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Autorenreferat

Algorithmen, welche Stereokorrespondenzen berechnen, nutzen normalerweise rektifizierte
Bilder um Disparitäten zu berechnen. Falls keine Rektifizierung vorhanden oder diese
inakkurat ist produzieren die meisten Stereo Algorithmen verzerrte Bilder. In dieser
Arbeit wird eine Methode vorgestellt mit der solche Probleme für den PatchMatch Stereo
Algorithmus reduziert werden.

Es werden vier Rektifizierungsalgorithmen vorgestellt und untersucht. Diese sind der
Algorithmus von Hartley, der Algorithmus von Bouget, Quasi-Euclidean epipolar rec-
tification (QER) und Polar Rektifizierung. Es wurde eine Evaluierung entwickelt und
durchgeführt, um einen Algorithmus zu finden, welcher später als Rektifizierungsalgorith-
mus für PatchMatch Stereo dienen soll. Das Ergebnis ist der Algorithmus von Hartley
zusammen mit der Fundamental Matrix, welche mittels QER ermittelt wurde.

Anschließend wird der PatchMatch Stereo Algorithmus vorgestellt und für freihand Stereo
erweitert. Dazu wird der Suchraum vergrößert indem eine y-Disparität in das Datenmodell
von PatchMatch Stereo integriert wird. Das erlaubt es Korrespondenzen zu finden, welche
nicht auf einer horizontalen Linie liegen. Ein neuer Term wurde vorgestellt der Kosten je
nach y-Disparitäten hinzufügt. Zusätzlich wurde eine Implementierung auf Basis der Open
Computing Language (OpenCL) geschrieben, um die Geschwindigkeit des Algorithmus zu
erhöhen.

Ein Evaluierung für die Änderungen wurde definiert und durchgeführt. Die Ergebnisse
werden in der Arbeit präsentiert und analysiert.

Die Evaluierung zeigt, dass die Erweiterungen bessere Ergebnisse erzielen, besonders im
unrektifizierten Fall. Es wird gezeigt dass der neu eingeführte Kosten Term nicht gut
funktioniert und überarbeitet werden sollte. Außerdem konnte herausgefunden werden,
dass die OpenCL Implementierung nicht die erwarteten Verbesserungen bringt.



Abstract

Stereo matching methods are usually relying on rectified images to calculate disparities.
If the rectification is inaccurate or not present at all most stereo matching algorithms will
produce distorted disparity maps. In this thesis an approach is described that overcomes
this issue for the PatchMatch Stereo algorithm.

As groundwork for stereo matching four rectification procedures namely Bouget’s algo-
rithm, Hartley’s algorithm, Quasi-Euclidean epipolar rectification (QER) and Polar rec-
tification are introduced and examined. An evaluation approach for these algorithms is
developed and used in order to find an algorithm that can be further used as rectification
algorithm for a stereo matching algorithm, namely PatchMatch Stereo. As result the
Hartley’s algorithm in conjunction with the fundamental matrix calculated by QER is
used.

Further the PatchMatch Stereo algorithm is introduced and improved to work with free-
hand stereo. Therefore an extended search space is introduced. Basically it adds a
disparity in y direction to the data model of PatchMatch Stereo. This allows to find
matches that lie not on a horizontal scan-line. A new cost term is introduced to penalize
too high y-disparities. Additionally an approach is defined to improve the speed of the
algorithm by applying an Open Computing Language (OpenCL) implementation.

Further an evaluation procedure was defined and used with the proposed adjustments.
The results are presented and analyzed.

After evaluating the improved PatchMatch Stereo in different scenarios, it turned out
that the algorithm performs better with the adjustments especially in an unrectified case.
Additionally it was found out that the proposed cost extension does not work well and
should be thus revised. It was found out that the OpenCL implementation does not bring
the expected improvements.
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1 Introduction

Three-dimensional (3D) models are useful in many areas. In movies they can be used
to replace human characters or insert objects that do not need to be build in the real
world. They are used as assets in video games. Architects can use them to visualize their
building plans. Even in medicine 3D models can be used to visualize inner organs and
so on. Nowadays such models can be printed with 3D printing devices which allow even
more use cases. 3D models are created from 3D artists or can be extracted from image
sequences which lays in the domain of Computer Vision (CV).

CV “is the transformation of data from a still or video camera into either a decision or
a new representation” [BK08, p. 2]. Decision means that the computer can determine
whether the data represents for example a car or a person. “A new representation might
mean turning a color image into a grayscale [one] or removing camera motion from an
image sequence” [BK08, p. 2] or might mean reconstructing 3D models out of an image
sequence. Another possible definition is: CV is the area of “[d]eveloping computational
models and algorithms to interpret digital images and visual data in order to understand
the visual world we live in” [Rot14, p. 9].

CV has many fields of research, for example 3D scene understanding which is concerned
with the recognition of objects within a scene, their position and pose and the relation
towards each other [Wes14]. Another research area is 3D reconstruction which allows to
create 3D models out of images or image sequences. This thesis is ranged in the latter
area because it tackles the problem of estimating the depth values in an image pair of the
same scene. Such an image pair is called a stereo image.

1.1 Goals and challanges

Several algorithms exists for estimating the depth of stereo images (for example [MSK14],
[Jia+14], [Ric+10] and [BRR11]). This thesis focuses on one particular algorithm, namely
PatchMatch Stereo [BRR11]. with the goal of refining its performance.

1



1 Introduction

The algorithm shall be tested with images that are taken with one camera from differ-
ent angles. These are called freehand stereo images. Thirty of such images shall be
photographed and shall contain high depth changes, fine structures and few texture.

The relationship between those images (the epipolar geometry) is unknown and must be
calculated. Therefore different algorithms for this shall be compared.

The PatchMatch Stereo algorithm must be understood and improved in a way that it
works with stereo images where the epipolar geometry is not accurately estimated. The
changes to the algorithm shall be evaluated afterwards.

1.2 Structure

This thesis is structured into six chapters whereas the first chapter (chapter 1) introduces
the fundamental goals and purpose of this document. This is followed by an introduction
of notations for the thesis as well as fundamentals about the proposed part of CV in
chapter 2. Chapter 3 introduces related research that has been done in the area of stereo
matching. In chapter 4 the preprocessing step for stereo algorithms is tackled. This
preprocessing is called rectification. Therefore different approaches for rectification are
explained and evaluated. Chapter 5 describes the stereo matching algorithm PatchMatch
Stereo and proposes performance improvements for it. This is followed by an evaluation
of these improvements. The last chapter (chapter 6) summarizes the results, gives a
conclusion and sketches different ideas to further improve the algorithm.

2



2 Fundamentals

This chapter will introduce naming conventions and fundamental concepts.

In order to make a 3D scene out of two images different steps are performed. First two
pictures from the same scene are made with a camera which is modeled by the pinhole
model (section 2.2.1). These images define an epipolar geometry (section 2.2.2). Given
some point correspondences it is possible to calculate a matrix that contains the relation
between the two images, the so-called fundamental matrix (section 2.2.3). Using the
fundamental matrix it is possible to rectify (section 2.3) the images as rectified images
allow easier disparity calculation. Such disparities can be calculated using the PatchMatch
Stereo algorithm (chapter 5). Afterwards these disparities can be used to extract the depth
information which can be used to reconstruct a 3D model (known as 3D reconstruction)
(section 2.4). The whole procedure is visualized in figure 2.1.

Figure 2.1: The procedure from two images to a 3D reconstruction.

2.1 Notations

In order to not get confused by potentially differing notations of other publications this
section will introduce notations that are used throughout the thesis.

Points In the frame of this thesis 3D-points are referred to as points in the real world and
are named with upper case letters (e.g. Q). 2D-points are 3D-points that are projected
onto an image plane. These are named with lower case letters (e.g. q). Points using
inhomogeneous coordinates are marked with a tilde (e.g. q̃). Subscript on points refer to
their respective element (e.g qx = x-coordinate of q)

3



2 Fundamentals

Stereo image A stereo image is a pair of images, that show the same scene from slightly
different views. It consists of two roughly horizontally offset images.

Point correspondence If two 2D-points in different images refer to the same 3D-point
these two 2D-points are called a point correspondence.

Freehand stereo A way of taking stereo images is to take two pictures from different
angles with the same camera. This is called freehand stereo. Other approaches are also
possible but the focus of this thesis is on freehand stereo.

Apostrophe Stereo images consist of two images, but calculations (or relations) are
mostly done on one image, the reference image. In order to distinguish matrices, points
etc. from the reference image with the matrices, points etc. of the other image an
apostrophe is used to mark the matrices, points etc. of the other image. For example x
refers to a point on the reference image and x′ refers to a point on the other image.

Vector cross product The cross product of two vectors (a × b) in R3 can be written
as a matrix multiplication of a skew-symmetric matrix [a]× and the vector b and is called
vector cross product. This is shown in equation (2.1). [cf. Tre98]

a× b =

a1a2
a3

×
b1b2
b3

 =

 0 −a3 a2

a3 0 −a1
−a2 a1 0

 ·
b1b2
b3

 = [a]× · b (2.1)

2.2 Stereo image geometry

This section will describe the relationship between the two images of a stereo image and
the therefore used camera model.

2.2.1 Camera model

A camera mostly consists of a housing, a sensor and a lens. The photosensitive sensor,
which is also referred to as the image plane, senses the light that falls upon it. The
housing prevents stray light from hitting the sensor, while the lens lets some light pass
onto it [cf. Daw14, p. 9].

4



2 Fundamentals

A lens can be rather complex and is hard to model correctly. In order to simplify and
abstract the real camera into a model the pinhole camera model1 is used. In the pinhole
model the lens is replaced by a pinhole. This model is extended with some distortions
which are introduced through various other parts of the camera e.g. lenses [cf. Daw14,
p. 9].

In this model light rays go from points of an object through the pinhole and are projected
onto the image plane upside down. This is visualized in figure 2.2a. The size of the
projection is only dependent on the distance from the pinhole to the image plane, the
focal length(f) [cf. BK08, p. 371].

pinhole

image plane

object
f

Q(X,Y,Z)

q(x,y)

optical axis

Z (depth)

(a) The original pinhole model

center of 
projection

image plane

object

f

Q(X,Y,Z)

q(x,y)

optical 
axis

Z (depth)

C

(b) The arranged pinhole model

Figure 2.2: The pinhole camera model

In order to simplify the model (and to avoid projections that are upside down) the image
plane and the pinhole are swapped (see figure 2.2b). Furthermore the pinhole is reinter-
preted as the center of projection (C). In this case the projection q is created by the
intersection of the light ray from point Q to C with the image plane. The intersection of
the optical axis with the image plane is called principle point. [cf. BK08, 371f.]

Intrinsics matrix

The projected points can be calculated as in equation (2.2) [cf. BK08, p. 374]. This
equation uses homogeneous coordinates in order to simplify the calculation into a matrix
multiplication.

q = K · Q̃, where q =

xy
w

 , K =

fx s cx

0 fy cy

0 0 1

 , Q̃ =

XY
Z

 (2.2)

1“The pinhole camera model goes back at least 987 years to al-Hytham [1021] and is the classic way of
introducing the geometric aspects of vision” [BK08, p. 370].
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2 Fundamentals

In this equation is q the 2D-point and Q̃ the corresponding 3D-point. The focal length
is f . The equation states two different focal lengths, due to low-cost sensor-elements are
typically rectangular instead of square sized [cf. BK08, p. 373]. For the sake of simplicity
only squared sized sensor-element were considered. The translation from the principle
point to the upper left corner of the image plane is described by cx and cy. This is used
because images are usually described with the upper left corner as the origin. These
values are in most cases set to half of the image size in the corresponding direction. Other
values occur if the cameras sensor is not exactly centered to the optical axis. In special
occasions skew can occur, described in [HZ04, p. 164]. The skew factor is referred as s
and is set to zero among this thesis. The matrix K contains the intrinsic parameters of
a camera and is therefore called camera intrinsics matrix. With this transformation an
inhomogeneous 3D-point can be projected to a 2D-point in homogeneous coordinates on
the image plane.

Extrinsic matrix

“The camera’s extrinsic matrix describes the camera’s location in the world, and what
direction it’s pointing” [Sim12]. Therefore a matrix is used that relates the world co-
ordinates to the the camera. The matrix consist of a rotation R, which is shown in
equation (2.3), and a translation t = (tx, ty, tz).

R = Rz(θ) ·Ry(ϕ) ·Rx(ψ), where (2.3)

Rz(θ) =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 ,Ry(ϕ) =

cosϕ 0 − sinϕ

0 1 0

sinϕ 0 cosϕ

 ,Rx(ψ) =

1 0 0

0 cosψ sinψ

0 − sinψ cosψ


Both are combined to one 3× 4 matrix shown in equation (2.4).

M = [R|t] =

r1,1 r1,2 r1,3 tx

r2,1 r2,2 r2,3 ty

r3,1 r3,2 r3,3 tz

 (2.4)

“The vector t can be interpreted as the position of the world origin in camera coordinates,
and the columns of R represent [...] the directions of the world-axis in camera coordinates”
[Sim12]. With this it is possible to position the world coordinate system within the camera.
The choice of the world coordinate system is arbitrary, this means that for every 3D world
coordinate system there exists an unique extrinsic matrix. This is especially useful for
relating multiple cameras to each other.
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2 Fundamentals

Projection matrix

Combining the intrinsics and extrinsic matrix via matrix multiplication results in the
3× 4 projection matrix P (see equation (2.5) [cf. HZ04, 154ff.]). It transforms 3D world
coordinates into 2D camera coordinates.

q = P ·Q, where P = K · [R|t] (2.5)

Distortions and calibration

It is possible that some aspects of a camera can introduce distortions, as stated in sec-
tion 2.2.1. There are two main distortions, that can be properly modeled and removed.
These are “[r]adial distortions [which] arise as a result of the shape of [the] lens [and]
tangential distortions [which] arise from the assembly process of the camera as a whole”
[BK08, p. 375]. These two distortions add some new parameters to the model, which
allows an algorithm to eliminate these from the image.

A camera is called calibrated if its K matrix and its tangential and radial distortion
parameters are known. This can be achieved through a calibration process, which is
described in [BK08, 381ff.]. For more information about the camera model see [chapter
11 in BK08, 370ff.].

2.2.2 Epipolar geometry

Consider two cameras, or one camera that takes two shots, which is mathematically
equivalent, that photograph a scene from different angles, like in figure 2.3. The camera
centers C and C ′ are related by a rotation and a translation R, t. The line connecting C
and C ′ is called the baseline and the intersections of the baseline with the image planes
are called epipoles (e and e′). Lets pick a 3D-point Q of the scene. If the point is not
occluded in one of the images the 3D-point is projected onto both image planes (as q and
q′). The three 3D-points Q, C and C ′ span a plane, the epipolar plane. The intersection
of that plane with the image planes are called epipolar lines.

Figure 2.3 also shows that every point on the ray from C to Q is projected to the same
location (q) on I, but in I ′ these points are wandering on the epipolar line. This means
a point in one image defines an epipolar line in the other image. All 3D-points that are
not on this epipolar plane do span new planes and therefore new epipolar lines which are
all intersect at the epipoles. [cf. Sch05, 68f.]

The epipolar geometry reduces the search space for one point correspondence to a line
instead of the whole image.
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Q

q q'

C C'
e'e baseline

epipolar line
epipolar 

plane

R,t

I

I'

Figure 2.3: The epipolar geometry. I and I ′ are the respective image planes.

2.2.3 Essential and fundamental matrix

This section introduces two new matrices that are used to relate the two cameras towards
each other, the essential matrix (E) and the fundamental matrix (F ).

Essential matrix

The essential matrix “contains information about the translation and rotation that relate
the two cameras in [world coordinates]” [BK08, p. 421]. The matrix can be defined by the
cross product of t with R. This is shown in equation (2.6) [cf. HZ04, p. 257]. Note that
this equation uses the matrix representation of the cross product.

E = [t]× ·R (2.6)

R and t “describe the location of the second camera relative to the first in [world] coordi-
nates.” [BK08, p. 421]

Usually (and especially in the freehand stereo case) the rotation and translation between
the cameras is not given and cannot be measured easily. Hence this matrix is mostly used
to retrieve these information from the stereo image itself. It is possible to calculate this
matrix via the fundamental matrix if the cameras are calibrated with equation (2.7) [cf.
HZ04, p. 257].

E = K ′T · F ·K (2.7)
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Fundamental matrix

The relation of two cameras in pixel coordinates is described by the fundamental matrix.
Therefore it contains the intrinsics information of the two cameras and can be defined by
equation (2.8) [cf. HZ04, p. 244].

F = K ′−T · E ·K−1 (2.8)

This matrix can be calculated via at least seven point correspondences. It can be com-
puted with uncalibrated cameras. For more information about the calculation of the
fundamental matrix see [chapter 11 in HZ04, 279ff.]

Properties This matrix has some important properties which are given in the following.
This overview is taken from [table 9.1 in HZ04, p. 246]

• F is a rank 2 homogeneous matrix with 7 degrees of freedom where rank is the
amount of “linearly independent rows or columns of the matrix” [Wei02] .

• Point correspondence: if x and x′ are corresponding image points, then
x′TFx = 0

• Epipolar lines:

- l′ = Fx is the epipolar line corresponding to x.

- l = F Tx′ is the epipolar line corresponding to x′.

• Epipoles:

- Fe = 0.

- F T e′ = 0.

As can be seen it is possible to directly retrieve the corresponding epipolar line for a given
point with the fundamental matrix.

2.3 Rectification

The image planes can be reprojected onto one plane, in a way that the corresponding
epipolar lines are horizontally2 aligned (also called a frontal parallel configuration) [cf.
BK08, p. 430]. This method is called rectification and is done on image coordinates.

2It is also possible to align the epipolar lines vertically but for better understanding and reading only
the horizontal case is used.
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Therefore a transformation is performed on both pictures, such that the images are in a
frontal parallel configuration afterwards. The images are then called rectified. A mapping
can be defined that maps each point on the original image towards the rectified image
which is visualized in figure 2.4.

Figure 2.4: Original and rectified views

Source: [cf. figure 7.1 in Sch05, p. 106]

In this figure qr and q′r are the rectified points of their corresponding points q and q′. Also
note that the epipoles are mapped to infinity. With this done the point correspondences
lay on scan lines instead of slanted lines and the fundamental matrix has a special form
shown in equation (2.9) [HZ04, p. 249].

Frect =

0 0 0

0 0 −1

0 1 0

 (2.9)

There are many different algorithms for calculating the right rectification transformations,
four of them will be discussed in section 4.1.

Homography A “projective mapping from one plane to another” [BK08, p. 384] is called
homography (H). Some rectification transformations can be described via a 3×3 homog-
raphy for each image.

2.4 Depth estimation

Depth is estimated over two steps, first disparity maps are computed and afterwards
these disparities are used for the triangulation procedure. The quality of the estimated

10
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depth depends (besides other factors) on the known information about the camera. If
the camera is calibrated it is possible to get the depth up to a scale factor. With some
additional information (e.g. the size of one meter in the image) the depth can even be
calculated absolute which allows precise metric measurements. Otherwise the depth can
be estimated up to a projective transformation [cf. HZ04, 264f.].

2.4.1 Disparity

Figure 2.5: A disparity map of the
sewerCover test set.

Disparities “are the differences in x-coordinates on
the image planes of the same feature viewed in the
left and right cameras: [x − x′]” [BK08, p. 415].
These disparities are calculated for all correspond-
ing points in the images, resulting in a disparity
map. Figure 2.5 shows such a disparity map.

2.4.2 Triangulation

Figure 2.6: Triangulation process

Source: [cf. figure 12-4 in BK08, p. 416]

The depth Z can be calculated from the focal length
f , the translation t and the disparity d by similar
triangles with equation (2.10) [cf. BK08, p. 417].

Z =
f · t
d

(2.10)

This is visualized in figure 2.6. In the case when
f and t are not present these parameters can be
estimated. Equation (2.10) shows that the depth is
inversely proportional to the disparity.

As a consequence nearby objects have high dispari-
ties while far away objects have low ones. Further-
more this implies that a small disparity change on far away objects has an huge impact
on its calculated depth, whereas with nearby objects this is only a small change. Due
to this depth information of good quality can only be achieved with objects relatively
near to the camera [cf. BK08, p. 417]. For more information about triangulation and 3D
reconstruction see [BK08, 415ff.] and [chapter 10 in HZ04, 262ff.]
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This chapter will show related research in the area of stereo matching algorithms. Stereo
matching algorithms are usually defined as optimization problems. Based on the method
of solving the optimization problem they can be divided into two categories: global and
local methods. In global methods “[a]n energy [...] function [(also called cost function)]
is given at first [and] then an optimization algorithm is used to obtain the disparity
value which makes the energy function minimum” [Zha+12]. Such an energy function
is usually divided into a data term, which represents the data, and a smoothness term
which “penalize[s] disparity solutions that are not smooth” [cf. Cap12]. Global methods
are usually more accurate but also more time-consuming.

As opposed to global algorithms, local algorithms calculate the disparity of each pixel
depending on a window of neighbor pixels (called support window). This is usually square
sized. These algorithms are usually faster but less accurate than global ones especially
on occluded regions [cf. Zha+12]. In recent years this problem has been overcome by
an adaptive support weight strategy [YK06] as seen for example in [Hos+09], [Ric+10]
and [Rhe+11]. PatchMatch Stereo itself is a local algorithm, but as stated in [BRR11] it
can also be used as a global one. In the following a selection of local methods which use
different techniques are introduced.

Cost filtering [Jia+14] proposes a cost function that contains the “truncated absolute
difference of color and gradients [in x and y direction]” [Jia+14] and additionally a value
which is derived from the image in the Gaussian color model [Geu+01] space. Afterwards
they aggregate the costs for each pixel at each disparity level, filter them using a sym-
metric guided filter [Rhe+11] and finally “[select] the disparity label with the lowest cost”
[Jia+14]. This results in an initial disparity map which is further refined with an initial
post-processing and a secondary refinement scheme they call “Remaining Artifacts Detec-
tion and Refinement” (RADAR) [cf. Jia+14]. According to [Jia+14] the RADAR detects
small holes in the disparity map as well as inconsistent regions throughout the images.
While this approach works well in the Middlebury benchmark [SS02] its cost function has
the downside of only allowing integer valued disparities. PatchMatch Stereo overcomes
this constraint by over-parameterizing the disparities with 3D planes.
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Segmentation Many other recent algorithms also use the idea of 3D planes in order
to model the data. In [MSK14] for example an initial disparity map is segmented using
a mean-shift segmentation [CM02] first. Afterwards a set of planes that have consistent
disparity values in both images is calculated for each segment. These planes are pixel-wise
labeled onto the pixels with an aggregated cost. Afterwards those planes are filtered and
reduced to only dominant planes. The planes are relabeled and the resulting disparity
map is used as initial disparity map in the next iteration of the algorithm [cf. MSK14].
While the algorithm can be used as a standalone stereo matching algorithm it is more
useful in refining disparity maps [cf. MSK14]. In the end only one plane remains for each
segment [cf. MSK14]. This might be problematic for fine grained structures and huge
disparity jumps on small areas.

Related to PatchMatch Stereo [Hei+13] uses the PatchMatch Stereo data term and
extends it by a smoothness term which uses the Huber norm [Hub73] that contains the
disparity values and normal vectors of the planes. Furthermore the energy optimization
problem is transformed into two subproblems. One is solved with the “use of a primal-
dual formulation of the Huber-ROF model as described” [Hei+13] in [CP11]. The other
is solved by a random sampling of information from the previous iteration [cf. Hei+13].
Their experiments show that this algorithm performs superior to PatchMatch Stereo but
it also requires proper rectified images [cf. Hei+13].

The approach stated in [TMN14] also uses the PatchMatch Stereo data term for a global
method but in this thesis only the local approach is used.

Misaligned images In [RTV13] a method is proposed that allows vertical offset (also
called y-disparity). A y-disparity is added into the cost function of the data model. For
each horizontal offset (also called x-disparity) the vertical offset which produces the lowest
cost is stored. This results in a lookup-table. This allows the use of standard optimization
methods. In [RTV13] semi-global matching [Hir08] is used as optimization algorithm, but
they state that other algorithms are also possible [cf. RTV13]. The downside of this
approach is that continues disparity values cannot be used due to it creating a lookup
table for disparities which makes it not suited for PatchMatch Stereo.

Conclusion The stated algorithms base on the assumption that the images are correctly
rectified (besides [RTV13]). This may not be the case in “freehand stereo”.
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4 Rectification

Calculating the rectification transformation is a well known problem. Hence many differ-
ent algorithms exist that try to solve that problem. This chapter shall give an overview
about different techniques and will also describe an evaluation approach as well as the
evaluation of the proposed algorithms.

4.1 Algorithms

This section will give a brief overview over four rectification algorithms and the performed
calculations in them. A complete understanding of these algorithms is not necessary, but
can be obtained by studying the respective literature.

Rectification can be computed using two kinds of algorithms: One kind needs calibrated
cameras and the others do not but most need some point correspondences. In the following
the Bouget’s algorithm as a representation of an algorithm that needs calibrated cameras
is described. This is followed by a description of the Hartley’s algorithm, the Quasi-
Euclidean epipolar rectification (QER) and the polar rectification as representations for
algorithms that use uncalibrated cameras.

4.1.1 Bouget’s algorithm

This algorithm uses calibrated cameras, meaning that, besides the point correspondences,
it needs the intrinsics matrices of the cameras as well as the rotation and translation
between them.

The algorithm is described in [BK08, 433ff.]3. It “attempts to minimize the amount of
change reprojection produces for each of the two images [...] while maximizing common
viewing area” [BK08, p. 433].

In order to arrange the cameras in a coplanar alignment the rotation matrix R (see
equation (2.3)) is split in half into a left and right rotation (r and r′). Further the rows

3Jean-Yves Bouget refined and completed a method first introduced in [Tsa87]. He never published his
algorithm besides his Matlab toolbox described in [Bou13]. [cf. BK08, p. 431]
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need to be aligned to. This is done by mapping the epipole of the reference image to
infinity. Hence a rotation matrix (Rrect) is created which can be seen in equation (4.1)
[cf. BK08, p. 434].

Rrect =

(e1)
T

(e2)
T

(e3)
T

 , where e1 =
t

||t||
, e2 =

[−ty tx 0]T√
t2x + t2y

and e3 = e1 × e2 (4.1)

The first row of Rrect is the direction of the image’s epipole e1. By assuming the image
origin as the principle point it is possible to determine the direction of e1 directly from
the translation vector t. The vector e2 must be orthogonal to e1 and is otherwise uncon-
strained. Therefore the direction of the optical axis is used. It can also be calculated with
t. Last but not least the vector e3 is the cross product between e1 and e2.

Multiplying the rotations results in a rectification transformation (Rr and R′r) shown in
equation (4.2) [cf. BK08, p. 434].

Rr = Rrect · r

R′r = Rrect · r′
(4.2)

Afterwards the new rectified projection matrices are calculated. With this it is possible
to calculate the rectification mapping.

4.1.2 Hartley’s algorithm

Another approach to the rectification problem is “to find homographies that map the
epipoles to infinity while minimizing the computed disparities between the two stereo im-
ages” [BK08, p. 431]. This is known as the Hartley’s algorithm. It needs the fundamental
matrix F and some point correspondences as input.

The right and the left epipoles are determined via F and its properties F · e = 0 and
(e′)T · F = 0. Afterwards the homography H ′ which maps the the epipole e′ to infinity is
calculated. This is done by

1. a translation T which maps an arbitrary point (e.g. the image center) to the image
origin (to avoid distortions around this point),

2. a rotation R which rotates the epipole to etoInf = [f, 0, 1]T and

3. a transformation G which maps the point etoInf to infinity (e.g. to [1, 0, 0]T ).
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Equation (4.3) [cf. BK08, p. 432] illustrates this procedure.

H ′ = G ·R · T , where G =

 1 0 0

0 1 0

−1/f 0 1

 (4.3)

In the next step the matching homography H is calculated. H must map the epipole e to
infinity and also row align the images. In order to map e to infinity equation (4.3) is used.
FurtherH is chosen such that it minimizes the total disparity of the point correspondences
which can be seen in equation (4.4) [cf. Har99]. This achieves row alignment.∑

i

(H · pi −H ′ · p′i)2 (4.4)

These two homographies rectify the images. More information about this algorithm can
be found in [BK08, 431ff.] and in the original paper [Har99].

4.1.3 Quasi-Euclidean epipolar rectification

[FI11] propose a third approach for the rectification problem. The main idea of their
algorithm is to “seek the collineations that make the original points [(the given point
correspondences)] satisfy the epipolar geometry of a rectified image pair” [FI11].

This is known as the QER algorithm. Note that it only needs the point correspondences
as input. It bases on different assumptions: It assumes that

1. the intrinsics matrix for both images is the same,

2. the aspect ratio of the focal lengths is one,

3. there is no skew and

4. the principle point is in the middle of the image.

Hence the intrinsics matrix can be parameterized with a single parameter for the focal
length. Furthermore the rectified intrinsics matrix (Krect) is set to the original (K) modulo
a shift of the principle point (which might become necessary for centering the rectified
images into a custom frame [cf. FI11]). The rectification homographies can be calculated
with equation (4.5) [cf. FI11]. Each one of the rotation matrices R and R′ contains three
parameters (θ, ϕ, ψ) as seen in equation (2.3).

H = Krect ·R ·K−1 and H ′ = Krect ·R′ ·K−1 (4.5)
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One parameter, one rotation around the x-axis, is set to zero which results in absolute
five parameters for the rotations. Therefore six degrees of freedom are used in total.

The parameters are calculated with the Levenberg-Marquardt-Algorithm [Mar63] which
minimizes the Sampson error [HZ04, 98ff.] (ES). The Sampson error for the i-th point
correspondence (Ei

S) is shown in equation (4.6) [cf. FI11].

Ei
S =

(qTi · F · q′i)2

||[u3]× · F · q′i||2 + ||qTi · F · [u3]×||2
with u3 =

0

0

1


and F = K−T ·RT · Frect ·R′ ·K−1 (with Frect as in equation (2.9))

(4.6)

With these parameters the homographies are calculated with equation (4.5). Further-
more this algorithm estimates the intrinsics matrix and the fundamental matrix. More
information about QER can be found in [FI11] and [Mon11].

4.1.4 Polar rectification

It is also possible to rectify two images by “reparameteriz[es] the image[s] with polar coor-
dinates (around the epipoles)” [PKV99]. This approach is known as Polar rectification. It
reduces the matching ambiguity to half epipolar lines by orienting them. The orientation
is needed if the epipole lies within the image, so that it makes a difference if the epipolar
line is for example above or below the epipole. This is done by determining the sign of
the homographies which transfer one epipolar line (l) to the other one (l′). This is called
a line transfer and can be seen in equation (4.7) [cf. PKV99].

l′ = H−T · l or l = HT · l′, where H = [e′]× · F + e′ · aT

with a as a freely chosen vector such that det(H) 6= 0.
(4.7)

The sign of H is the sign of lT multiplied with an arbitrary point from the given point
correspondences.

The epipoles and the epipolar lines that go through the outer edges of the images are
calculated. Those lines are transferred to the other image with equation (4.7). This
allows to determine the maximum angle of the image which can be seen in figure 4.1 as
Θmax. The rectification is done row by row in the image, where each row represents an
epipolar line with a certain angle from the epipole. The minimum distance between the
epipolar lines must be at least greater or equal to one pixel at the opposite border of the
image to not lose any image information during the transformation.

17



4 Rectification

Figure 4.1: The mapping from (x, y)-space to (r, θ)-space

Source: [cf. figure 6 in PKV99]

This procedure represents a lossless mapping from a Cartesian (x, y) coordinate system
to an angular (r, θ) coordinate system shown in figure 4.1.

Note that this description only captures the coarse steps of the algorithm. For more
detailed information see [PKV99].

4.1.5 Special properties

The algorithms have a few special properties that are described in the following.

Epipole near image If the epipole is in or nearby the image all algorithms except
polar rectification do fail, because polar rectification does a transformation into polar
coordinates instead of a planar mapping. On the downside this causes the images to be
enlarged.

Shearing and zooming Homographies calculated by QER sometimes zoom into the
images, which results in a loss of information. Using Hartley’s rectification it is possible
that the images are sheared in x-direction. An additional shearing transformation (S),
introduced by [LZ99], can be used to overcome the shearing and reduce the zooming
problem. It can be seen in equation (4.8) [cf. San12]. In the equation w refers to the
image width, h to the image height and H to the rectifying homography.
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S =

a b 0

0 1 0

0 0 1

 , with a =
h2 · p2y + w2 + q2y

h · w · (py · qx − px · qy)
, b =

h2 · px · py + h2 + qx · qy
h · w · (px · qy − py · qx)

,

p = H ·

w − 1
h−1
2

1

−H ·
 0

h−1
2

1

 and q = H ·


w−1
2

h− 1

1

−H ·


w−1
2

0

1


(4.8)

4.2 Evaluation

In order to decide, which algorithm should be used for rectification for chapter 5, an
evaluation of the described algorithms will be done. This section is divided into four
parts, the first depicts the evaluation criteria that are calculated, the second shows the
procedure of the evaluation, the third describes the used test scenarios and the fourth
presents the results of the evaluation.

4.2.1 Evaluation criteria

In order to evaluate the algorithms metrics need to be introduced. In the frame of this
thesis the average rectification error (ARE), the average epipolar line distance (AELD),
the point ratio (PR), the failed rectifications and the runtime is used to evaluate the
performance of the rectification algorihtms.

The ARE is defined as the average distance between the ordinate of the rectified point
correspondences. It is shown in equation (4.9). N refers to the amount of given point
correspondences and qiy is the ordinate of point qi. A geometrical representation of this
metric is visualized in figure 4.2a where Irect refers to a rectified image.

ARE =
1

N
·

N∑
i

|qiy − q′iy| (4.9)

q'

q

the rectification error of q and q'

Image Irect Image I'rect

(a) ARE

q'q

l q' defines an epipolar line l

epipolar line distance of q

Image I Image I'

(b) AELD

Figure 4.2: Geometrical representation of one summand of the ARE and the AELD.
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The AELD is the average distance over all point correspondences between the epipolar
line of a point and its matching point. Equation (4.10) shows its calculation where a, b, c
are the coefficients of the epipolar line l calculated with l = F T · q′. Geometrically this is
shown in figure 4.2b.

AELD =
1

N
·

N∑
i

(||epix − qix||+ ||epiy − qiy||), with

epx =
b · (b · qx − a · qy)− a · c

a2 + b2
, epy = −c+ a · epx

b

(4.10)

The PR instead is the ratio between the amount of rectified point correspondences (Nr)
which can still be found in the image after the rectification and the amount of original
ones (No). It is shown in equation (4.11). This can be lower than one if the rectification
transformation maps some points outside the viewable area.

PR =
Nr

No

(4.11)

A rectification is considered a failure if PR < 0.5. In such a case the rectification is most
likely very distorted due to the fact that it maps at least half of the point correspondences
outside a viewable area.

4.2.2 Procedure

The experimental approach used goes through the following steps:

1. Calculating point correspondences

2. Removing outliers of calculated points

3. Defining inner and outer points

4. Calculate the fundamental matrix with the inner points

5. Calculate rectification transformation and rectify the images

6. Calculate the metrics

Note that the runtime is only measured in step 4 and 5. In the following these steps are
described in detail.
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1. Calculating point correspondences

In the first step the point correspondences are calculated with an appropriate algorithm
(e.g. affine-scale-invariant feature transform (ASIFT) (see [MY09])). It is also possible
to provide the correspondences manually.

2. Removing outliers of calculated points

After the point correspondences were calculated possible outliers need to be detected and
removed afterwards. As an example see figure 4.3 where the red lines are the removed
outliers. Outliers may worsen the rectification transformations. The idea behind this is
when putting both images next to each other the gradients (m) between the corresponding
points should be close together.

Figure 4.3: Calculated outliers in a stereo image.

Equation (4.12) illustrates the calculation of the gradient between the two points of a
point correspondence (with w being the width of one image).

m =
q′y − qy

(q′x + w)− qx
(4.12)

The gradient m is afterwards transformed into the angle of gradient in degree measure
(α) with equation (4.13)

α =
arctan(m)

Π · 180◦
(4.13)

In the following the median angle of gradient (α̃) is taken and all correspondences with an
angle of gradient that do fulfill equation (4.14) are considered outliers. The ε is a chosen
threshold.

|α− α̃| > ε (4.14)
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3. Defining inner and outer points

After the outliers are removed a few point correspondences are defined as inner points.
These correspondences are used for the rectification. The remaining points are defined as
outer points. Outer points are used to see if the rectification also rectifies the points, that
were not taken into account while calculating the transformations.

4. Calculate the fundamental matrix with the inner points

Hartley’s algorithm (section 4.1.2) and Polar rectification (section 4.1.4) need the fun-
damental matrix as input. Different approaches are used in the experiments which are
briefly introduced in the following.

Using 8-point algorithm In order to calculate the fundamental matrix the 8-point
algorithm, described in [Lon81], in conjunction with random sample consensus (RANSAC)
can be used. “[T]he basic idea of RANSAC is to solve the problem many times using a
random subset of the points and then take the particular solution closest to the average
or the median solution” [BK08, p. 425]. This is further referred as 8-point-F-matrix. For
more information on RANSAC see [FB81].

Using QER Furthermore QER (section 4.1.3) can be utilized for determining the fun-
damental matrix. This is further referred to as QER-F-matrix.

Using intrinsics Another approach is using a predefined camera intrinsics matrix (Kpre)
which simulates a calibrated camera. Using this and the point correspondences the essen-
tial matrix can be calculated with the 5-point algorithm, described in [Nis04]. Afterwards
the fundamental matrix can be calculated with equation (2.8). This is further referred as
calib-F-matrix.

5. Calculate rectification transformation and rectify the images

After the fundamental matrix is determined the rectifying transformations are calculated
and performed. Depending on the algorithm the results are either two lookup maps or two
homographies. The lookup maps contain also interpolated values between the rectified
points to produce images without gaps [cf. BK08, 436f.].
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6. Calculate the metrics

The AELD can be calculated with the fundamental matrix only, while the other two need
the rectified points. If the rectification transformations are two homographies than the
rectified inner and outer points (qr) can be calculated with equation (4.15).

qr = H · q and q′r = H ′ · q′ (4.15)

If the rectification transformations are two lookup maps the rectified points can not be
calculated with equation (4.15) or a similar method, because maps cannot be used on
single points but only on whole images. Hence the in figure 4.4 illustrated approach is
used to get the rectified correspondences. The illustrated method begins with one black

Figure 4.4: Getting rectified correspondences with maps. In the rectified images the white
pixels are searched to get the rectified correspondence.

image of the same size as the original image. On this image the left point from a point
correspondence is put as a white pixel. Afterwards the black image is rectified with the
left rectification map and the single white pixel is searched through the image. This is
done again for the right point of the correspondence with the right rectification map.

Figure 4.5: Stretching of a point.

This procedure is done correspondence-by-correspon-
dence and results in the rectified points. A problem
of this approach is that lookup maps sometimes stretch
points as illustrated in figure 4.5. In order to gather
the approximate correct point all white points in the
resulting map are searched and the arithmetic mean is
calculated among them (which results in the red point
in figure 4.5).
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Hartley’s algorithm and QER return homographies, while Bouget’s algorithm and Polar
rectification return lookup maps. Either way it can happen that the transformations map
points outside a viewable area. With the rectified points the inner and outer ARE and
PR can be calculated.

4.2.3 Test scenarios

Different test scenarios and combinations of algorithms are used. The algorithms are as
follows:

• Bouget’s algorithm (further referred as Bouget’s) with a predefined camera intrinsics
matrixKpre. This allows to calculate the essential matrix with the 5-point algorithm,
described in [Nis04] and therefore also the rotation R and translation t.

• QER

• Hartley’s algorithm with the 8-point-F-matrix (further referred as Hartley’s 8-point)

• Hartley’s algorithm with the calib-F-matrix (further referred as Hartley’s calib)

• Hartley’s algorithm with the QER-F-matrix (further referred as Hartley’s QER)

• Polar rectification with the 8-point-F-matrix (further referred as Polar rect. 8-point)

• Polar rectification with the calib-F-matrix (further referred as Polar rect. calib).

• Polar rectification with the QER-F-matrix (further referred as Polar rect. QER)

For the experiments thirty stereo images (test sets) where photographed with a Nikon
D5100 with a Nikkor 18-55mm lens. The images have an initial format of 4928×3264 and
were resized to 640 × 424. The test sets can be seen in appendix B. Four test scenarios
were defined:

• The first scenario runs over all test sets and uses ASIFT to gather the point corre-
spondences. In this scenario all correspondences are considered inner points. This
is further referred as ASIFTnOut.

• The second scenario is the same as the first besides that outer points are defined.
This is done by defining a rectangle over one of the images and considering all points
that lay out of that rectangle as inner points and the remaining as outer points. This
scenario is further referred as ASIFTwOut.

• The third scenario uses manual matches with all matches as inner points and runs
only on a little subset of the whole data. This is further referred as MANnOut.
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• The last scenario is like the previous one besides that furthermore outer points are
manually defined. This is further referred as MANwOut.

In each scenario the evaluation criteria are averaged for each algorithm.

4.2.4 Results

For the experiments the threshold ε for removing the outliers is set to 2.5◦ and the
predefined camera intrinsics matrix Kpre is chosen as shown in equation (4.16) where w
refers to the image width and h to the image height.

Kpre =

55 0 w−1
2

0 55 h−1
2

0 0 1

 (4.16)

As metric for AELD the euclidean distance is used. In the following tables the algorithms
are shown in the rows and the test scenarios are shown in the columns. In the ARE and
AELD case the columns are further divided into:

all which refers to all point correspondences,
inner which refers to the inner point correspondences and
outer which refers to the outer point correspondences

AELD The perfect value for the AELD metric is zero. It means that corresponding
points lay exactly on the epipolar line. As can be seen in table 4.1 the AELD is best with
a fundamental matrix calculated with QER, while it is worst with the calib-F-matrix.

F-mat algorithm ASIFTnOut ASIFTwOut MANnOut MANwOut
calib-F-matrix 2.72 2.56 3.72 4.53
QER-F-matrix 1.07 1.06 0.42 0.33

8-point-F-matrix 1.59 1.40 0.67 0.38

Table 4.1: The average AELD on the test scenarios.

This is expected, because the calib-F-matrix needs a calibrated camera, which is not
always present. Even if the camera was calibrated once not all test images were taken
with the same parameters. The focal length varied due to a zoom lens and also the
rotation and translation between shots is not fixed. Therefore the calib-F-matrix seems
unusable for the freehand stereo approach.
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ARE The ARE states the distance of the rectified points. The perfect value is zero
too which implies that every point correspondence is exactly row aligned. The results
of the ARE criterion are shown in table 4.2. The table shows that the inner ARE is
usually lower than the outer ARE which is expected, because the outer matches are not
considered during the minimization of the rectifying transformation. The table also shows
that 8-point-F-matrix worse than QER-F-matrix. Polar rectification has usually higher
values than the other algorithms, which is partially due to the stretching of a few points
as described in section 4.2.2.

ASIFTnOut ASIFTwOut MANnOut MANwOut
Algorithm all inner outer all inner outer

Bouget’s 4.54 5.73 5.80 10.37 32.17 41.38
QER 1.23 1.23 1.61 0.44 0.36 0.73

Hartley’s 8-point 1.34 2.23 1.43 0.58 0.29 2.63
Hartley’s calib 1.88 1.86 2.73 3.55 2.61 23.11
Hartley’s QER 1.06 1.05 1.45 0.42 0.33 0.69

Polar rect. 8-point 3.93 3.04 3.15 2.46 1.11 2.85
Polar rect. calib 9.25 12.35 13.48 6.93 9.06 23.08
Polar rect. QER 2.17 2.21 2.75 0.79 0.30 0.76

Table 4.2: The average inner and outer ARE on the test scenarios.

The best algorithms in this criteria are Hartley’s QER and QER itself. Table 4.2 also
strengthens the assumption that the calib-F-matrix is not usable for this approach as it
performs worse in the Hartley’s configurations and the Polar rect. ones also Bouget’s does
not work well, because it also uses calibrated cameras which were only simulated in the
experiments.

PR The PR measures the ratio between the point correspondences that are in a viewable
area after the rectification and original point correspondences. The best value is one which
means every point correspondence is found in the rectified image. The results of the PR
criterion are visualized in table 4.3. In this criterion Bouget’s, Hartley’s calib and Hartley’s
8-point perform worse than the other five. It can be seen that Polar rectification works
best in most cases and that QER performs worse than Hartley’s QER. This further allows
the assumption that Polar rectification and Hartley’s QER maintain more information in
an image than the other algorithms.

These results are also reflected onto the failed rectifications as seen in table 4.4. In this
table algorithms that never fail are omitted.

This table shows that Bouget’s and Hartley’s calib perform worse than the others in
this use case. Furthermore QER almost never fails and performs superior to Hartley’s
8-point.
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ASIFTnOut ASIFTwOut MANnOut MANwOut
Algorithm all inner outer all inner outer

Bouget’s 0.69 0.64 0.70 0.73 0.41 0.31
QER 0.95 0.95 0.98 1.00 0.97 1.00

Hartley’s 8-point 0.85 0.80 0.83 0.70 0.72 0.69
Hartley’s calib 0.73 0.70 0.74 0.95 0.28 0.28
Hartley’s QER 0.99 0.99 1.00 1.00 0.97 0.97

Polar rect. 8-point 0.99 0.99 0.99 1.00 1.00 0.97
Polar rect. calib 0.97 0.98 0.99 1.00 0.97 0.91
Polar rect. QER 1.00 0.99 0.99 1.00 1.00 0.97

Table 4.3: The average inner and outer PR in the test scenarios.

Algorithm ASIFTnOut ASIFTwOut MANnOut MANwOut
Bouget’s 23% 37% 25% 50%

QER 3% 3% 0% 0%
Hartley’s 8-point 13% 17% 25% 25%

Hartley’s calib 27% 27% 0% 50%

Table 4.4: The percentage of failed rectifications over all tests scenarios.

Runtime The runtime of the algorithms is calculated as the arithmetic mean over all
test sets and is divided into two parts. Table 4.5a states the time for the fundamental
matrix calculation and table 4.5b for calculating the rectification transformations. Polar
rectification and QER perform worse than Bouget’s algorithm and Hartley’s algorithm
which performs significant better than the others as seen in table 4.5b. The calculation of
the calib-F-matrix is very slow compared to the others as illustrated in table 4.5a. This
is due to the 5-point algorithm which itself is slow.

F-mat algorithm Average runtime
calib-F-matrix 1754.3ms
QER-F-matrix 26.8ms

8-point-F-matrix 6.8ms

(a) Calculating the fundamental matrix.

Algorithm Average runtime
Bouget’s 13.2ms

QER 26.3ms
Hartley’s 0.2ms

Polar rect. 23.3ms

(b) Calculating rectification transformations.

Table 4.5: Average runtime over all test scenarios and test sets

Summary

The results gathered show that the algorithms that need a calibrated camera are not usable
for this freehand stereo approach which was assumed. Furthermore the results suggest that
algorithms with the QER-F-matrix work better than the ones using the 8-point-F-matrix.
This rules out the algorithms with the 8-point-F-matrix as the rectification algorithm
for the preprocessing step of the stereo matching algorithm introduced in chapter 5.
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Furthermore it can be seen that polar rectification works best in maintaining information
of the images but does worse in rectifying the points than QER and Hartley’s QER.
Additionally polar rectification often enlarges the images, which enlarges the search space
for correspondences and therefore slows down the stereo matching algorithm. Thus polar
rectification was ruled out. In the end only QER and Hartley’s QER remain. The results
show that Hartley’s QER outperforms the pure QER rectification which is unexpected
and is hence examined further.

Worse ARE values The ARE of QER may be worse because it is possible that Hartley’s
QER compresses the images which should result in lower ARE. In order to see whether
this assumption is true, the following algorithm is performed on each test set:

1. Take three points (P1(20, h/2 − 10), P2(w/2, h/2 − 10), P3(w − 20, h/2 − 10) and
three points (P ′i with i ∈ {1, 2, 3}) with P ′ix = Pix and P ′iy = Piy + 20.

2. Perform QER rectification and calculate average y-distance (∆Qy) between points
Pirect and P ′irect with i ∈ {1, 2, 3} and Pirect as the rectified point of Pi.

3. Do the same with Hartley’s QER rectification (∆HQy)

4. Calculate ∆QHQy = ∆Qy −∆HQy

5. Calculate difference between ARE of QER and ARE of Hartley’s QER (∆AREQHQ)

Figure 4.6: Correlation between ∆QHQy and
∆AREQHQ without failed images.

To support the assumption ∆QHQy and
∆AREQHQ should correlate in a monotoni-
cally increasing way which is the case. This
is shown in figure 4.6. It can also be seen
that the slopes of the correlation lines are
� 1. This strengthens the assumption that
QER performs indeed better than Hart-
ley’s QER regarding the ARE criteria and
is just considered worse because it does not
compress images.

Worse PR value The PR is worse because some images fail, due to the zoom error,
mentioned in section 4.1.5. Figure 4.7 shows a failed QER and its working Hartley’s QER
rectification. As shown in figure 4.7a the rectification is not entirely wrong but it does
omit information on the borders of the image.
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(a) QER rectification (b) Hartley’s QER rectification

Figure 4.7: Rectification of the left image of the bicycles test set.

Conclusion These tests show that the ARE criteria needs to be revised regarding the
stretching or compressing error problem or should be replaced by another criteria.

Nevertheless this problem allows the statement that Hartley’s QER maybe performs worse
in the ARE criteria than QER, but as the PR criteria shows it does not suffer from
the zooming problem. Hence Hartley’s QER is chosen for this thesis as rectification
algorithm.

4.3 Summary

In this chapter algorithms for rectifying an image were discussed. There is one algorithm as
representative for algorithms that need calibrated cameras (Bouget’s algorithm) and three
algorithms for uncalibrated cameras. Furthermore criteria were defined for evaluating the
performance of different algorithms.

The results gathered suggest that algorithms that need calibrated cameras are not useful
in a use case were such can not be assumed. Based on the results Hartley’s algorithm
in conjunction with the QER fundamental matrix was chosen. It performed best on the
chosen metrics. This algorithm is further used as rectification algorithm for PatchMatch
Stereo (see chapter 5).
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5 Extending PatchMatch Stereo

This chapter aims at the extension of PatchMatch Stereo. First a description of the
PatchMatch Stereo algorithm will be given. Afterwards possible improvements will be
introduced and evaluated. Finally the knowledge gained from the evaluation will be
summarized.

5.1 PatchMatch Stereo

The PatchMatch Stereo algorithm aims at disparity calculation with slanted support
windows that consist of 3D planes, that fit the scenery for each point. This way slanted
surfaces can be modeled as shown in figure 5.1b which allows even subpixel accuracy.
Other algorithms such as [Hos+09],[Ric+10] and [Rhe+11] use fronto-parallel support
windows which cannot model the points on slanted surfaces properly as illustrated in
figure 5.1a [cf. BRR11].

(a) Fronto-parallel support regions (b) Slanted support regionss

Figure 5.1: Support regions in a 1D scenario. The points on the green line are modeled con-
sidering the red support regions.

Source: [cf. figure 1 in BRR11]

The algorithm is divided into three components: 1) a data model with a cost function
defined upon it, 2) an algorithm that minimizes that cost function and 3) some post
processing. The components will be described in the following.

5.1.1 Data model

The data is modeled via planes in the 3D space. A plane f is defined over a point
P = (x0, y0, z0) and its normal vector ~n = (nx, ny, nz). It is furthermore parametrized
with three parameters a, b, c that can be calculated with equation (5.1) [cf. BRR11].
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fa := −nx

nz

, fb := −ny

nz

and fc :=
nx · x0 + ny · y0 + nz · z0

nz

(5.1)

The disparity d of a point p can then be calculated with equation (5.2) [cf. BRR11].

d(p, f) = fa · px + fb · py + fc (5.2)

The goal is to find a plane for each point that minimizes the aggregated cost m of a square
window Wp around this point. Wp is called the support window and is centered on p. Its
size can be freely defined. The aggregated cost m can be calculated with equation (5.3)
[cf. BRR11].

m(p, f) =
∑
q∈Wp

w(p, q) · ρ(q, q − d(q, f)) (5.3)

Figure 5.2: Support window with correspond-
ing matchings

Thereby is w a weight function and ρ com-
putes the point dissimilarity between q and
its matching point q′. The support win-
dow Wp with the the considered matching
points are visualized in figure 5.2.

As the weight function the likelihood of the
L1-distance (|| · ||1) between the colors of
the points in RGB space (Iq) is used. This
boils down to equation (5.4) [cf. BRR11] where γ is a user defined parameter.

w(p, q) = e
−||Ip−Iq ||1

γ (5.4)

With the user defined parameters α, τcol and τgrad and the gray valued gradient of image
I on point q (∇Iq) the point dissimilarity can be calculated, as shown in equation (5.5)
[cf. BRR11].

ρ(q, q′) = (1− α) ·min(||Iq − I ′q′||1, τcol) + α ·min(||∇Iq −∇I ′q′||1, τgrad) (5.5)

In the next part the procedure for minimizing this cost function is described.

5.1.2 Cost minimization

The problem is that each point has an infinite amount of possible planes which can not
be calculated. That is where PatchMatch ([Bar+09]) is used. PatchMatch itself “is an
approximate dense nearest neighbor algorithm” [BRR11]. It uses a random initialization
and afterwards propagates good guesses. This is also done in PatchMatch Stereo, because
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it can be assumed that in a natural stereo image large regions use approximately the same
plane and therefore only one good guess in a region is needed, which can be propagated.
The algorithm has mainly three steps:

1. initialization,

2. the iterations and

3. post processing.

The elements are described in the following paragraphs.

Initialization

As stated above the initialization of the planes is randomized, in a way that every point
has a plane and an initial cost afterwards. Figure 5.3a visualizes the procedure where the
red part refers to the cost calculation with equation (5.3). Note that the parameters of a
plane are not randomized directly, but instead its normal vector ~n as unit vector and the
disparity z0 of the used point p (resulting in the point P = (px, py, z0)). The disparity is
chosen within the range of allowed continuous disparity values. With these randomized
values the plane parameters a, b, c are calculated with equation (5.1). This allows the
calculation of the initial costs for p with equation (5.3).

(a) Initialization (b) Iterations (c) Post processing

Figure 5.3: Activity diagrams for the components of PatchMatch Stereo.
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Iterations

In order to minimize these costs the algorithm iterates multiple times over the images
where three iterations are usually enough. An iteration works point-by-point. In even
iterations the algorithm starts in the upper left corner on the left image, goes row-by-row
down to the bottom right corner and starts again at the top left corner of the right image.
In odd iteration this is switched in a way that it starts in bottom right corner of the left
image and ends in the upper left corner of the right image. In each iteration each point
goes through three4 steps which can be seen in figure 5.3b. In each step it is checked
whether the costs of point p can be improved by using another plane. The first two steps
(spatial and view propagation) are illustrated by figure 5.4.

Figure 5.4: Illustration of spatial and view propagation

Source: [cf. figure 3(a) in BRR11]

Spatial propagation The first step is spatial propagation. In this step the planes of
the left and upper neighbors (in even iterations) or the right and lower neighbors (in odd
iterations) are checked against the current best plane of p. The procedure is illustrated
in figure 5.5a.

View propagation Spatial propagation is followed by the view propagation. During
this, as visualized in figure 5.5b, at most k planes of points from the other image that
have p as matching point are used. These planes are inverted and checked against the
current best plane of p. In general k is set to 5.

4The paper [BRR11] states four steps. Temporal propagation, which only works on image sequences,
was avoided in this thesis.
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(a) Spatial propagation (b) View propagation (c) Plane refinement

Figure 5.5: Activity diagrams for the components of one iteration. In the red elements the
costs are calculated with equation (5.3) and are compared.

Plane refinement This step refines the parameters of the plane. It is illustrated in
figure 5.5c. First two new parameters are introduced:

• ∆max
z0

which is initially set to maximum disparity and

• ∆max
n which is initially set to one.

These set limits on the maximum allowed changes to the values of the plane’s point and
normal vector form. The following procedure is repeated until ∆max

z0
< 0.1.

From the current best plane a new disparity z′0 is derived as can be seen in equation (5.6)
[cf. BRR11] where ∆z0 is randomly picked from the interval [−∆max

z0
,∆max

z0
].

z′0 := z0 + ∆z0 (5.6)

Furthermore a new normal vector ~n′ is derived with equation (5.7) [cf. BRR11] where u
computes the unit vector and the elements of ~∆n are randomly taken from the interval
[−∆max

n ,∆max
n ].

~n′ := u(~n+ ~∆n) (5.7)

With these values and equation (5.1) the new refined plane can be calculated. This plane
is checked against the current best plane of p. After this the values ∆max

z0
and ∆max

n are
halved. This allows larger changes in early iterations to compensate completely wrong
planes and allow only little changes in higher iterations to capture disparity details.
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5.1.3 Post processing

The post processing tackles mismatched and occluded points in the disparity map. Its
steps are visualized in figure 5.3c. Points that do not fulfill equation (5.8) [cf. BRR11] are
invalidated. In this equation dp is the disparity of point p and dp′ of its matching point.

|dp − dp′| ≤ 1 (5.8)

In order to replace the disparity of the invalidated points the planes of the closest valid
points to the left and to the right are considered. Both disparities are calculated and the
lowest one is taken. “Selecting the lower disparity is motivated by the fact that occlusion
occurs at the background” [BRR11].

Afterwards a median filter is applied for the replaced disparities with the same weight
function as in equation (5.4). This is done to weaken horizontal streaks in the disparity
map.

The information for this algorithm are taken from [BRR11].

5.2 Improvements

In order to improve the quality and speed of the PatchMatch Stereo algorithm different
attempts were made. These attempts are described in this section.

5.2.1 Extended search space

The improvement is primarily made in the view propagation step. Instead of looking only
at a point’s matching point a configurable amount of the points above and below that
matching point are considered (this user defined parameter will be called lines) which can
result in a y-disparity. In figure 5.6 the main idea of the improvement is illustrated.

Figure 5.6: Enhanced search space method. The red lines are the rectified epipolar lines.
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The blue elements shows the original point in the left image and the considered points in
the right image. The orange lines refer to the extended search space for the point on the
right image.

This is supposed to improve the results quality-wise especially if the epipolar geometry is
not accurate.

Adjustments to the model

Figure 5.7: Adjustments on the cost function.

To apply these changes to the model a new
parameter ϕ is added to the calculation,
which contains the y-disparity for the cur-
rent point. Hence the cost function, shown
in equation (5.3), needs to be adjusted too,
because the matches in the cost function
should map to the extended search space
as seen in figure 5.7. In order to calculate
the costs for the green point (that lays in the extended search space) in the right image
the green matching points shall be considered. But in equation (5.3) only the blue ones
are. In order to use the green matching points equation (5.9) is introduced. Further-
more another cost term (Ψ) is added to this function which adds a penalty for higher
y-disparity.

m(p, f, ϕ) =
∑
q∈Wp

w(p, q) · (ρ(q, qϕ) + Ψ(ρ(q, qϕ), ϕ))

with qϕx = qx − d(q, f), qϕy = qy + ϕ

(5.9)

The used term Ψ is a linear function shown in equation (5.10) that adds a configurable
part of ρ to the cost depending on the current ϕ. In this equation ψ is a user defined
parameter

Ψ(ρ, ϕ) = ψ · ρ · |ϕ| (5.10)

Note that the parameter ϕ is only altered for a point during the view propagation step.
Initially it is set to zero. In the refinement step the value of ϕ stays the same.

Adjustment of the post processing

The post processing step invalidates points. In order to make this process aware of ϕ
during invalidation the adjustments of the model have to be propagated to the post
processing. This is done by equation (5.11).
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|dp − dp′ϕ| ≤ 1, with p′ϕx = p′x and p′ϕy = py + ϕ (5.11)

5.2.2 Open Computing Language implementation

In order to improve the speed of the algorithm an Open Computing Language (OpenCL)
implementation is considered. This would provide the possibility to utilize the present
graphics processing unit (GPU).

OpenCL

“Open Computing Language (OpenCL) is an open [...] standard for general purpose
parallel programming across CPUs, GPUs and other processors, giving software developers
portable and efficient access to the power of these heterogeneous processing platforms”
[Khr11, p. 12]. Therefore a program is divided into kernels which run on an OpenCL device
and a host program which runs on the host and manages kernel execution [cf. Khr11, p. 23].
Figure 5.8 shows a simplification of the OpenCL execution model. The figure illustrates
that the host program executes a kernel on a device. Each kernel is processed by multiple
processing units in parallel and afterwards the next kernel is executed on the device.

Host Program

Kernel

OpenCL device

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

Kernel

Figure 5.8: The simplified OpenCL execution model.

Note that this explanation only includes the basics and hence ignores certain details of
the more complex execution model.

Porting PatchMatch Stereo to OpenCL

In order to achieve this some thoughts about the structure of the program became neces-
sary. The trivial implementation with the complete iteration in one kernel is not sufficient
because the used Nvidia GeForce GT550M GPU does not support this many operations
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in one kernel. In order to overcome this problem the program is split into more kernels,
which is illustrated in figure 5.9.

Image

Gather planes kernel

...

planes for
one point

all gathered planes

Matchcosts kernel

...# # # # # #

planes with costs

Compare kernel

# # # #

# # # #

# # # #

best cost and plane
for one point

while(max_delta_z > 0.1)

# # # #

# # # #

# # # #

Refinement kernel

max_delta_z /= 2
max_delta_n /= 2

Figure 5.9: The basic execution sequence of the OpenCL kernels. Each block is executed
parallel.

Kernel description The first kernel gathers all planes for each point, which should be
two for spatial propagation and k · (2 · lines + 1) for view propagation. The next kernel
computes the costs with equation (5.9) for each plane. Afterwards the costs will be
compared and the best plane is stored for its point. This can be done, because the cost
function is not dependent on the current best plane nor the current best cost. The plane
refinement instead should be done in another way because it depends on the current best
plane for calculating a new one. Therefore the host code contains the iteration for the
refinement, while the kernel only contains one calculation of a cost and its comparison
with the current cost.

This could speed up the algorithm depending on the used hardware. However this ap-
proach contains another problem, due to the fact that spatial propagation relies on planes
that were calculated before. Unfortunately this can not be assumed because each point
is calculated independently and completely parallel. That means that the spatial propa-
gation does not get the correct plane of the point before. In order to reduce this problem
two possible solutions were considered.

original spatial
neighbours

considered more
spatial neighbours

x

y

x

y

Figure 5.10: The original spatial propagation
(left) and the one with more points (right).

Consider more points The first idea is
to use m > 1 points, instead of taking
only one point before. With this the spa-
tial propagation gets the points as if m
iterations were done. Therefore the cor-
rect plane is closer. In order to get the
correct plane after the second iteration m
should cover all points before but this has
the downside of introducing to many more
cost calculations. Figure 5.10 illustrates
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this approach where the spatial propagation is performed on the red point. The blue
points are the considered planes for spatial propagation.

Slicing the image The second idea is to consider the problem in each iteration row-
by-row or column-by-column, instead of running the kernel on the whole image. That
means that each point in a row or column is calculated parallel, but the rows or columns
itself are computed in the right order. With this the spatial propagation should get the
right plane at least in one direction in each iteration. Figure 5.11 shows the row-by-row
execution sequence, the column-by-column sequence works in a similar fashion. The figure
states that at the beginning the first row of the image goes through all steps and after its
completion the second row is calculated and so on.

Image row 1

Gather planes kernel
...

Matchcosts kernel

...# # # # # #

Compare kernel

# # # #

...

...# # # # # #

# # # #

...

...# # # # # #

# # # #

Refinement

Image row 2

Image row n

...

Refinement

Refinement

Figure 5.11: The row-by-row execution sequence of the OpenCL kernels

5.3 Implementation

This section will give an overview of the reimplementation as well details on special parts
of the algorithm. Furthermore some other useful features of the program are described.

5.3.1 Reimplementation

A basic C++ implementation of PatchMatch Stereo was already present, but in order to
introduce the adjustments a complete reimplementation became necessary, due to prob-
lems with the used data structures.

The main problem was the use of arrays that were allocated with malloc instead of the
use of vectors. This may lead to memory leaks. Furthermore occasional segmentation
faults occurred after the adjustments were implemented. In order to not spend too much
time on debugging a reimplementation was the faster case. This way the data structure
could be adapted to the needs of the algorithm and the algorithm itself could be further
understood. Additionally the reimplementation uses the newer Open Source Computer
Vision Library (OpenCV) application programming interface (API) which is easier to work
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with than the old one that was used before. OpenCV “is an open source [...] computer
vision library [...] written in C and C++” [BK08, p. 1]. It is a cross-platform library and
is designed to be easy-to-use and computational efficient [cf. BK08, p. 1].

5.3.2 The planes

The planes are calculated to fit the scene and used for the disparity calculation. A plane
is stored for each point in the image. Such a plane is a data structure, which consists of
eight float values. The three plane parameters a, b, c, the three normal vector parameters
nx, ny, nz, the disparity z0 and the parameter ϕ for the y-disparity.

It is possible to mark planes as dummy planes (which is needed by the view propagation
step) by adding a value c ∈ R with 0 < c < 1 to ϕ. This can be done because only the
integer parts of the stored ϕ are used. These structure has the advantage that the OpenCL
implementation can read and write a plane as a single float vector without considering
other data types.

5.3.3 View propagation

In order to get the planes for the view propagation step, the matching planes are prepro-
cessed before the current image is processed. Therefore the algorithm, which is shown in
listing 5.1, iterates over the other image’s planes and calculates the matching point for
each plane.

for each po int fp in image I ′

f = plane from image I ′ at fp ;
p = ca l c u l a t ed matching po int from f on image I ;
i f (p out o f border or

p conta in s more ne ighbors than k )
continue ;

else
r a i s e ne igbor count o f p by 1 ;

for (ϕ = − l i n e s ; ϕ <= l i n e s ; ++ϕ)
np = new Point (px , py + ϕ) ;
i f (np i s out o f border )

mark as dummy plane ;
s t o r e in v iewne ighbors l i s t ;

else
nf = plane from other image at np ;
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i n v e r t nf ;
save ϕ in nf ;
s t o r e nf in v iewne ighbors l i s t ;

Listing 5.1: Pseudocode of preparing view propagation for image I.

If the matching point is in the image and does not already contain too much neighbors a
plane for each ϕ in the interval [−lines, lines] is stored.

In the iteration itself, during the view propagation step, all available neighbors are checked
as shown in listing 5.2.

count = get the ne ighbor count o f cur r ent po int p ;
for ( i = 0 ; i < count ; ++i )

for (ϕ = − l i n e s ; ϕ <= l i n e s , ++ϕ)
f = get plane i from viewne ighbors l i s t at p with ϕ ;
i f ( f . is_dummy_plane ( ) )

continue ;
else

check whether f i s b e t t e r than cur rent plane ;

Listing 5.2: Pseudocode of view propagation step in the iteration

5.3.4 Validation features

In order to allow easier evaluation of the algorithm other features were implemented into
the program. These are explained in the following.

Neighbor image

It is possible that the algorithm prefers a plane with |ϕ| > 0. In order to visualize those
y-disparity an image is constructed. Such an image can be seen in figure 5.12.

Figure 5.12: Neighbor image of the rectified poles test set with lines = 5 and ψ = 0.
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The red parts refer to ϕ < 0 and the blue ones to ϕ > 0. The intensity of the color refers
to the deviation from 0. The right part shows a histogram of the distribution of ϕ. As a
side effect this image may allow a rudimentary segmentation of the objects in the image
which may be useful for further improvements of the algorithm.

3D visualization

A method based upon equation (2.10) is implemented to visualize the results in 3D space.
Therefore the missing parameters focal length f is set to 100 and the translation t is set to
the disparity range. This is motivated by the fact that the maximum disparity is related
to the translation of the closest object in the image. Together with the disparity map
the depths of the points are calculated and can be visualized as a point cloud via the
Point Cloud Library (PCL). In figure 5.13 a disparity map with the corresponding 3D
visualization is shown.

(a) right disparity map (b) point cloud

Figure 5.13: Disparity map and its point cloud of the poles test set with lines = 5 and ψ = 0.

5.4 Evaluation

In order to see how the implemented improvements perform against vanilla PatchMatch
Stereo an evaluation on defined scenarios has been done. First the used scenarios are
described. Second the used evaluation criteria are introduced and last but not least the
results of the experiments are presented and analyzed.

5.4.1 Test scenarios

Different test scenarios were used in order to determine in which circumstances the im-
provements are useful. These scenarios are PatchMatch Stereo with unrectified images
(unrect) and with rectified images (rightRect).
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Each test scenario itself is divided into different parameter configurations (parConfs). The
considered parameters were as follows:

lines refers to the maximum y-disparity that is considered during view propagation
step (above and below), while

ψ weights the y-disparity in a plane and adds costs for it (as in equation (5.10)).

For reference values the original PatchMatch Stereo (further referred as origPMS) is used.
This can be achieved by setting lines = ψ = 0. Based on different constellations of lines
and ψ the combinations shown in table 5.1 were chosen.

lines ψ referred as
5 0 l5p0
10 0 l10p0
5 0.01 l5p0.01
10 0.01 l10p0.01

Table 5.1: The different parameter configurations.

5.4.2 Evaluation criteria

It is hard to evaluate the adjustments of the algorithm properly, because freehand stereo
images are used instead of images with ground truth data. Ground truth data is the data
that was measured by humans point by point and is considered correct. This approach
is useful because images with ground truth data are usually correctly rectified where the
adjustments are not expected to achieve further improvements. Furthermore this allows
to check how well PatchMatch Stereo performs on realistic data sets. In order to hold the
evaluation short and concise the following evaluation criteria were defined.

Average costs The first criteria used are the average costs. The average was restricted
to the median (instead of the arithmetic mean), because the arithmetic mean is not
robust against outliers. Such outliers often occur at the border of an image. These values
are unfortunately incomparable, because if the parameter ψ 6= 0 the cost functions are
different. In order to partially overcome this issue equation (5.9) is used with ψ = 0 for
calculating the median. Furthermore the coefficient of variation (CoV) over all median
values is calculated which can be done with equation (5.12).

CoV =
standard deviation

arithmetic mean
(5.12)
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Figure 5.14: Histogram of a test set (butterfly l5p0)

Distribution of costs A second cri-
teria used was the distribution of costs
over the image. This is visualized with
a histogram as shown in figure 5.14,
were the x-axis are classes of costs and
the y-axis is the relative amount of
costs in this class.

Invalidated points Another important criterion is the amount of invalidated points
(invPts) during the post processing step. If lesser points are invalidated the disparities
are more likely to be correct. This criterion is independent of the used cost function.

Runtime The forth criterion used was the runtime for the algorithm needed to termi-
nate. This allows to set the improvements in relation with the changed time consump-
tion.

Rank In order to measure the quality of the results a subjective ranking is performed on
them. Therefore the disparity maps and their 3D visualization, described in section 5.3.4,
are ranked in the following ranks:

good If the shape of the objects can be seen clearly and only a few points are distorted.
ok If the objects itself have an appropriate shape but many other points are dis-

torted.
bad If the objects can be determined but are in a bad shape.
fail If the result is highly distorted or the objects can not be determined or if huge

parts from the background are put into the foreground or visa versa.

Furthermore the results are visually compared to each other and one is picked as best for
each test set. This is not done if all parConfs of one test set are ranked fail.

5.4.3 Results

The evaluation was done on the explained test scenarios with respect to the criteria chosen.
This led to the results which are described in this section. This section will first explain
the test environment followed by the results of the extended search space. Afterwards the
results of the OpenCL implementation are described.
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Test environment

The experiment was performed on an ASUS X4GS Laptop with a Linux operating system
and 4 GB random access memory (RAM). It utilizes an Intel Core I5 2410M central
processing unit (CPU) with 2.3 Ghz with 2 cores and 2 threads each. The GPU used in
the experiment was an Nvidia GeForce GT 550M with 1 GB video RAM.

Further a window of size 31 × 31 pixels was applied for the experiment and the other
parameters were set to {γ, α, τcol, τgrad} := {10, 0.9, 30, 4}.

Extended search space

This section describes the results of PatchMatch stereo with extended search space. It is
described criterion by criterion.

Average costs Running the algorithms with the parConfs led to results for the average
costs as visualized in table 5.2. The average costs (which is the arithmetic mean over the
median costs from all test sets) are getting lower with a higher lines value. In the unrect
scenario this has even more impact. The CoV shows that the deviation of the costs over
all images is approximately the same. That means that the distribution function does not
change in shape only in height and thus the adjustments have a similar impact on each
test set.

parConf median change* CoV
origPMS 332.74 - 47.79%

l5p0 320.40 -3.71% 47.95%
l10p0 312.03 -6.22% 48.33%

l5p0.01 322.25 -3.15% 47.95%
l10p0.01 316.19 -4.97% 48.25%

(a) unrect scenario

parConf median change* CoV
origPMS 322.56 - 58.07%

l5p0 315.88 -2.07% 58.02%
l10p0 312.32 -3.17% 57.60%

l5p0.01 316.91 -1.75% 58.37%
l10p0.01 314.32 -2.56% 57.95%

(b) rightRect scenario
*percental change to origPMS

Table 5.2: The results of the median criteria.

Furthermore it can be seen, that the average costs with ψ = 0.01 are worse than their
counterparts with ψ = 0. This is expected due to different cost functions for calculating
the planes, which was described in section 5.4.2. This makes the average costs not suitable
for a decision whether the term Ψ is useful or not. The results allow the assumption that
the extended search space works on both scenarios but works better in the unrect one.
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Distribution of costs The distribution of costs strengthens the assumptions of the
average costs. As can be seen in figure 5.15 the lower cost cluster are increasing and
the higher cost clusters are decreasing in either case. This shows that the algorithm
indeed lowers the costs and that the higher lines is the lower the costs are, even with
ψ = 0.01. As mentioned above the adjustments work even better in the unrect scenario
which is expected, because in the rectified case the images are already row aligned where
the adjustment should not have too much impact on the result.

(a) unrect scenario (b) rightRect scenario

Figure 5.15: Average change over all test sets in each cost cluster referring to origPMS

Invalidated points Table 5.3 visualizes the invPts depending on lines. They are lower,
if lines is higher. The "more inv." value states the percentage of tests sets per parConf
that have more invPts than the origPMS parConf. In table 5.3a the "more inv." column
is omitted because only one test set in l10p0.01 had more invPts than origPMS.

parConf invPts change*
origPMS 456438 -

l5p0 391525 -14.22%
l10p0 357395 -21.70%

l5p0.01 403100 -11.69%
l10p0.01 384718 -15.71%

(a) unrect scenario

parConf invPts change* more inv.**
origPMS 334318 - -

l5p0 324141 -3.04% 26.67%
l10p0 327802 -1.95% 46.67%

l5p0.01 322093 -3.66% 6.67%
l10p0.01 322456 -3.55% 6.67%

(b) rightRect scenario
*percental change to origPMS **percentage of test sets with more invalids than origPMS

Table 5.3: The results of the invalidated points criteria.

Interestingly in the rightRect scenario the parConfs with lines = 10 perform worse than
the parConfs with lines = 5 because a higher search space, in an image where the rows are
already aligned, allows more incorrect planes to be taken. Additionally the table shows
that the term Ψ does perform better and reduces the "more inv." value in the rightRect
scenario because the algorithm is restrained to not chose planes with too high y-disparity
and thus the planes are more correct.
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Another discovery is that the adjustments work significant better in the unrect scenario
in this criteria too. Furthermore the Ψ term worsens the results in this scenario, because
in an unrectified image the correct plane is more likely to lie on a different scan line and
restraining those gives worse results. This allows the assumption that additional cost
term Ψ is useful with rectified images, while it does not perform so well with unrectified
ones.

Runtime Table 5.4 illustrates runtimes of the various scenarios. Each line shows the
normalized runtime in relation to origPMS. It can be seen that runtime depends heavily
on lines. If the parameter is doubled the change compared to origPMS is also approx-
imately doubled which is due to the doubled cost calculations in the view propagation
step. Furthermore table 5.4 shows that the algorithm terminates faster on unrectified
images and that the term Ψ has also a slight impact on them.

parConf runtime normalized*
origPMS 358s 1.00

l5p0 504s 1.41
l10p0 652s 1.82

l5p0.01 484s 1.35
l10p0.01 615s 1.72

(a) unrect scenario

parConf runtime normalized*
origPMS 392s 1.00

l5p0 551s 1.41
l10p0 727s 1.85

l5p0.01 601s 1.53
l10p0.01 739s 1.88

(b) rightRect scenario
*runtime normalized to origPMS

Table 5.4: The results of the runtime criteria.

Rank In this highly subjective criterion the adjustments have an huge impact on the
results of the unrect scenario as can be seen in figure 5.16a. The figure visualizes for each
scenario the amount of test sets in each rank. It can be seen that at least approximately
one third of the test sets fail for each parConf. In the origPMS parConf the algorithm
produces even more often bad results. Much better results are achieved with the l10p0
parConf. Given that the best parConf is in most cases l10p0 as seen in table 5.5a. In this
case the term Ψ does not work well and sometimes even worsens the result.

parConf best
origPMS 0

l5p0 1
l10p0 16

l5p0.01 1
l10p0.01 3

(a) unrect scenario

parConf best
origPMS 2

l5p0 3
l10p0 6

l5p0.01 8
l10p0.01 3

(b) rightRect scenario

Table 5.5: The best parConfs.
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(a) unrect scenario (b) rightRect scenario

Figure 5.16: The amount of test sets in the different ranks.

In the rightRect scenario most of the results are ranked at least ok. In figure 5.16b the
ranks over all test sets for this scenario are shown. The figure states only "all parConfs"
because most parConfs among one test set are ranked the same. The reason is that the
results look very similar and only slight differences occur. Hence it is hard to decide which
parConf performs best. The figure also shows that a few test scenarios could not be used
with PatchMatch Stereo and completely fail.

Table 5.5b states that the l5p0.01 parConf works best but as can be seen the l10p0
parConf is nearby and may even be better due to the subjective method. This states that
the adjustments indeed work but the term Ψ need to be revised or removed.

The results of this criterion strengthens the previous expectations that PatchMatch Stereo
with extended search space performs better on unrectified images and has little impact
on rectified ones. Furthermore the additional cost term Ψ does not work well in the
unrect scenario, while it may work in the rightRect one. Additionally this proves that
PatchMatch Stereo works with freehand stereo images but not accurate for all images.

The detailed results for each test set for this criterion can be found in appendix B.

Special test sets Some test sets show special behavior which are described in the fol-
lowing. In test sets such as dresden and farBuilding the relevant information are really
far away and the foreground changes much. Hence the disparity maps looks distorted as
seen in figure 5.17.

(a) left image (b) right image (c) right image (unrect l5p0)

Figure 5.17: The images of the dresden test set and a disparity map
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The test sets maize and poppy work much better in the unrect scenario than in the
rightRect one. Those are visualized in figure 5.18. That means that in some cases the
rectification worsens the disparity calculation.

(a) maize original (b) maize unrect (c) maize rightRect

(d) poppy original (e) poppy unrect (f) poppy rightRect

Figure 5.18: The right image of the maize (a,b,c) and the poppy (d,e,f) test set (l5p0.01)

Other test sets such as blueBuilding and butterfly suffer form huge areas with similar
texture where PatchMatch Stereo does not find correct matchings (see figure 5.19).

(a) blueBuilding original (b) blueBuilding unrect (c) blueBuilding rightRect

(d) butterfly original (e) butterfly unrect (f) butterfly rightRect

Figure 5.19: The right image of the blueBuilding (a,b,c) and butterfly (d,e,f) test set (l5p0.01)

The faculty test set was furthermore taken from above and has difficult lightning condi-
tions which does not work well as seen in figure 5.20. In this case background is pushed
forward due to the shadows.
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(a) original (b) unrect (c) rightRect

Figure 5.20: The right image of the faculty test set (l5p0.01)

In the forest test set as seen in figure 5.21 the tree on the left is recognized well but it
is put into the background while the other parts are pushed into the foreground. This
should be the other way round. This could mean that the algorithm has problems with
high depth changes on a small area.

(a) original (b) unrect (c) rightRect

Figure 5.21: The right image of the forest test set (l5p0.01)

Summary The evaluation showed that PatchMatch Stereo works with most images.
The algorithm can be improved by extending the search space. This is especially in the
unrect scenario, but slows down the algorithm by a considerable amount. The term Ψ

improves results of rightRect scenario slightly, while it worsens the results in the unrect
scenario. Hence Ψ should be revised. It was furthermore showed that in some cases the
rectification procedure reduces the quality of the results. Additionally PatchMatch Stereo
has problems with difficult lightning conditions, too much depth changes in a small area
and huge areas with homogeneous texture.

OpenCL results

The OpenCL implementation has a memory allocation problem if the whole image is
processed because to much data needs to be allocated beforehand which does not fit into
the RAM. In order to overcome this problem the algorithm is only used with the row-by-
row approach which reduces the memory allocation to only one row instead of the whole
image.
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This approach runs without any further adjustments up to two times faster than the
CPU implementation as seen in table 5.6. These results also show that the runtime does
benefit more in the rightRect scenario. Interestingly the higher the lines parameter is the
faster is the OpenCL implementation compared to the CPU one except for the origPMS
parConf.

parConf CPU OpenCL norm.*
origPMS 358s 167s 0.47

l5p0 504s 406s 0.81
l10p0 652s 488s 0.75

l5p0.01 484s 452s 0.93
l10p0.01 615s 543s 0.88

(a) unrect scenario

parConf CPU OpenCL norm.*
origPMS 392s 190s 0.48

l5p0 551s 421s 0.76
l10p0 727s 469s 0.64

l5p0.01 601s 391s 0.65
l10p0.01 739s 436s 0.59

(b) rightRect scenario
*OpenCL runtime normalized to CPU one

Table 5.6: Changes in the runtime criteria.

In table 5.7 the percentage of change referring to the CPU implementation for the me-
dian and the invalidated points criteria is shown. This illustrates that the results of the
proposed OpenCL implementation are worse than that of the CPU one.

parConf median invPts
origPMS -0.76% 46.54%

l5p0 1.31% 80.55%
l10p0 2.06% 74.91%

l5p0.01 1.01% 93.42%
l10p0.01 1.51% 88.30%

(a) unrect scenario

parConf median invPts
origPMS 7.08% 48.47%

l5p0 7.33% 76.38%
l10p0 6.95% 64.42%

l5p0.01 7.44% 65.14%
l10p0.01 7.51% 58.91%

(b) rightRect scenario

Table 5.7: Changes in the median and invalidated points criteria.

While in the unrect scenario the median does not change much it does in the rightRect
scenario. The values of invalidated points are even worse. The disparity maps look more
distorted than that of the CPU implementation in every parConf as seen in figure 5.22.

(a) CPU (l5p0). (b) OpenCL (l5p0). (c) OpenCL (l10p0.01).

Figure 5.22: The right disparity map of the poles test set with CPU implementation and
OpenCL one.

51



5 Extending PatchMatch Stereo

In order to evaluate whether the problem can be reduced considering more points during
spatial propagation (spatial offset), described in section 5.2.2, an experiment was per-
formed. Therefore five test sets (bridge,koenigstein,pole,poles,sewerCover) were chosen
and calculated with considering five more spatial points in the x-direction. These test
sets were run with the parConfs: origPMS, l5p0 and l5p0.01. To calculate the results
illustrated in table 5.8 the arithmetic mean over the given five test sets was used. In ta-
ble 5.8a the change compared to the OpenCL approach is illustrated, while in table 5.8b
the changed compared to the CPU implementation is used.

parConf median invPts runtime norm.*
origPMS -4.21% -3.60% 245s 1.22

l5p0 -2.91% -5.92% 640s 1.49
l5p0.01 -3.67% -3.54% 445s 1.11

(a) Change compared to initial OpenCL
parConf median invPts norm.**
origPMS 19.24% 148.11% 0.60

l5p0 12.48% 119.33% 1.08
l5p0.01 13.02% 115.75% 0.70

(b) Change compared to CPU
*runtime normalized to initial OpenCL approach **runtime normalized to CPU implementation

Table 5.8: The change compared to the initial OpenCL approach and to the CPU implementa-
tion.

Table 5.8a states that the use of a spatial offset does improve the quality of the OpenCL
implementation but also makes it slower. Further table 5.8b shows that it still performs
worse than the CPU implementation. This is illustrated in figure 5.23.

(a) CPU implementation (b) OpenCL no spatial offset (c) OpenCL with spatial offset

Figure 5.23: The right image of the pole test set (l5p0) calculated with different methods.

These experiments show that with the proposed methods the issues of the OpenCL im-
plementation could not be removed. The OpenCL implementation is not entirely worse
because disparity maps look similar and test sets that failed on the CPU implementation
get better results with the OpenCL one but still fail.
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Conclusion

The experiment showed that PatchMatch Stereo works good with rectified freehand stereo
images and that the proposed adjustments do give slight improvements on the results. In
unrectified images the adjustments have an huge impact and perform well which allows the
assumption that these will also contribute to images where the rectification is inaccurate.
For the given unrectified stereo images a good parConf was found which is lines = 10

and ψ = 0. The experiment further showed that for rectified images lines = 5 and
ψ = 0.01 seems a good parConf while the additional cost term Ψ needs to be revised. The
adjustments slow down the algorithm in a considerable amount and even the proposed
OpenCL implementation could not contribute to the runtime due to its worse quality.

5.5 Summary

In this section the PatchMatch Stereo algorithm was described and some performance
improvements were presented. Afterwards an evaluation approach for these improvements
was envisioned. The evaluation was performed to see whether the improvements are useful
or not. In the end it was found out that the quality improvements work and the presented
speed improvements did not led to the expected results.
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6 Conclusion

This chapter summarizes the knowledge gained from the previous chapters and sections.
Further it will sketch ideas for further improvements.

6.1 Conclusion

In this thesis algorithms for rectifying images were described and compared. Therefore
an evaluation approach was defined and used. An algorithm for the rectification proce-
dure was chosen which is Hartley’s algorithm in conjunction with the QER fundamental
Matrix.

Performance improvements for the PatchMatch Stereo algorithm were introduced. One
is the extended search space and the other is an OpenCL impelementation.

Extended search space The extended search space allows the algorithm to work on
images where the epipolar geometry is not correct. Furthermore the cost function for
PatchMatch Stereo was adjusted with an additional term Ψ to compensate the introduced
y-disparity.

Some criteria could be defined to evaluate those improvements for stereo images with no
ground truth available. These criteria are the average costs, the cost distribution, the
invalidated points, the runtime and the ranking of the results.

Experiments show that the extended search space improves the results especially for
unrectified images. They also show that PatchMatch Stereo does not work optimally
on all images and has problems with difficult lightning conditions and too homogeneous
surfaces. Furthermore the algorithm is slowed down by the extension. The term Ψ does
not work well and in some cases even reduces the quality of the results.
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OpenCL implementation Furthermore an OpenCL implementation was created which
speeds up the algorithm but suffers from worse results because of the problem that the
spatial propagation is sequential and is thus not suited for an parallelization approach.

Overall the depth calculation is enhanced in the "freehand stereo" case by using Patch-
Match Stereo with the extended search space.

6.2 Future work

For the evaluation of rectification algorithms the ARE criteria should be revised that
it is independent of the stretching or compressing of an image. Additionally a more
robust method should be considered. Maybe by transforming the images into another
representation and do some calculations there.

In the PatchMatch Stereo algorithm with extended search space the additional cost term
Ψ should be revised in a way that it does not worsen results. Maybe the cost function
itself should be replaced by another one to better fit within the extended search space.

The algorithm itself may work better with an adaptive change of the lines parameter.
This could be done by determining the average over all ϕ in an image or in the support
window. Another idea is to allow the ϕ parameter to only change in the direction it was
in the iteration before. This would shrink the search space and therefore speed up the
algorithm.
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A Contents of the DVD

The thesis was made on a Linux operating system. The DVD contains:

• the references (References/ )

• images that were self created (Images/ )

• the program (Program/PatchMatchStereo/ )

• a text file that describes the contents more complete and the usage of the program
(readme.txt)

• the input test data (Input/ )

• the statistics for the data (Statistics/ ). The statistics contain:

– rectification_stats.ods contain the statistics for the rectification

– PMS_rect.ods contain the statistics for the rightRect scenario

– PMS_unrect.ods contains the statistics for the unrect scenario

• the results (Data/ ). The Data contains:

– data.7z which contains the calculated disparity maps and neighbor images.
These are labeled with respect to their used parameters:

∗ _unrect means that its an unrectified image (rectified if not present)

∗ _l# means the lines parameter (zero if not present)

∗ _c# means the ψ value (zero if not present)

∗ _ocl means that it was calculated using the OpenCL approach (CPU im-
plementation if not defined)

∗ disp refers to a disparity map

∗ neighbor refers to the neighbor image
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∗ planes refers to the planes that were used for calculating the disparity map

∗ costHist refers to the cost distribution histogram

– rectify/ contains the rectification information:

∗ ASIFTnOut.7z, ASIFTwOut.7z, MANnOut.7z, MANwOut.7z contain the
results of the recitification

· bouget refers to Bouget’s algorithm

· hartleys refers to Hartleys algorithm

· qer refers to Quasi-Euclidean epipolar rectification (QER) (either rec-
tification or fundamental matrix)

· pollefey refers to Polar rectification

· _8point refers to the 8-point-F-matrix

· _calib_5point refers to the calib-F-matrix

· _rect the rectified image

· _unrect the unrectified image with epipolar lines.

· matches_inner contain the inner (and all) matches

· matches_outer shows the outer matches

· choosenRect shows the chosen rectangle for outer matches

∗ asiftKeys and asiftMatchings are the used matchings for asift
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B Test stereo images

In the following the used thirty stereo test sets as well as the resulting images are presented.
A page is structured as seen in figure B.1.

TestSet

left image

right image

remaining
ASIFT correspondences

rectified
right image

rectified
left image

unrect
origPMS

unrect
l5p0

unrect
l5p0.01

neighbor 
image of best

(unrect)
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Figure B.1: The description of a page consisting of the tests sets.

The first two rows refer to the original image, the found asift matchings and the rectified
images using Hartley’s QER. The third and the fourth row represent the disparity maps
of the unrect test scenario whereas the fifth and sixth row depict the disparity maps from
the rightRect scenario. Note that always the right map is shown. The disparity maps are
always in the following order: 1) origPMS, 2) l5p0, 3) l5p0.01, 4) the neighbor image of
the best map (if present), 5) l10p0 and 6) l10p0.01

Additional information (e.g. the rank and the median m̃) is given above the images.
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bicycles

m̃ = 188.69 | fail m̃ = 187.46 | fail m̃ = 185.19 | fail

m̃ = 187.44 | fail m̃ = 187.07 | fail

m̃ = 147.35 | bad m̃ = 145.22 | bad m̃ = 144.90 | bad

m̃ = 145.78 | bad/best m̃ = 145.55 | bad
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blowball

m̃ = 158.81 | bad m̃ = 121.24 | good m̃ = 116.86 | good/best

m̃ = 121.76 | good m̃ = 117.15 | good

m̃ = 110.94 | good m̃ = 110.14 | good m̃ = 110.14 | good

m̃ = 110.27 | good/best m̃ = 110.19 | good
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blueBuilding

m̃ = 711.27 | fail m̃ = 685.87 | fail m̃ = 673.00 | fail

m̃ = 691.44 | fail m̃ = 683.62 | fail

m̃ = 537.60 | fail m̃ = 527.04 | fail m̃ = 523.57 | fail

m̃ = 529.43 | fail m̃ = 528.80 | fail
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bridge (rotated)

m̃ = 233.32 | fail m̃ = 230.08 | bad m̃ = 218.84 | good/best

m̃ = 231.49 | bad m̃ = 222.68 | ok

m̃ = 209.71 | good m̃ = 209.02 | good/best m̃ = 208.89 | good

m̃ = 209.21 | good m̃ = 209.15 | good
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brownBuilding

m̃ = 274.11 | bad m̃ = 267.31 | bad m̃ = 257.77 | ok/best

m̃ = 269.43 | bad m̃ = 263.53 | bad

m̃ = 262.24 | ok m̃ = 255.14 | ok m̃ = 252.03 | ok

m̃ = 256.12 | ok m̃ = 254.13 | ok/best
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butterfly

m̃ = 303.81 | fail m̃ = 300.83 | fail m̃ = 298.98 | fail

m̃ = 300.54 | fail m̃ = 301.82 | fail

m̃ = 734.71 | fail m̃ = 734.33 | fail m̃ = 728.39 | fail

m̃ = 734.00 | fail m̃ = 730.97 | fail
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butterfly1

m̃ = 189.94 | ok m̃ = 185.82 | ok m̃ = 183.14 | ok/best

m̃ = 187.30 | ok m̃ = 185.85 | ok

m̃ = 169.06 | good m̃ = 165.16 | good m̃ = 163.56 | good

m̃ = 165.94 | good/best m̃ = 164.97 | good

65



Appendix

distel

m̃ = 303.49 | fail m̃ = 292.65 | bad/best m̃ = 284.37 | bad

m̃ = 295.00 | bad m̃ = 287.49 | bad

m̃ = 330.76 | good m̃ = 318.81 | good/best m̃ = 309.00 | good

m̃ = 320.15 | good m̃ = 314.86 | good
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dresden

m̃ = 608.19 | fail m̃ = 602.86 | fail m̃ = 599.89 | fail

m̃ = 605.97 | fail m̃ = 603.64 | fail

m̃ = 960.98 | fail m̃ = 927.21 | fail m̃ = 903.92 | fail

m̃ = 940.93 | fail m̃ = 920.36 | fail
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faculty

m̃ = 516.79 | fail m̃ = 495.49 | fail m̃ = 462.57 | fail

m̃ = 495.49 | fail m̃ = 474.27 | fail

m̃ = 476.43 | bad m̃ = 464.86 | bad m̃ = 454.25 | bad

m̃ = 466.11 | bad/best m̃ = 457.82 | bad
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farBuilding

m̃ = 354.60 | fail m̃ = 345.95 | fail m̃ = 335.31 | fail

m̃ = 349.64 | fail m̃ = 341.82 | fail

m̃ = 338.53 | fail m̃ = 329.17 | fail m̃ = 320.37 | fail

m̃ = 330.36 | fail m̃ = 325.17 | fail

69



Appendix

fence

m̃ = 397.20 | fail m̃ = 382.90 | fail m̃ = 370.24 | fail

m̃ = 387.34 | fail m̃ = 375.67 | fail

m̃ = 309.38 | ok/better door m̃ = 303.91 | ok m̃ = 302.73 | ok

m̃ = 304.69 | ok/best m̃ = 302.47 | ok
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flowers

m̃ = 178.56 | bad m̃ = 173.03 | bad m̃ = 168.43 | ok/best

m̃ = 174.35 | bad m̃ = 170.82 | ok

m̃ = 170.94 | good m̃ = 167.42 | good m̃ = 166.33 | good

m̃ = 167.35 | good m̃ = 166.78 | good/best
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forest

m̃ = 226.93 | bad m̃ = 224.98 | bad m̃ = 223.35 | bad/best

m̃ = 225.54 | bad m̃ = 224.93 | bad

m̃ = 228.06 | fail m̃ = 223.69 | fail m̃ = 221.45 | fail

m̃ = 224.25 | fail m̃ = 223.29 | fail
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koenigstein

m̃ = 285.78 | bad m̃ = 276.66 | bad m̃ = 268.78 | ok/best

m̃ = 278.34 | bad m̃ = 274.43 | bad

m̃ = 255.55 | good m̃ = 247.50 | good m̃ = 246.50 | good

m̃ = 245.93 | good m̃ = 244.55 | good/best
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maize

m̃ = 157.46 | ok m̃ = 148.71 | good m̃ = 146.72 | good/best

m̃ = 149.45 | good m̃ = 147.74 | good

m̃ = 162.23 | fail m̃ = 157.92 | fail m̃ = 155.54 | fail

m̃ = 158.30 | fail m̃ = 156.60 | fail
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metal

m̃ = 414.88 | bad m̃ = 398.53 | bad m̃ = 380.01 | ok/best

m̃ = 399.82 | bad m̃ = 390.37 | bad

m̃ = 380.57 | ok m̃ = 359.81 | ok m̃ = 358.12 | ok/best

m̃ = 359.84 | ok m̃ = 359.21 | ok
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palett

m̃ = 229.94 | bad m̃ = 217.69 | ok m̃ = 213.20 | good/best

m̃ = 218.61 | ok m̃ = 215.20 | good

m̃ = 208.55 | good/best m̃ = 207.59 | good m̃ = 206.33 | good

m̃ = 207.61 | good m̃ = 206.63 | good

76



Appendix

pillar

m̃ = 531.36 | bad m̃ = 516.75 | ok m̃ = 507.08 | ok/best

m̃ = 524.53 | ok m̃ = 515.65 | ok

m̃ = 388.55 | bad/best m̃ = 380.33 | bad m̃ = 372.73 | bad

m̃ = 383.17 | bad m̃ = 373.45 | bad
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pole

m̃ = 752.32 | ok m̃ = 709.16 | good m̃ = 708.48 | good

m̃ = 710.20 | good m̃ = 710.47 | good/best

m̃ = 627.49 | good m̃ = 626.43 | good m̃ = 625.91 | good

m̃ = 627.02 | good/best m̃ = 626.26 | good
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poles

m̃ = 335.64 | ok m̃ = 323.86 | good m̃ = 318.83 | good/best

m̃ = 326.16 | ok m̃ = 323.24 | good

m̃ = 334.32 | ok m̃ = 329.58 | good m̃ = 329.16 | good/best

m̃ = 329.93 | ok m̃ = 330.06 | ok
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poppy

m̃ = 307.76 | ok m̃ = 294.04 | good m̃ = 281.50 | good

m̃ = 295.99 | good m̃ = 284.66 | good/best

m̃ = 316.26 | fail m̃ = 310.49 | fail m̃ = 302.67 | fail

m̃ = 311.75 | fail m̃ = 306.72 | fail
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rock1

m̃ = 261.09 | fail m̃ = 259.48 | fail m̃ = 257.74 | fail

m̃ = 260.49 | fail m̃ = 260.09 | fail

m̃ = 244.78 | fail m̃ = 243.05 | fail m̃ = 241.51 | fail

m̃ = 243.64 | fail m̃ = 242.66 | fail
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rock2

m̃ = 380.99 | fail m̃ = 369.43 | bad m̃ = 350.90 | ok/best

m̃ = 370.95 | fail m̃ = 355.15 | ok

m̃ = 366.80 | good m̃ = 359.19 | good m̃ = 354.90 | good

m̃ = 360.12 | good/best m̃ = 357.18 | good
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rock3

m̃ = 200.05 | fail m̃ = 177.53 | ok m̃ = 172.85 | good/best

m̃ = 178.74 | ok m̃ = 173.73 | good

m̃ = 165.12 | good m̃ = 162.44 | good m̃ = 162.02 | good/best

m̃ = 162.71 | good m̃ = 161.87 | good
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root

m̃ = 184.32 | good m̃ = 181.09 | good m̃ = 181.13 | good

m̃ = 181.77 | good m̃ = 181.69 | good/best

m̃ = 192.51 | good m̃ = 191.24 | good m̃ = 190.92 | good/best

m̃ = 191.39 | good m̃ = 191.16 | good
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sewerCover

m̃ = 389.85 | fail m̃ = 371.79 | bad m̃ = 367.46 | ok/best

m̃ = 373.93 | fail m̃ = 371.69 | bad

m̃ = 279.08 | good m̃ = 269.28 | good m̃ = 267.98 | good/best

m̃ = 269.63 | good m̃ = 268.76 | good

85



Appendix

stub

m̃ = 194.76 | ok m̃ = 192.28 | ok m̃ = 189.24 | ok

m̃ = 193.67 | ok/best m̃ = 192.44 | ok

m̃ = 183.27 | good m̃ = 178.60 | good m̃ = 177.50 | good/best

m̃ = 179.08 | good m̃ = 178.59 | good
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stud

m̃ = 448.74 | fail m̃ = 420.86 | fail m̃ = 385.90 | fail

m̃ = 422.95 | fail m̃ = 392.19 | fail

m̃ = 344.10 | good m̃ = 337.71 | good m̃ = 335.16 | good

m̃ = 338.39 | good/best m̃ = 337.24 | good
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thing

m̃ = 261.55 | bad m̃ = 257.64 | ok m̃ = 253.06 | good/best

m̃ = 259.07 | ok m̃ = 256.58 | ok

m̃ = 241.08 | ok m̃ = 234.24 | good/best m̃ = 233.28 | good

m̃ = 234.13 | good m̃ = 234.00 | good
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