
Global and E�cient Self-Similarity
Feature Extractor and Descriptor

1 Introduction

The comprehension of semantics of an image demands in-depth analysis of that particular
image. To detect or classify objects in a picture, the image is preprocessed so that one
gets a better representation of the information of interest. The two major steps are
the extraction of image features, which describe certain characteristics of the image
information, and the computation of an image descriptor, which encodes these features
in an easy to handle, �xed-size mathematical object; e.g. a matrix or a vector.
Self-similarity is one such characteristic, which depicts similarity of the mathematical

object within itself. In image analysis this means re-occurrence of speci�c patterns in an
image over and over again. [Shechtman and Irani, 2007] investigated how self-similarity
can be locally computed. That is, self-similarity as a feature is extracted on a patch-level
and the geometric arrangement of similar patches are compared thereafter. Figure 1
shows the example of several objects with similar shape. Such similarities are not shared
in other image properties, e.g. colors or texture, but can be found by in the similar
alignment of locally self-similar patches.

Figure 1: Several with similar geometric arrangement of similar local patterns, from
[Shechtman and Irani, 2007].

Extracting self-similar features globally, on the overall image, is computational expen-
sive. [Deselaers and Ferrari, 2010] analyzed how this can be tackled in a feasible way.
They depict an algorithm to extract the global self-similarity features (GSS) and de�ne
the self-similarity hypercube (SSH) descriptor to describe these features.
This report gives a detailed analysis of Deselaers and Ferrari's work and a re-implementation

of their feature extractor and descriptor in C++ using the OpenCV framework. Sections
2 and 3 contain the analysis, Section 4 gives some details on the implementation, and
Section 5 shows experiments to �nd out what this new implementation is capable of.

1

2 Self-Similarity Features

Extracting self-similarity information of an image is �nding all regions within this image
that �look alike.� A similarity measurement between patches must be de�ned and an
retrieval algorithm on the image must be speci�ed.
[Shechtman and Irani, 2007]'s de�nition of local self-similarity (LSS) on a patch-level

forms the the basis of computing self-similarities. On this basis, [Deselaers and Ferrari,
2010] designed their global algorithm.

2.1 Local Self-Similarity Feature

Taking the patches around two pixels, we can measure their similarity by calculating the
sum of squared distances of their pixel values.

De�nition 1. SSD. For two pixels p and p′ of the image I, let tp and tp′ denote the

w × w-patches centered around p respectively p′. The Sum of Squared Distances

(SSD) of patch tp and tp′ is calculated on each pixel value tp,i and tp′,i as

SSD(tp, tp′) =
∑
i

(tp,i − tp′,i)2. (1)

A low SSD value between two patches indicates strong similarity. However, the corre-
lation of two patches is depicted by a correlation value between 0 and 1. A high value
re�ects strong correlation, where the maximum value 1 states equality. The correlation
of the two patches is calculated on their SSD value.

De�nition 2. Correlation. Let tp be a patch centered around pixel p and tx a patch

centered around pixel x. The correlation of two tp and tx is re�ected by a correlation value

Cp(x) ∈ (0; 1]. Cp(x) is the negative exponent of normalized sum of squared distances;

i.e.,

Cp(x) = exp

(
−SSD(tp, tx)

σ

)
. (2)

In the original publication of LSS a pixels patch tp is compared to each others pixels
patch tx within a larger region Rp around p; i.e. x ∈ Rp. All correlation values Cp(x) of
the region Rp together form a correlation surface Cp, which is of the same size as Rp.

De�nition 3. Local Self-Similarity Feature. Let p be an arbitrary pixel, tp the patch
centered around p, and Rp a larger region around p. The Local Self-Similarity Feature is

the correlation surface Cp of p to each x ∈ Rp.

Cp = Cp(x), ∀x ∈ Rp. (3)

2

Figure 2: Correlation of two example patches within the global image, from [Deselaers
and Ferrari, 2010].

2.2 Global Self-Similarity Feature

The naive way to calculate global self-similarities is to directly apply the LSS feature to
not just to a restricted region Rp around a pixel, but to the whole image I. This yield
in total H ×W correlation surfaces Cp, one for each pixel p ∈ I. For example, �gure 2
shows two patches 1 and 2 and their correlation surface. Brighter pixels in Cp indicate a
stronger correlation of to the particular patches.

De�nition 4. Direct Global Self-Similarity Feature. The direct global self-similarity

tensor SI of the image I consists of all the correlation surfaces Cp of each pixel p in the

image I.

SI(p, p
′) = Cp(p

′), ∀p, p′ ∈ I. (4)

Restricting the correlation surface to a small �xed-size region Rp around pixel p in
the LSS features was to maintain feasibility. But not just the computational cost of
the direct GSS tensor is enormous, also SI is a 4D matrix that requires memory of size
H ×W ×H ×W in terms of the input image size H ×W .
The de�nition of an e�cient GSS tensor, which is fast to calculate and which requires

just as much memory as the input image itself, is the contribution in Deselaers and
Ferrari's work. The idea is, not to correlate each pixel patch tp to each other patch of I,
but only to a small selection of signi�cant prototype patches.

De�nition 5. Prototype Codebook. Let θ be a prototype patch of size w × w that

de�nes a image basic pattern. The set Θ, which contains all the prototype patches θ, is
the codebook of the e�cient GSS tensor.

Denote that this de�nition does not cover the meaning of �signi�cant prototypes.� As
the detailed speci�cation of how to �nd the prototypes is not important for the de�nition
of the GSS feature, their description is delayed to section 2.3.
The correlation of each pixel p to the prototypes θ ∈ Θ is calculated just as before

by replacing the pixel patches tx ∈ Rp with the prototypes θ ∈ Θ; i.e., the correlation
is calculated as Cp(θ), ∀θ ∈ Θ. For the assignment of a prototype to a pixel, it is not
necessary to keep each of these correlations. In fact, Deselaers and Ferrari required that
each pixel must be assigned to exactly one prototype. The assignment is computed with
the prototype assignment functionMI .

3

De�nition 6. Prototype Assignment Function. Let p ∈ I be a pixel of the input

image and Θ a prototype codebook. Function MI : I → Θ assigns each pixel in I to

exactly that prototype in Θ that has the strongest correlation to p.

MI(p) = arg max
θ∈Θ
{Cθ(p)} . (5)

Calculating the prototype assignment for each pixel of the input image will yield a
assignment mapMI . It has the same size as the input image.

De�nition 7. E�cient Global Self-Similarity Feature. Given image I, the proto-

type assignment mapMI is de�ned by

MI = MI(p), ∀p ∈ I. (6)

This de�nes the e�cient global self-similarity feature.

Example 1. Figure 3 shows an image of a few pyramids from the Caltech 101 database
[Fei-Fei et al., 2004] and an prototype assignment map of that image. For each pixel in
I a w×w sized patch has been extracted and the set of patches has been clustered with
k-means into 400 distinct prototypes. This yields a so-called image speci�c prototype
codebook, as it will be explained in the next section. Figure 4 contains eight example
prototypes of this codebook. Then, each pixel p in the image is assigned to the closest
cluster regarding SSD. That is, the prototype θ for which the correlation Cθ(p) is maximal.
The cluster assignments itself are just numbers in the assignment map; to display them,
they have been mapped to HSV color values using the OpenCV function.

Figure 3: Example image I of pyramids and its prototype assignment map.

Figure 4: Eight example prototypes from the codebook of image I.

2.3 Discussion on Signi�cant Prototypes

As denoted, the De�nition 5 neither speci�es the meaning of �signi�cant prototypes� nor
how the codebook Θ is ought to be collected. Deselaers and Ferrari present three di�erent
types of codebooks: the generic codebook ΘDCT , an database speci�c codebook ΘDB,
and the image speci�c codebook ΘI . See �gure 5 for examples.

4

Generic Codebook. For this codebook, the discrete cosine transformation (DCT) is
computed on an image patch. It disassembles the patches in terms of 2D cosine functions
with di�erent basis frequencies. Each of the basis frequencies can be interpreted as a
prototype. The respective prototype patch contains discretized values of the 2D basis
function as pixel values. An image patch is the linear combination of multiple basis
functions, i.e. prototype patches. When applying theDCT for the prototype assignment,
then the patch is assigned to the basis function prototype with the highest coe�cient.
In practice the codebook ΘDCT is not collected, but the DCT is applied to the image

patches directly. It is applied to each of the patches color channels independently and
then the assignmentMI(p) is �the composition of the prototypes of the three channels,�
[Deselaers and Ferrari, 2010]1. Furthermore, for practical reasons the constant frequency
prototype is discarded.

Database-speci�c Codebook. The database or image set speci�c codebook is generated
by collecting all pixel patches from the whole set of images and then selecting the k = |Θ|
�most signi�cant� ones. Deselaers and Ferrari propose to apply k-means clustering on
all patches and choose the cluster centers as prototypes. However, this collection of
patches might become very large and on the same time numerous patches are alike as
the patches are extracted for each pixel of the images. The proposed compromise is to
randomly sample a subset of all patches and then cluster the prototypes from this subset
in a shorter time.

Image-speci�c Codebook. The generation of the image speci�c codebook follows the
same procedure as the generation of the data speci�c prototypes, besides that prototypes
for each assignment mapMI are cluster only from the single image I.

Figure 5: Examples of ΘCDT , ΘDB, and ΘI codebooks, from [Deselaers and Ferrari,
2010].

1We interpret �composition� as: We are to apply the DCT on each color channel independently and
to select the prototype assignment of the color channel with the highest response. We took a few
samples of patches and discovered that in all cases the prototype assignment of each channel were
the same.

5

3 Self-Similarity Descriptors

Once the features are computed they must be converted into a comparable �xed-size
form, the descriptor. It contains the important information about the image features.

3.1 Local Self-Similarity Descriptor

To describe the correlation surface Cp in a �xed-size descriptor, Shechtman and Irani
proposed to overlay the surface with an log-polar grid that centered around p. Each
bin of the grid is assigned to the maximal value of the corresponding grid cell in the
correlation surface. Figure 6 shows an example of the LSS descriptors on 3 di�erent
patches.

De�nition 8. Local Self-Similarity Descriptor. The descriptor Lp of the correlation
surface Cp is calculated by overlaying Cp with a (ρ, θ)-log-polar grid, where ρ are radial and
θ angular coordinates for the bins. For each bin x ∈ BIN(ρ, θ) the maximum correlation

value of Cp is assigned to Lp; i.e.,

Lp(ρ, θ) = max
x∈BIN(ρ,θ)

{Cp(x)}. (7)

Figure 6: Example LSS descriptor, from [Shechtman and Irani, 2007].

3.2 E�cient Global Self-Similarity Descriptor

Deselaers and Ferrari adopted the idea of using an overlay grid for their GSS descriptor
and partitioned the assignment mapMI into D1×D2 grid cells. However, an assignment
map does not contain any correlation values of which they could take the maximum.
Instead, to �nd out how similar two grid cells are, they count the sum of how many
pixels in the one cell have the same assignment as the pixels in the other cells using the
function HI .

De�nition 9. Similarity of Grid Cells. Let J and J ′ be two overlay grid cells of the

assignment mapMI . The similarity of the two grid cells is measured by the number

pixels that share the same prototype assignments:

HI(J, J ′) =
∑
p∈J

∑
p′∈J ′

δ(MI(p) =MI(p
′)). (8)

6

Comparing each of the D1 ×D2 grid cells with, again, each of the D1 ×D2 grid cells
results in a 4D self-similarity hypercube (SSH) descriptor HI for the image I.

De�nition 10. Global Self-Similarity Hypercube. The self-similarity hypercube HI ,
which contains the similarity values of each of the grid cell pairs (J, J ′), is the descriptor
of the e�cient global self-similarity featuresMI .

Example 2. We resume with example 1 and show how the self-similarity hypercube
descriptor is created on the pyramid's assignment map. For this example, let D1 = 10
and D2 = 10. In �gure 7a the assignment map is shown with the exemplary grid cell
J , which is marked by the black frame, and two other arbitrarily selected cells K ′ and
K ′′ are framed. For each cell K in the grid the similarity value HI(J,K) is computed.
All those values HI(J, ·) are stored in a, for J speci�c, slice of the hypercube. Figure 7b
shows the slice for the exemplary cell J , its values are mapped into HSV colors space, too.
In this slice, the two values HI(J,K ′) and HI(J,K ′′) are marked by a gray frame. The
correlation of cell J to the left cell K ′ is rather low. That is indicated by the red-orange
color. The correlation of J to the lower right cell K ′′ is far stronger, indicated by the
blue color. In general, the red and orange colors in HSV space map to correlation values
that are close to zero; the blue and purple colors map to values close to 1. By that, one
can see that the selected cell J strongly correlates to all those cell that show the front of
the middle pyramid and those that show much desert sand, but not to those cells that
show the sky.

(a) Framed cell J is compared to two
other cells K′ and K′′.

(b) Hypercube slice HI(J, ·) with frames around
the values for HI(J,K′) and HI(J,K′′).

Figure 7: Assignment map MI with an example overlay cells and the slice in the GSS
descriptor for the selected cell.

Such slice must be calculated for any cell in the grid, which yields the hypercube
descriptor. Figure 8 depicts the overall hypercube, where the slices for all cells are
colored and placed next to each other. The previously denoted slice for cell J in �gure
7b is marked a black frame in the overall hypercube. In addition, two further examples
of cells and their slices can be found in �gure 17 in the Appendix A.

7

Figure 8: Complete GSS descriptor HI for the pyramids.

4 Implementation

The C++ implementation of the e�cient global self-similarity feature and descriptor fol-
lows the design of the Matlab code given by Deselaers and Ferrari2. The class
FastSelfSimilarity encapsulates the creation of the prototype codebooks Θ, the gen-
eration of the GSS assignment mapMI , and calculations for the hypercube descriptors
HI .

4.1 The FastSelfSimilarity Object

Constructor. The object constructor takes the following parameters:

• n_clusters, the number overall of clusters k = |Θ|, where 400 clusters is the
default.

• method, identi�es the way how the prototypes are to be clustered. It is:

0: if k−means should be applied on all patches,

1: if the patches that are used in the k−means clustering are just a random
subset of all patches,

2: if the prototypes are gathered only by sampling; i.e., no clustering,

3: if the DCT prototypes are to be used; i.e., no clustering.

• n_patches, which gives the maximal number of patches that are sampled
before they are clustered. This is only relevant for method=1.

• d1, the number of overlay grid cell rows (height) to be used for the GSS
hypercube.

• d2, the number of overlay grid cell columns (width).

The FastSelfSimilarity object provides the following functionality:

2http://calvin.inf.ed.ac.uk/software/global-and-efficient-self-similarity/

8

imagePatcher. This function takes an image as input and then gathers all patches from
this image. The extracted patches are of size w × w, where w = 2·scale+1, and
they are centered around the pixels p ∈ I.

getClustersFromPixels. Given image or an image set, this function gathers their
patches using imagePatcher and then �nds the set of prototypes Θ according to
the selected clustering method. This function uses OpenCV's k−means implemen-
tation, if method was set to 0 or 1.

quantiseSSD. Given the set of prototypes has been found, this function takes a vector
of patches of image I and computes the prototype assignment mapMI according
to the minimal sum of squared distances between the patches and the prototypes.

quantiseDCT. To �nd the assignment map that is based on the general prototypes, it
is not necessary to build the clusters of prototype patches. The DCT is directly
applied on each pixel patch and the prototype assignment map MI is created by
choosing the DCT base frequency with the maximal absolute coe�cient. Denote,
the constant prototype, which has no zero, is omitted.

quantise. As a generalization, this function delegates calls to either quantiseSSD or
quantiseDCT according to the method value.

getHistogram. It returns the histogram of prototype assignments of an assignment map
or a display window of it.

getOneSSH. The self-similarity hypercube HI is computed for a region of interest (ROI)
of the assignment mapMI . The correlation of each grid cell of the D1×D2 overlay
grid is calculated by comparing the number of equal prototype assignments in each
two grid cells. At �rst, a histogram vector of prototype assignments of each cell is
created with the getHistorgram function. Then, the number of equal prototypes
of two cells is the dot product of their histograms.

4.2 Example Algorithm

The algorithm 1 depicts how the FastSelfSimilarity object can be used to create a set
of hypercube descriptors for a set of input images.
At �rst, it needs clustering cluster the images into the prototype set Θ. Therefore,

getClustersFromPixels takes the whole set of input images and generates the database-
speci�c prototype set. Calling getClustersFromPixels within each iteration of the for-
loop creates the image-speci�c prototypes. Figure 9 shows an example image and 8
randomly selected cluster patches of the codebook. The codebook itself is stored and
maintained internally in the fss object and shall not be accessed from the outside.
The prototype assignment mapsMI are computed on the set of pixel patches of the

image I, which are collected with the imagePatcher function. quantise then forwards
the call to quantiseSSD and returns the database-speci�c assignment. If the fss object

9

Algorithm 1 Using the FastSelfSimilarity object.

1 std::vector <cv::Mat > images = loadImages ();

2 std::vector <cv::Mat > descriptors;

3

4 // Create the fast self -similarity object.

5 int method = 2;

6 FastSelfSimilarity fss(n_clusters , method , n_patches , d1, d2);

7

8 // Gather the protoypes from the image set.

9 fss.getClustersFromPixels(images);

10

11 // For each image ...

12 for (cv::Mat image_i : images) {

13

14 // gather the patches of image i, ...

15 std::vector <cv::Mat > patches_i = fss.imagePatcher(image_i);

16

17 // create the protoype assignment map M_i , ...

18 cv::Mat assignment_i = fss.quantise(patches_i ,hight ,width);

19

20 // define a target region in the assignment map , ...

21 cv::Rect roi = getRegionOfInterest ();

22

23 // and compute the descriptors for image i in the ROI.

24 cv::Mat SSH_i = fss.getOneSSH(assignment_i , roi);

25

26 // Save the SSH descriptor for further processing.

27 descriptors.push_back(SSH_i);

28 }

Figure 9: Example of an input image I (Caltech 101) and 8 random clusters.

had been created with method=3, quantise would forward the call to quantiseDCT in-
stead. In this case, the call to getClustersFromPixels would not do anything, but exit
early. Figure 10 depicts three assignment maps, which are generated based on the three
di�erent types of prototypes. For the ΘDB-example assignment map we have taken all
emu images of the Caltech 101 database for the clustering.
The SSH descriptors can be calculated on any speci�c region of the assignment map.

This is important for object localization and it is used in classi�cation of the display

10

(a) ΘI prototypes. (b) ΘDB prototypes. (c) ΘDCT prototypes.

Figure 10: Assignment mapsMI from �g. 9, created with the di�erent prototype sets.

windows in section 5.3. Calling getOneSSH without a region of interest results in calcu-
lating a hypercube for the whole assignment map. To illustrate the image descriptors,
each slice of the 4D self-similarity hypercube in �gure 11 is colored and placed side by
side.

(a) ΘI prototypes. (b) ΘDB prototypes. (c) ΘDCT prototypes.

Figure 11: SSH tensors SI of the assignment maps in �g. 10.

5 Experiments

The implementation is analyzed on the Caltech 101 image benchmark [Fei-Fei et al.,
2004]. To �nd out, what it is capable of, we will �rst evaluate it on image classi�cation;
once with images of emus and �amingos and once with emus and cars. A training set,
which contains 25% of the images of both categories, is taken to train a linear SVM. The
remaining images are used for validation. The second test is to show the robustness of
the GSS descriptors to scale and shift changes. We validate di�erent display windows
gathered with a sliding window on three emu images. The SVM is then trained with the
remaining images of either of the two categories.
In the following, section 5.1 contains a more detailed description of the image cate-

gories, section 5.2 the results of the classi�cation of the categories, and section 5.3 depicts
the analysis with the sliding display windows.

11

5.1 Image Categories

The Caltech 101 benchmark dataset is a collection of images gathered in the Internet
and sorted into 101 di�erent categories. It contains images of objects and animals like
butter�ies, cars, laptops, pigeon, and the like. However, in our analysis we have chosen
only three of these categories that are the emus, �amingos, and cars categories. The
category emu contain 53 colored images, in the �amingo's are 67 colored images, and
there are 123 gray scale images of side views on cars. The restriction on the number of
only three categories, which have 243 images in total, was made due to the long runtime
of the experiments, as you will see in the following sections. The selection of those three
categories was made, because the discrimination of emus against �amingos was assumed
to be a rather complicated test and the discrimination of emus and cars a rather easy
experiment. We would like to see, how the descriptors work with these two di�erent
settings. In �gure 12, three example images of each of the selected category are shown.

Figure 12: Three images of the Caltech 101 categories emus, �amingos and cars.

5.2 Classi�cation of Categories

The �rst test is object classi�cation. As denoted, these tests are evaluated once on the
image sets 1, emu vs �amingo, and once on set 2 that contains emus and cars. In every
test case, we use the OpenCV implementation of a linear SVM and take every 4th input
image to train the SVM. The remaining images are used for veri�cation.

Variable Parameters. For the clustering we always set method=1, which is sampling
at most npatches patches and then clustering that sampled set with k−means into k = |Θ|
prototypes. We choose three di�erent parameter sets to run the clustering, which are
parameters 1: npatches = 10, 000 and k = 400, parameters 2: npatches = 50, 000 and
k = 300, and at last parameters 3: npatches = 500, 000 and k = 1, 000. Due to the
limits of our memory, we can not cluster from more than 500, 000 patches, which also
means that we can not run the tests with method=0. Denote, that the parameters no. 3
are only used with the ΘDB codebooks, since there are no more than 50, 000 pixels in
a single image, which is relevant for ΘI . Also, none of the cluster parameters in�uence
the tests with the generic prototypes ΘDCT , since there is no clustering for the DCT
codebook.

12

Image Set 1 Images Veri�ed Errors with ΘI Errors with ΘDB with ΘDCT

on pars. 1 pars. 2 pars. 1 pars. 2 pars. 3

Emu 53 39 20 27 28 23 27 20

Flamingo 67 51 28 26 14 19 15 24∑
120 90 48 53 42 42 42 44

(53.3%) (58.9%) (46.7%) (46.7%) (46.7%) (48.9%)

Table 1: Classi�cation Emus vs Flamingos.

Image Set 2 Images Veri�ed Errors with ΘI Errors with ΘDB with ΘDCT

on pars. 1 pars. 2 pars. 1 pars. 2 pars. 3

Emu 53 39 8 7 18 16 19 5

Car 123 93 5 7 2 4 1 11∑
176 132 13 14 20 20 20 16

(9.8%) (10.6%) (15.2%) (15.2%) (15.2%) (12.1%)

Table 2: Classi�cation Emus vs Cars.

Results. Tables 1 and 2 show the results of the tests. The average error on the image
set 1 is 50.20%, which is basically the result of a random guess. The results with ΘI

codebook and parameters 2 yield the greatest distance to the random chance, though
they also have the most misclassi�ed images. We do not conclude any advantages or
disadvantages from this, but only that the chosen categories are hard to separate with
these self-similarity features for any codebook.
On image set 2 the average error is 13.02%. Using the ΘI codebook yield the lowest

error, ΘDB the worst, and ΘDCT performed slightly better than average. This test
shows slightly superiority of ΘI prototypes over the others. Our results with the DCT
codebook do not coincide with Deselaers and Ferrari's �ndings, which is that ΘDCT

performs poorly. However, our implementation might di�er from theirs.3 In addition, we
�nd that the errors are more or less stable with the di�erent cluster parameters npatches
and k. The variance of the error might stem from the randomness of the sampling.
Only the the results with the ΘDCT codebook are stable, as they do not incorporate any
randomness.

Runtime. The tests ran on a 2006's Intel Celeron 575 processor; the runtime of the
experiments is listed in table 3. The clustering and the quantization takes most of
the time. Especially with the image-speci�c codebook, as it needs clustering in each
iteration. In contrast, the database-speci�c codebook runs k−means just once. This
is an advantage, as higher expenditures on clustering does not even guarantee better
results. The quick DCT alternative does not needs either clustering or quantization and
its runtime performance depicts this.

3The DCT codebooks are not implemented in the provided Matlab code. In their experiments section,
it reads as if they do not apply DCT directly, but only on a very few (5 or 10) DCT -like patches.
Also their �composition� of the color channel prototypes might di�erent from ours.

13

The classi�cation results do not indicate that there is any advantage in taking a huge
set of pixel patches to cluster nor do they advocate a large number of clusters. The
ΘDB codebook yields an almost constant error rate. In stead of running the experiments
with parameters 2 and 3, we could have gotten better results with repeating only the
experiments with parameters no. 1 multiple times, or even using smaller number of
clusters and patches.
The time it takes to create the SSH descriptor is negligible compared to the quanti-

zation and clustering. Once a good set of clusters have been found and the assignment
maps are computed the assignment maps could be stored with the images, if computing
the descriptors needs to be done over and over again.

Time on ΘI Time on ΘDB Time on ΘDCT

pars. 1 pars. 2 pars. 1 pars. 2 pars.3

a) Emu vs Flamingo (120 images):∑
Clustering 2.47 h 5.76 h 78.10 s 4.64 min 2.92 h -∑

QuantizationMI 1.51 h 1.13 h 1.50 h 1.13 h 4.09 h 2.48 min∑
Computing HI 2.93 s 2.31 s 2.92 s 2.30 s 6.77 s 1.77 s

b) Emu vs Cars (176 images):∑
Clustering 3.62 h 8.26 h 79.68 s 5.72 min 2.7 h -∑

QuantizationMI 2.00 h 1.55 h 2.00 h 1.58 h 5.1 h 3.48 min∑
Computing HI 4.25 s 3.48 s 4.28 s 3.51 s 9.7 s 2.53 s

c) average time per image:∑
Clustering 74.09 s 2.84 min - - - -∑

QuantizationMI 42.59 s 32.57 s 42.56 s 32.87 s 1.46 min 1.17 s∑
Computing HI 24.24 ms 19.53 ms 24.32 ms 19.64 ms 2.05 min 14.52 ms

Table 3: Runtime of the classi�cation a) Emu vs Flamingo, b) Emu vs Car, and c) image
average.

5.3 Classi�cation of Display Windows

The second test is to �nd how the GSS descriptor performs when the input image is shifted
and scaled. We take some images for veri�cation, extract display windows following the
sliding window approach, and verify them using a linear SVM. As before, the evaluation
image sets are emus vs �amingos and emus vs cars. The set of veri�cation images contains
only the �rst three images of the emu category. The SVM was trained each with the
remaining images of the datasets. However, the results on both images sets are exactly
the same, so the sets are not discriminated in the reported results.

Results. In the following, the tables list the numbers of detected emus and misclassi�ed
display windows for each image and on each type of prototype assignment maps. For
each depth level the size of the respective region of interest (ROI) is given, as well as the
number of correct classi�ed and misclassi�ed regions.

14

Image no. 1 (table 4) was split into 164 display windows. In most of them, the emu
is detected when evaluating the windows on the ΘDB assignment maps, but misclassi-
�ed in the evaluations on the ΘDCT and ΘI maps. The tests with the ΘI and ΘDCT

return a clear result only on the �rst two levels. Below that the results become rather
heterogeneous. For the test with ΘDB this is also true on depth level 1 and below.

Depth Level ROI Size ΘI ΘDB ΘDCT

#Emus #Errors #Emus #Errors #Emus #Errors

0 200×165 0 1 1 0 1 0

1 180×148 0 6 3 3 5 1

2 162×133 6 10 5 11 10 6

3 145×119 14 16 17 13 9 21

4 130×107 23 25 38 10 10 38

5 117×96 29 34 52 11 7 56∑
- 72 92 116 48 42 122

Table 4: Results of the emu 1 image.

The results on the second image (table 5) are very clear for the database speci�c code-
book. This is in contrast to the results of the generic and the image speci�c codebooks,
where the test failed to detect the emu in the whole image and it becomes rather diverse
on the lower depth levels just as in image 1.

Depth Level ROI Size ΘI ΘDB ΘDCT

#Emus #Errors #Emus #Errors #Emus #Errors

0 200×147 0 1 1 0 0 1

1 180×132 3 3 6 0 3 3

2 162×118 3 9 12 0 3 9

3 145×106 8 22 30 0 9 21

4 130×95 17 31 48 0 18 30

5 117×85 24 39 62 1 21 42∑
- 55 105 159 1 54 106

Table 5: Results of the emu 2 image.

At last, the results for the third image in (table 6). Unlike the images 1 and 2, the
image 3 was always misclassi�ed in the classi�cation tests of section 5.2 on the database
speci�c assignment maps. By that, it can be explained that the validation is failing on
the ΘDB assignment maps. Other than the di�erent classi�cation, the results are similar
to the ones on image 2.

15

Depth Level ROI Size ΘI ΘDB ΘDCT

#Emus #Errors #Emus #Errors #Emus #Errors

0 181×200 0 1 0 1 0 1

1 162×180 3 3 0 6 2 4

2 145×162 8 8 0 16 10 6

3 130×145 16 20 1 35 23 13

4 117×130 24 32 7 49 37 19

5 105×117 30 42 15 57 51 21∑
- 81 106 23 164 123 64

Table 6: Results of the emu 3 image.

Discussion. To explain the heterogeneousness of the results, we give some insights on
the image windows and their descriptors on the exemplar image of Emu 3. Figure 13
depicts the classi�cation result of the display windows at depth level 2, which were
evaluated on the generic prototype assignment map. This �gure shows only the �rst
two rows of display windows, the remaining windows can be found in the Appendix B.
The frames show the di�erent windows from which the SSH descriptor was created; their
color indicate the classi�cation result. That is, a green frame is classi�ed as showing an
emu,� the red frame is misclassi�ed. However, the location of the displayed frames seem
not to give a clear relation to their classi�cation.

Figure 13: Emu 3, sliding windows at depth level depth 2 (starting at level 0) and the
classi�cation of the generic prototype assignment map.

The results in section 5.2 indicate that the discrimination of emus from �amingos is
rather complicated and the discrimination of emus from cars must be easier, but this is
not re�ected by this sections results. The following descriptors where created on three
di�erent images, one for each of the categories, to understand these results. Figure
14 shows one image speci�c and one generic assignment map for each image. Observe
the descriptors of the overall assignment map and the ones extracted with the display
window at level 2 of the image pyramid, to spot changes in the descriptors when the

16

Figure 14: Generic and image speci�c assignment maps of an emu, a �amingo, and a car.

display window gets scaled or shifted. At the 2nd depth level, the window has 0.81 times
the size of the original image and it is moved by 10 pixels in each step. See �gure 15
for the descriptors of the previous assignment maps. The descriptors from the display
windows at level 2 are depicted in �gure 16; to maintain clarity it contains only the top
row of sifted descriptors. Shifting the display window a�ects the descriptors, as their
overlay grid shifts with the window. This leads to a shift of the rows or columns in the
hypercube. This moves the representation in the vector space of the SVM and leads to
such diverse classi�cation results. To re-establish the link between the window descriptors
and the target object description, the shifted descriptors need further correlating before
running a classi�cation test.

Figure 15: Hypercube descriptors of the assignment maps in �gure 14.

17

(a) 1st row level 2 sliding window of the emu.

(b) 1st row level 2 sliding window of the
�amingo.

(c) 1st row level 2 sliding window of the
�amingo.

Figure 16: SSH descriptors on the �rst row of sliding windows at depth level 2 on the
generic assignment maps of �gure 14.

Besides the e�ects that occur when the window is shifted, the descriptors also change
when we scale into the image. The overlay grid on the assignment map scales with the
scaling of the display window and so does the resolution of the descriptors. In the given
�gures, one can �nd similar structures of descriptors on the lower levels in the descriptors
of the overall image. However, these relations are more vague than those between shifted
descriptors on the same level.
These results indicate that the hypercube descriptors alone are not robust to scale and

shift changes. A detection of an object in the overall image needs subsequent correlation
of the window descriptor to the descriptor of the target object.

6 Conclusion

This report gives a survey of Deselaers and Ferrari's global self-similarity features and
descriptors, a re-implementation of these using C++ and OpenCV, and some basic ex-
periments on applying these features in image classi�cation.
The results on the object recognition task are not outstanding. A discrimination of

the categories emus and �amingos of the Caltech 101 database failed. Also the tests did
not indicate clear superiority of any particular codebook over the other codebooks, as it
has been the case in Deselaers and Ferrari's experiments. In addition, the computation
of the features and descriptors take quite long in general. At last, it shows that the
descriptor is not quite robust to view changes, that is scale or shift of the view onto the
object. Slightly changes might change the description of the target completely.
To deal with these problems, one might pick a more speci�c representation of the

target object or class, as the self-similarity of an image also contains the similarity of

18

the background within this image. Furthermore, a subsequent correlation of the target
description to the description of an image or image section is needed to re-detect the
object in the image.
In their publication, Deselaers and Ferrari also reported on the possibility of enhancing

other image features by the use of self-similarity features. This has not been tested in
this work. Also further experiments on di�erent image sets and a comparison to state-of-
the-art features are in need to get a better impression on the potential of these features.

References

Thomas Deselaers and Vittorio Ferrari. Global and e�cient self-similarity for object
classi�cation and detection. IEEE CVPR 2010, CVPR 2010, 2010.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training
examples: an incremental bayesian approach tested on 101 object categories. IEEE

CVPR 2004, Workshop on Generative-Model Based Vision, Workshop on Generative-
Model Based Vision, 2004.

Eli Shechtman and Michal Irani. Matching local self-similarities across images and videos.
IEEE CVPR 2007, 2007.

19

Appendix A

Figure 17: Assignment map MI with two further exemplary overlay cells and their hy-
percube slice.

Appendix B

Figure 18: Emu 3, sliding windows at depth level depth 2 (starting at level 0) and the
classi�cation of the generic prototype assignment map.

20

Appendix C

(a) 1st row level 2 sliding window of the emu.

(b) 1st row level 2 sliding window of the
�amingo.

(c) 1st row level 2 sliding window of the
�amingo.

Figure 19: SSH descriptors on the �rst row of sliding windows at depth level 2 on the
image speci�c assignment maps of �gure 14.

21

