t−1 = x
(i)
t−1 − x

(i)
t−2. These vectors may, however,

steer in di�erent directions than the overall motion of the object, as it is shown in
Figure 4.6. Instead of using the particle's history, one can use the history of the object's
estimates to obtain more stable guesses. That is, the motion vector is determined by
me,t−1 = E[xt−1]− E[xt−2].

36



4 Discriminative Features that Model the Heart Muscle Cells

Figure 4.6: Linear motion vectors based on the particle history (purple) and motion vec-
tor based on the object's estimate history (blue). The orange dots show
example particles - one at time t − 2 and one at time t − 1. The gray dots

are the predicted locations x
(guess)
t - once based on the particle history (gray

dot at the end of the purple arrow) and once based on the estimate's history
(gray dot at the end of the blue arrow).

As neighbouring heart muscle cells are bound to the same surface and as they all
move alike, it seems to be advantageous to compute a collective linear motion vector
of the neighbourhood. Such feature can exploit the same de�nition of neighbourhood

N (x
(i)
t ) that has been used by the interaction features. The collective motion vec-

tor is computed by averaging over all motion vectors of a neighbourhood mn,t−1 =
1

|N (x
(i)
t )|

∑
l∈N (x

(i)
t )

E[xl,t−1]− E[xl,t−2].

4.4 Enhancing the Features

This last section covers ideas, which have been found while running some experiments
and which are to enhance the performance of speci�c features.

Predicting Location of other Objects The multi-object observation feature and as well
as the interaction feature are computed on the estimates of the other objects' trackers.
However, they become available only after a frame has been processed so that these
estimates are always delayed. It shows that it is possible to counter such delay by
assuming that all objects in a neighbourhood collectively moved into the same direction.
That is, the estimates E[xl,t] of the multi-object observation and the interaction features
can be computed by E[xl,t] = E[xl,t−1] + mn,t−1, where E[xl,t−1] is the output of the
respective object tracker at time t− 1.
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4 Discriminative Features that Model the Heart Muscle Cells

In�uence Factor for Illumination Intensity Even though all cells look alike and act
alike, they are not the same. Heart cells that show high intensity values are much
easier represented by the observation likelihood as cells that have lower intensity values.
Especially when cells come very close and they are pressed together, then they show
these high intensity values. At the same time it needs a stronger focus on the interaction
features, because they are that close.

To consider this behaviour in these two feature functions, they are multiplied by an
additional illumination-dependent factor, which is applied next to the feature weight.
This factor strengthens or reduces the feature values of the original value and it can be
designed as shown in Figure 4.7c.
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(a)

(b)

(c)

Figure 4.7: The Figures 4.7a and 4.7b show two examples of neighbouring cells. The
cells in the �rst �gure are less brighten compared to the ones in the second.
Their maximum intensity value is about 600, their distance about 20µm.
The second �gure shows two cells which have intensity values > 1000 and
their distance is about 12µm. Such di�erent cells can be expressed by the
same features, however, the tracker performs better when they are di�erently
weighted. Figure 4.7c roughly depicts how an additional in�uence factor that
depends on the intensity values can look like.
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5 Experimental Evaluation

The discriminative particle �lters that have been explained in Chapter 3 and the nec-
essary features from Chapter 4 have been implemented in Java as a Fiji plugin. This
chapter is all about running experiments so that, in the end, the problem of tracking
heart muscle cells can be solved by the discriminative particle �lters.

The �rst experiments concentrate on evaluating the plugin on a arti�cial and known
problem. They demonstrate that the discriminative particle �lter works as expected
and that the feature weights are successfully learned from training sequences. These
experiments are covered in Section 5.1.

The second part of this chapter is about solving the original problem. That includes
selecting appropriate feature functions which model the heart cells and comparing the
results with the Fiji built-in Feature Point Tracker [Sbalzarini and Koumoutsakos, 2005].
It shows that the implemented discriminative particle �lter is able to track the heart
muscle cells. On the one hand, the tracking plug-in reports fewer failures than the
Feature Point Tracker, i.e., the estimated trajectories do not jump between di�erent
image appearances. On the other hand, the Feature Point Tracker is able to detect cells
more precisely.

5.1 Evaluating the Tracking Plug-In on Arti�cial Sequences

The particle �lters, which are introduced in Section 2.3, model target objects by an
appearance model and their motion between two observations. In Section 3.1, which
presents the discriminative particle �lters, it was stated that the relation between these
two �lters can be established by using the log-likelihoods of the generative motion and
observation model as features. The �rst experiments, which are presented in this section,
build the bridge between the generative and the discriminative models. The arti�cial
sequences are generated according to simple generative models whose parameters are
known, the log-likelihood features of the discriminative particle �lter are then adjusted on
these sequences. It is shown that the implemented learning procedure works as expected
and the parameters of the generative model can be recovered.

Another important issue is to �nd how the multi-object features work. The implemented
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plug-in is tested in a second experiment which focuses on tracking multiple interacting
blobs. However, this kind of interactions are not generated according to some generative
model and, therefore, the true feature weights are unknown. This experiment demon-
strates the capabilities of the interaction features.

Experimental Setup In the generated arti�cial sequences a Gaussian blobs is randomly
moving in a noisy environment. Therefore, the Gauss blob randomly moves according to
the likelihood p(xt|xt−1) which explains a normal distributed motion of the blob around
its previous location. The generative observation p(yt|xt) explains a �xed-size Gauss
blob to which normal distributed background noise is added. The discriminative parti-

cle �lter evaluates the particles by the the random motion feature frandommotion(x
(i)
t ,yt)

(Equation 4.11) and by the the single observation feature fsingle observation(x
(i)
t ,yt) (Equa-

tion 4.3). Both are presented in Chapter 4. To further simplify the model, the intensity
of the generated blobs is �xed. The unknown parameters which shall be learned from
data are standard derivations σmotion and σobservation - the feature weights are inversely
proportional to the respective standard derivation, i.e., wrandommotion = 1

σ2
motion

and

wsingle observation = 1
σ2
observation

.

The generated sequences are 100 frames long and display the Gauss blob which is drawn
with σPSF = 5 pixel and a �xed maximal intensity of 15 (in the center of the blob). The
background noise is drawn with σobservation = 15 (intensity value) around a �xed mean
of µobservation = 300 (intensity value). The blob moves around its previous location with
σmotion = 2 pixel. Six of such sequences are generated, one to learn the feature weights
and �ve to validate them.

The evaluation of the interaction features needs generating sequences with multiple blobs.
The video length and parameters for the observation and motion model are the same as
before, but they show six moving blobs. Since the cells in the original problem do not
overlap, the generated blobs must not overlap either. Therefore, if any of the randomly
moved blobs was moved closer than τredraw = 10 pixels to another blob, then all blobs
were redrawn in this frame. However, because of rejecting overlapping motions the true
σmotion is unknown. Also the true value of the feature weight winteraction is not determined
by the setup.

The generated ground truth locations of the blobs are stored next to the video for the
evaluation.

Evaluating the Learning Process As explained in the setup, the arti�cial problem that
shows one arti�cial blob can be tracked with a tracker that uses only two features: the
clipped single observation feature of Section 4.1 and the random motion feature of Section
4.3. The true parameters are known from the generative model, these are σmotion = 2
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Figure 5.1: Noisy sequence with moving Gaussian blob. The images show the ground
truth (green cross), the trackers estimate (red cross), and the particles with
the highest weight. The particle likelihood is encoded in the color - the color
order from highest to lowest probability is: red, orange, yellow, cyan, blue,
gray.

pixel and σobservation = 15 (intensity value). The �rst experiments is about �nding these
true values by the automated learning process. Therefore, two independent training runs
are evaluated, both starting with two di�erent initial parameters. The feature weights
are then learned from �ve training sequences by minimizing the mean squared error of
the particles' location and the ground truth location of the blob. The standard deviations
of these models can be computed from these feature weights, since for both features it
holds that w = 1

σ2 . In the following �gures only these standard deviations are reported
and compared against the true values. The reported errors have been measured on and
averaged for another �ve validation sequences. The error is de�ned as the distance (in
pixel) between a particle's location and the ground truth location in space.

Figure 5.1 illustrates three frames of the sequence in which a Gaussian blob moves around.
The targeted blob is marked by the green cross that is the ground truth. The red cross
shows the estimate of the particle �lter, which is surrounded by the particles (see the
�gure's description).

At �rst, Figure 5.2 shows a 3D plot of the error surface. The x-axis shows the deviation
of the motion model σmotion, which indicates the valid spread of the particles from their
previous position. The y-axis shows the deviation of the observation model σobservation,
which speci�es the spread of the noise in the observation. The lowest error is where
σmotion = 2 and σobservation = 15 - the ground truth parameters which are indicated by
the green arrow. To the left and to the right of this point one can see two corridors, in
which the error is slightly increasing. When σmotion increases, the particles of the tracker
are allowed to mover farther from its last position. If σmotion is su�cient large, i.e., if
it exceeds the borders of the image, then the feature allows any motion in the image
and the particles are weighted solely by the observation. If, however, σmotion decreases
and approaches to zero, then the particles are not allowed to move at all. This case is
removed from the �gure otherwise one could not see the corridors in the �rst place.
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Figure 5.2: Plot of the error (in pixel) against σmotion of the motion feature and
σobservation of the observation feature. The red and the yellow graphs depict
two di�erent learning processes, which start with di�erent initial parameters.
The parameters in both runs are found by minimizing the mean squared er-
ror. The green arrow points to the true values with which the videos were
generated.

Looking only at the observation feature, one can observe a similar behaviour for σobservation.
With σobservation →∞ the feature weight wsingleobservation tends to zero and the parame-
ters are weighted solely by the motion model. However, the motion feature is not su�cient
to �nd the blob in the noisy image. Therefore, with increasing an σobservation the error
increases too. For this problem the observation is a stronger feature than the motion
and therefore the error goes up as σobservation increases. But decreasing the parameter
σobservation too much is equivalent to assuming that there is no noise in the image. In
the extreme case, the posterior distribution is represented by only one particle, which is
the one with the best �tting appearance. This also comes with a higher error.

The next plot in Figure 5.2 shows two graphs that represent the same learning curves that
are depicted in Figure 5.2. Figure 5.3a shows the standard deviation of the observation
during the learning iterations, Figure 5.3b shows the learned σmotion during the learning
process. The two graphs (red and yellow) depict the two di�erent learning runs, which
start with di�erent initial values. It shows that σmotion approaches to the true value in
both tries, but the true standard deviation of the observation model was not found. Only
the �rst attempt goes into the right direction. Assuring better convergence needs further
tweaking the learning parameters, i.e., the learning rate and the number of iterations.
Both parameters have not been properly set for this problem because of limited time.
However, the plots indicate that the learning process works in general. The other learning
procedures (Perceptron learning, maximizing the posterior likelihood, and minimizing
the residual error of the mean) have been evaluated in the same way and show similar
results.
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(a)

(b)

Figure 5.3: These �gures depict the learning process in greater detail, which is roughly
sketched in Figure 5.2. Both �gures show the process of two di�erent learning
runs (red and yellow). The upper �gure depicts the process for σobservation. In
the �rst attempt (red), the parameter σobservation slowly converges to the true
parameter (green). However, the learning rate is too small and true value is
not reached in 400 iterations. In the second attempt (yellow), the parameter
does not change much from the initial values. That is, because the learned
parameter graph just leaves the corridor before it the training run stops (see
again Figure 5.2). The second �gure depicts an exemplary learning processes
of the parameter σmotion for both runs (red and yellow).
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Figure 5.4: Few selected frames from a generated sequence showing multiple interacting
blobs. The color encoding is as in Figure 5.1, that is, the green cross shows the
ground truth, the red cross shows the trackers' estimates, and the surrounding
dots are particle locations.

Evaluating the Joint Features Inspecting the interaction features needs evaluating the
sequences that show multiple arti�cial cells. These sequences are generated as explained
in the setup paragraph. The tracker uses the single observation feature, the random
motion feature, and the joint interaction features to evaluates previous locations of the
other blobs. As an example, Figure 5.4 shows four frames out of a tracked training
sequence.

The reported parameters in Figure 5.5 are again learned by minimizing the mean squared
error. The feature weight of the interaction feature as well as the standard deviation of
the motion converge after about 100 learning epochs. The �nal value for σobservation was
not found in the same time. The errors on the training sequence and on two validation
sequences are reported in Figure 5.6.

Concluding the Experiments with the Arti�cial Sequences The generated sequences
with arti�cial cells are used to debug the learning process and examine the interaction
features. The results indicate that the tracking plug-in is working as expected. These
experiments were not designed to show strengths and weaknesses of certain learning
approaches or feature functions. The reported results make clear that the automatic
adjustment of the feature parameters works. In addition, these experiment show that
hyper-parameters like the learning rates and, even more, the initial values have huge
impact on the success of the learning process. It is not important further adjust these
parameters on the arti�cial sequences, but it is necessary to keep this in mind in the
following experiments.

5.2 Tracking Heart Muscle Cells

The second task is to locate all heart muscle cells in the given microscopy data. This
needs setting up the tracking plugin, labeling the data, choosing proper features, learning
the parameters from data, and evaluating the con�gured tracker on the problem. The
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(a) (b)

(c)

Figure 5.5: Learning the features' parameters: (a) depicts the learned weight of the inter-
action feature, (b) shows the process of σobservation, and (c) shows the learned
values for σmotion.

Figure 5.6: Error (in pixel) on the training sequence (blue) and error of two validation
sequences (green and red).
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tracking plugin is working and it has been shown that the learning procedure works as
expected. This section covers the experimental setup, the selection of proper features,
and the evaluation of the problem.

Experimental Setup The given data was provided without any annotations and, there-
fore, all cells need manual labeling. The recording contains more than 200 cells in 3D
space that are visible in all 87 frames, but it is not always trivial to distinguish multiple
cells when they lie very close together. The data is illustrated in Figure 5.7.

To simplify the manual labeling task, the experiments are not evaluated on the whole
image stack, but only on three manually selected sections. In each of them the cells can
be distinguished in the z-projection by a non-expert. These sections are cut out of the
original 3D-image sequence by de�ning a �xed 3D bounding box, whose location does
not change over time. They show the front (Figure 5.8a) and the back (Figure 5.8b)
of the right heart chamber, as well as the front of the left heart chamber (Figure 5.8c).
Each section from the original video forms again a video sequence that is 87 frames long.
Figure 5.8 shows a single z-projected and annotated frame of each of the sequences.
There are 48 annotated cells in the �rst sequence (front of the right heart chamber), 22
annotated cells in the second sequence (back of right chamber), and 37 annotated cells in
the third sequence (front of left chamber). These annotations are manually added using
the implemented plug-in.

This, of course, does not solve the original problem, but it is su�cient to report the
performance of the discriminative particle �lters. This comes with the additional advan-
tage that model parameters can be trained and validated on di�erent sequences. In the
presented experiments, the parameters are always learned on the image sequence that
shows the front of the right heart chamber, which is therefore called training sequence.
The other sequences are used to validate the learned parameters and therefore referred
to 1st (back of right chamber) and 2nd (front of left chamber) validation sequence.

Each of object is tracked by an individual tracker with 200 particles. The parameters in
the reported experiments are found by minimizing the mean squared error, the training
algorithm run for 15 iterations. The thresholds of the training algorithm were set to
τupdate = 2500nm, which is about 3.8 pixels, and τreset = 7800nm, which is equal to
12 pixels in the 3D stack. The learning rate for the kth iteration is determined by
γk =

γ0
1+kγ0λdecay

, where the parameter λdecay is set to 0.05 and therefore the learning rate

decreases slowly. The initial learning rates γ0 depend on the di�erent feature functions
and the initial feature weights.

Interpreting the Results Each of the following experiments reports on two di�erent
measurements. The �rst is the average error of the objects' estimates to their respective

47



5 Experimental Evaluation

Figure 5.7: View on the projected data (4th frame, z-projection using maximum values)

(a) (b) (c)

Figure 5.8: Three di�erent sections from the original video. They show projections of the
front (a) and the back (b) of the right heart chamber, as well as a projection
of the front of the left heart chamber (c).
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ground truth location. This error is de�ned by the Euclidean distance in 3D space. After
evaluating a sequence, the errors of each cell and each frame is averaged over the number
of cells and the number frames for which a cell is visible; that is, the average is computed
over the number of all accumulated values. To measure the error, the trackers are evalu-
ated after a parameter update with the newly learned parameters without resetting any
tracker even if the reset threshold τreset.

The second measurement is the failure rate of the objects' trackers. A failure is reported
once a tracker's error exceeds the reset threshold τreset. The failure rates average over
the number of tracked cells.

In the original data no cell appears or disappears at some point in time. But since
the three chosen sections of the original data lie inside the heart, cells may cross the
de�ned bounding boxes and, therefore, appear or disappear inside these sections. In the
presented experiments a cell is tracked until it disappears. Recurring cells are treated as
if they are di�erent cells, that is, no linkage between the disappearing and the recurring
cell is drawn.

Evaluating a Simple Model The arti�cial problem in Section 5.1 could be solved using
a simple model and for this reason the �rst idea is to apply a simple model to the heart cell
problem as well. The selected features that are used for this case are: The linear motion
model for which each particle is assumed to move linearly from its previous position,
the intensity features that new values are normally distributed around their previous
value, the clipped observation features that models single cells as Gaussian blobs, and

the interaction feature that evaluates the function g1(x
(i)
t ,xl,t) = 1

||x(i)
t −xl,t||

for each

particle and each estimate at time t− 1 of neighbouring cells.

The results of the trackers that use these features are visualized in Figure 5.9. One
can see that the error strongly decreases on all sequences only in the �rst iterations.
When considering also the failure rate, it can be observed that the tracker's performance
increases only on the training sequence. The results of each sequence after 15 training
iterations are reported in Table 5.1.

In addition to these results, Figure 5.10 depicts two frames out of the tracked sequence
and it illustrates two types of errors that occur. The �rst one can be observed in Figure
5.10a; this shows that simple motion model does not cope with the motion of the cells,
because some estimates lie behind the corresponding target cells after they start moving.
After losing their target, these trackers either �nd some false appearance or keep �oating
in space. The second error can be observed in Figure 5.10b, where multiple estimates
collapse on one appearance. The single observation feature and the interaction feature,
which is computed on the previous location of the other estimates, are not able to keep
the di�erent trackers apart.
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Figure 5.9: The left chart depicts the average error in 3D space; the right chart shows
the failure rates per iteration for the simple model. The �nal values of the
training sequence are marked for better recognizability.

Training Sequence 1st Validation Sequence 2nd Validation Sequence

Average Error (in nm) 6417 10529 8635

Failure Rate 0.3125 0.3478 0.4474

Table 5.1: Results after 15 training iterations of the trackers that uses the simple model

(a) (b)

Figure 5.10: Selected frames that show the di�erent types of errors. The displacements
or drifts are caused by strong neighbouring appearances (e.g. for cell 16,
15 or 21) or by fast motion (as for cells 27, 30, or 44). The images are the
frames 27 (left) and 35 (right) of the training sequence. Parts of the black
background was removed to save ink.
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Figure 5.11: Average error in 3D space (left) and failure rates (right) per iteration for the
�collectively-moved� model

Training Sequence 1st Validation Sequence 2nd Validation Sequence

Average Error (in nm) 3497 2994 10301

Failure Rate 0.1042 0.0909 0.3514

Table 5.2: Results after 15 training iterations of the trackers that utilizes the �collectively-
moved� features

Evaluating a Set of �Collectively-Moved� Features The features which are based on
a collective motion are designed to increase the performance, as the heart cells lie on a
common surface that forms the heart chambers and as neighbouring cells on this surface
move alike. To con�rm this, a second experiment is run using a set of collective motion
features: The linear motion feature which is computed on the collective motion vector, the
normal-distributed intensity feature (as before), as well as the joint observation feature
and the interaction feature, which are both computed on the other cells' estimates that
have been moved from the previous frame according to the collective motion of their
neighbourhood. For all these features the collective motion vector always refers to the
neighbourhood-average motion as explained in Section 4.3 and Section 4.4.

Comparing the results to the ones of the previous experiment, the errors drastically
decreased for all but the 2nd validation sequence and the failure rates go down by more
than 10% (see Figure 5.11 and Table 5.2).

Figure 5.12 shows two exemplary frames out of the tracked training sequence. As particles
are evaluated by the collective linear motion feature, they are either carried along or
slowed down by motion of the neighbourhood. In general, this reduces the number of
failures, but once a tracker has lost its target it might be easily lead into a false direction.
This �gure also shows a similar problem as before, where three trackers are grouping
around a very bright appearance of a single cell. However, the trackers do not collapse
on such cell, but they are trying to explain this appearance together.
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(a) (b)

Figure 5.12: Two selected frames - (a) Frame 27 and (b) Frame 81 - from the tracked
training sequence. The errors are not caused by fast motion anymore, as the
motion is explained by the features. However, drifts to brighter neighbouring
cells still occur (e.g. cells 14, 15, and 16 in in Frame 81). Also the collective
motion features introduce errors where a tracker's particles are carried away
due to their neighbours motion (e.g. cells 24 and 25 in Frame 81).
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Training Sequence 1st Validation Sequence 2nd Validation Sequence

Average Error (in nm) 2993 2926 11194

Failure Rate 0.0833 0.0909 0.2973

Table 5.3: Results after 15 training iterations of the tracker that utilizes 8 feature func-
tions

Evaluating all Features Together The features that are computed on the collective
motions explain the problem quite well, but there is till room for improvement. An open
question is whether a tracker that exploits all feature functions can yield better results.
Another interesting question is when learning the feature weights of all features, which
features turn out to be signi�cant and which are not. Is it thereby possible to avoid the
overhead of selecting and testing the proper feature set?

In this third experiment the trackers evaluate the particles on the following features:
The intensity feature (as before), the random motion feature that assumes that a par-
ticle makes normal distributed moves around its previous location, the linear motion
feature that assumes that single particles continue moving with their previous velocity,
the collective linear motion that consider the motion of the neighbourhood when eval-
uating the new particle's position, the single observation feature, the joint observation
feature which is computed on the collectively moved estimates of the neighbouring cells,
the interaction features that are evaluated on the previous estimates of the neighbouring
cells, and the interaction features which are also evaluated on the collectively moved
estimates of the neighbourhood.

Error and failure rate during the learning process is shown in Figure 5.13. The results
after the latest training step are listed in Table 5.3. It shows that these results are almost
similar to the results for the �collectively-moved� feature set. The tracks look similar,
but it shows that there are fewer estimates that drifted away from their targeted cell.
Compare Figure 5.12 to Figure 5.14. This is also re�ected by the failure rate, which is
slightly reduced.

The course of the feature weights which have been computed by the learning process are
displayed in Figure 5.15. It shows that weights of the collective linear motion feature
and the joint observation of the collectively moved neighbourhood increased the most.
But also the weights of the single observation and the particle's linear motion feature
increased compared to their initial position. It can be seen that the set of �collectively-
moved� features from the previous experiments can be improved by these two features.
On the other hand, the intensity feature, the random motion feature, and the interaction
feature that evaluates the previous neighbourhood are not signi�cant for the description
of the heart muscle cells.
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Figure 5.13: Average error in 3D space (left) and failure rates (right) per iteration using
all feature functions.

(a) (b)

Figure 5.14: Selected frames of the tracked training sequence - (a) Frame 27 and (b)
Frame 81. Except for Cell 44, the errors are caused by drifting to brighter
neighbouring cells.
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Figure 5.15: Course of the feature weight during the learning process

Evaluating the Fiji Built-In Feature Point Tracker The Feature Point Tracker, which
is described in [Sbalzarini and Koumoutsakos, 2005], is the baseline object tracker to
which the implemented discriminative particle �lters are compared to. It is implemented
in the MosaicSuite1 and is shipped with Fiji. This tracker is developed to analyze and
track cells in video microscopy and has been successfully applied to track cells in various
biological applications. To �nd an object's trajectory in a video sequence, this tracker
�rst detects object occurrences, which they call feature points, in each frame and then
links these feature points into trajectories.

Once the cells have been tracked, the output trajectories need matching to the ground
truth trajectories to evaluate the errors and failure rates. Therefore, each ground truth
trajectory is matched to the closest output trajectory. The error is then computed on
these tracks until one of them disappears or until the sequence ends. There might be
multiple output trajectories that are close to one ground truth path, which is problematic
for a fair comparison of the approaches. Such mistakes can be caused by running the
tracker with poorly selected parameters, which therefore must be changed. However,
even when the parameters have properly selected and tested the tracker might detect
cells where no ground truth label is found. It might be that the either tracker is wrong
or a ground truth label is missing, as these are manually added by a non-expert. To
bypass this problem only the �rst2 output track is evaluated, the other one is ignored.
On the other hand, if a ground truth is present but no output track can be assigned,
then a failure is reported (but no error is measured). If an cell disappears in the sequence
but occurs again and if the the distance in time between disappearing and recurrence
is greater than the explained link range of the Feature Point Tracker, then the ground
truth track (which is continuous) is treated as if it where two independent tracks.

1http://mosaic.mpi-cbg.de/?q=downloads/imageJ
2The �rst track: The track that begins in the frame with the smallest frame number.
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Training Sequence 1st Validation Sequence 2nd Validation Sequence

Average Error (in nm) 4943 3125 8565

Failure Rate 0.2683 0.1168 0.3862

Table 5.4: Results of the Feature Point Tracker

(a) (b)

Figure 5.16: Two frames from the training sequence that has been tracked by the Feature
Point Tracker [Sbalzarini and Koumoutsakos, 2005] - frame 27 (left) and
frame 42 (right).

The parameters of the Feature Point Tracker are set up as follows: radius w = 7, cuto�
threshold Ts = 0, upper percentile r = 0.60, link range R = 4, maximal displacement
L = 20, and the tracked cells are assumed to move with constant velocity. The results
with this setup are listed in the Table 5.4. After matching the tracker's output to
the ground truth, the tracks can be displayed just as the outputs of the discriminative
particle �lters, which is done in Figure 5.16. Errors where multiple estimates explain a
single appearance rarely occur; it happens for Cell 24 in Figure 5.16b. The feature point
detector can detect the cells very accurately as their appearance in the given images
is quite clear. Linking these feature points to trajectories is more prone to errors. A
common mistake is the jumping to an appearance of another cell and, since there can be
only one feature point for each appearance, this may lead to di�erent succeeding errors.
The cells may exchange their place, as shown in Figure 5.16a by the Cells 41 and 27. But
one track could also terminate another trajectory by taking its place, see for example
Cells 17 and Cell 33 in Figure 5.16a. A jumping cell may also push the previous track
away to another appearance, this happens e.g. with the Cells 12, 11, 14, and 16 (in this
order) in Figure 5.16b.
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Average Error Training Seq. Validation Seq. 1 Validation Seq. 2 Validation Mean3

Simple Model 6417 10529 8635 9341

Collectively Moved Model 3497 2994 10301 7576

All Features 2993 2926 11194 8111

Feature Point Tracker 4943 3125 8565 6537

Failure Rate Training Seq. Validation Seq. 1 Validation Seq. 2 Validation Mean3

Simple Model 0.3125 0.3478 0.4474 0.4103

Collectively Moved Model 0.1042 0.0909 0.3514 0.2543

All Features 0.0833 0.0909 0.2973 0.2203

Feature Point Tracker 0.2683 0.1168 0.3862 0.2857

Table 5.5: Summary of the trackers' results.

Concluding the Experiments with a Comparison The experiments show that the prob-
lem of tracking heart muscle cells with discriminative particle �lters can be solved. Prop-
erly designed feature functions have huge impact on the results as they describe the
characteristics and behaviour of the targeted objects.

Comparing the set of feature functions, it becomes clear that the simple features which
have been evaluated in Section 5.1 do not su�ciently explain the heart cells. The ex-
periment with the collectively moved features shows that more expressive features which
consider the motion of the neighbouring cells are needed. However, it is not necessary
to manually select the features to get an expressive model, but the experiment on the
full feature set shows that the automatic parameter can �nd the most essential feature
functions. Table 5.5 summarizes the results of this section's experiments.3

The Feature Point Tracker from [Sbalzarini and Koumoutsakos, 2005] is able to accurately
detect cells in the given image, since the cells' appearances are quite clear. However,
linking the detected feature points into trajectory is more prone to errors and leads to
a higher failure rate. The discriminative particle �lters, on the other side, may always
continue a track and, as they run pseudo-independently, will not displace another cell's
tracker.

3Mean over all validation objects in both sequence. Denote that the number of objects in both sequences
di�er.
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6 Summary

This thesis examines the discriminative particle �lters of [Hess and Fern, 2009] as an
approach to track heart muscle cells in microscopy recording. Knowing the location of
all heart muscle cells is necessary to reconstruct the heart's complex structure and to
investigate the development process of the heart beat. It is hard to distinguish the cells
in the given recording only by their appearance in the image, however, tracking of all cells
jointly at the same time is infeasible. The discriminative particle �lters allow to track
each heart muscle cell pseudo-independently and evaluates multiple di�erent features that
describe the appearance and the motion of each cell, but also the interaction between
di�erent cells. The implemented tracking plugin has been evaluated on the given data
and it has been shown that discriminative particle �lters are able to locate and distinguish
heart cells during the whole cardiac cycle. Future work may focus on producing more
stable tracks by, for instance, exploiting more detailed features and by further tuning the
learning parameters.
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Appendix

Derivation: Gradient of the Minimizing Mean Squared Error
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Proof of Claim 1

Proof. In the code, the particle's weight is computed by
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This �ts to De�nition 2, where the particle's weight is determined by
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