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Abstract

Structure-preserving image smoothing aims to extract semantically meaningful image structure from texture, which is one of the
fundamental problems in computer vision and graphics. However, it is still not clear how to define this concept. On the other
hand, semantic image labeling has achieved significant progress recently and has been widely used in many computer vision
tasks. In this paper, we present an interesting observation, i.e. high-level semantic image labeling information can provide a
meaningful structure prior naturally. Based on this observation, we propose a simple and yet effective method, which we term
semantic smoothing, by exploiting the semantic information to accomplish semantically structure-preserving image smoothing.
We show that our approach outperforms the state-of-the-art approaches in texture removal by considering the semantic infor-
mation for structure preservation. Also, we apply our approach to three applications: detail enhancement, edge detection, and
image segmentation, and we demonstrate the effectiveness of our semantic smoothing method on these problems.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]: Enhancement—
Smoothing

1. Introduction

Structure/edge-preserving image smoothing [XYXJ12, KEE13,
XRY∗15] is one of the fundamental problems in image process-
ing, computational photography, and computer vision. The purpose
of image smoothing is to reduce unimportant image texture or noise
while preserving semantically meaningful image structures simul-
taneously [XYXJ12,Yan16]. It has achieved widespread use in vari-
ous applications, including texture removal, edge extraction, image
abstraction, seam carving and tone mapping.

The main challenge of image smoothing is how to obtain and ex-
ploit the structural or the edge prior information to distinguish se-
mantically pointless texture or noise from meaningful image struc-
ture [XYXJ12, ZSXJ14, Yan16]. The majority of edge-preserving
image filters apply low-level feature, i.e. image gradients, as edge
prior information, such as bilateral filtering [TM98] and guided
filter [HST10]. For structure-preserving image smoothing, relative
total variation [XYXJ12], diffusion maps [FFL10], and region co-
variances [KEE13] measures are used to separate texture from the
image structure. Recently, Yang [Yan16] use an edge detector for it-
erative edge-preserving texture filtering to exploit mid-level vision
feature, i.e. structured edges. Although these methods work well
for some tasks, it is not clear how to define the meaningful image
structure. For example in Figure 1 (b-g), it is difficult for previous
approaches to preserve the bench structure when they only consider
low-level and mid-level vision features of an image.

In this paper, we present an observation, i.e. high-level seman-
tic information can provide a meaningful structure prior for image
smoothing naturally. Recently, semantic labeling has been heav-
ily studied in computer vision community [SWRC06, ZCW∗14,
LSD15, JGK∗17]. Semantic information provides an object-level
semantically meaningful structure prior, such as object boundaries,
which help to reduce the negative effect of sharp edges inside of
objects. Based on this observation, in this paper, we present a sim-
ple and yet effective method which exploits semantic labeling in-
formation to accomplish texture removal and meaningful structure
preservation. We call this new concept semantic smoothing. Be-
sides utilizing high-level semantic information, our method also
can combine low-level vision features, i.e. image appearance, and
mid-level vision information, i.e. image edges.

Our method has two unique properties: meaningful structure
preservation and interior detail removal. As shown in Figure 1,
input image Figure 1 (a) contains a textured bench in the fore-
ground and a grassland in the background. Current state-of-the-art
image smoothing methods cannot successfully separate bench from
its texture and preserve its structure as shown in Figure 1 (b)-(g).
Our proposed semantic smoothing technique outperforms other ap-
proaches by preserving the bench structure effectively as illustrated
in Figure 1 (h). To the best of our knowledge, it is the first structure-
preserving image smoothing method which exploits high-level se-
mantic segmentation information.

The following sections are organized as follows. The related
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(a) Imput (b) DT [GO11] (c) L0 [XLXJ11] (d) RGF [ZSXJ14]

(e) RG [KEE13] (f) RTV [XYXJ12] (g) SF [Yan16] (h) Ours

Figure 1: Semantic Smoothing on MSRC-21 dataset. In this example, image(a) contains a textured bench in a grassland. As a result, it
is difficult for the state-of-the-art structure-preserving and edge-preserving smoothing methods to obtain smoothing results with accurate
structure (b)-(g). (b) Domain Transform (DT) [GO11], (c) L0 Smoothing [XLXJ11] (λ = 0.04), (d) Rolling Guidance Filter (RGF) [ZSXJ14],
(e) Region Covariances (RG) [KEE13] (k = 5, σ = 0.2, Model 1), (f) Relative Total Variation (RTV) [XYXJ12] (λ = 0.005, σ = 3) and (g)
Semantic Filtering (SF) [Yan16]. Our method effectively preserves semantically meaningful structure and smooth out detail and texture. Best
viewed in color.

works are discussed in Section 2. In Section 3 our semantic-aware
image smoothing method is described. In Section 4 experimental
results and applications are presented.

2. Related Work

We categorize the related work into two aspects: image smoothing
and semantic segmentation. First, we discuss edge-preserving and
structure-preserving image smoothing methods. Second, we briefly
review development progress of semantic segmentation and seman-
tic information in other vision problems.

2.1. Image Smoothing

The image smoothing methods can be separated into two classes:
edge-preserving and structure-preserving smoothing. The bilateral
filter [TM98] is one of the most popular edge-preserving filtering
methods which replaces the intensity value of each pixel in the im-
age with a weighted average of intensity values of its neighbor-
ing pixels. In joint bilateral filters [PSA∗04, ED04], the range fil-
ter is applied to a guidance image from another domain. As edge-
preserving image smoothing or filtering methods, we can also men-
tion anisotropic diffusion [PM90], weighted least square [FFLS08],
local Laplacian pyramid [PHK11], domain transform [GO11], and
semantic filtering [Yan16]. However, it is hard to separate high-
contrast textured regions or patterns from the meaningful struc-
tures of an image by using these edge-preserving techniques. The
structure-preserving image smoothing techniques aim to separate
the image structure and texture. One of the most popular structure-
preserving image smoothing methods is Xu et al. [XYXJ12], which
uses the relative total variation (RTV) measure to decompose struc-
tures from textures. They first model a regularization term based

on the RTV measure, then solve a global optimization to extract
the main structures and to obtain the smoothed image. Zhang et
al. [ZDXZ15] first segment the input image into superpixels then
they build a minimum spanning tree for each superpixel to ac-
celerate image filtering. Shen et al. [SZXJ15] proposes a mutual-
structure joint filtering towards preserving common structures of
an input and a guidance image. As other structure-preserving im-
age smoothing techniques we can mention total variation [ROF92],
local extrema [SSD09], structure adaptive [KD], rolling guidance
filter [ZSXJ14], and geodesic [CSRP10]. In contrast, we exploit the
semantic segmentation information as a meaningful structure prior
for the semantic structure-preserving image smoothing. Recently,
several learning-based methods have also been proposed for image
filtering [XRY∗15, BP16].

2.2. Semantic Segmentation

Semantic segmentation is one of the key problems in image un-
derstanding. The goal of semantic segmentation is to label each
pixel of the image with the class of its enclosing object. A com-
mon pipeline of semantic segmentation is first to train pixel-
based classifiers, such as Textonboost [SWRC06] or fully con-
volutional networks (FCN) [LSD15], then using a probabilis-
tic graphical model, such as CRF [SWRC06, CPK∗15, ZJRP∗15,
LKZ∗17], to improve the performance by modeling structured
dependencies. With the development of semantic segmentation
techniques, other computer vision problems exploit high-level se-
mantic information, such as optical flow [SLSJB16, BLKU16],
depth prediction [JGK∗17,WSL∗15b], depth upsampling [HGY15,
SSP∗16], object attributes [VRT13,ZCW∗14], intrinsic image esti-
mation [VRT13], 3D reconsecration [HZC∗13,KLD∗14,LSR∗12].
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However, smoothing image using semantic segmentation informa-
tion has not been exploited before. In this paper, we propose a novel
semantic-aware approach which exploits the semantic information
for structure preserving image smoothing.

3. Semantic Smoothing

In this section, we introduce our semantic image smoothing
method, which exploits high-level semantic information to achieve
semantically meaningful structure preserving smoothing. Given an
input image t and its semantic labeling s, our goal is to compute a
new smoothed image x, which is as similar as possible to the in-
put image t while preserving the semantically meaningful image
structure and reducing the texture or noise. We model our semantic
smoothing as an energy minimization problem. Formally, we define
the energy function as a weighted sum of two energy terms

E(x) = Ed(x; t)+Er(x; t,s), (1)

where Ed is the data term and Er is the regularization term.

3.1. Data Term

The purpose of the data term is to minimize the distance between
the input image t and the smoothed image x. Without this data term,
there will be a trivial solution where all of the pixels will be as-
signed to the same color value. We define the data term Ed as

Ed(x; t) = ∑
i
(xi− ti)

2, (2)

where i is the pixel index. With this term, smoothed image x will
be limited within a range around the input image t.

3.2. Regularization Term

The regularization term Er strive to achieve smoothness by jointly
considering the low-level appearance, the mid-level edge, and the
high-level semantic information. The regularization term Er is de-
fined as

Er(x; t,s) = ∑
i

∑
j∈N (i)

Wi, j(xi− x j)
2, (3)

where N (i) is a set of neighboring (four or eight) pixels around
the pixel i and the weight Wi, j represents the similarity between the
pixel i and the pixel j. Our Wi, j consists of three potential functions
and is defined as

Wi, j = λawa
i, j +λewe

i, j +λsws
i, j, (4)

where the first factor wa
i, j is the appearance potential which is used

to control the low-level information. The second factor we
i, j is based

on the edge detection and is used to control the mid-level informa-
tion. The last factor ws

i, j is the semantic potential which exploits
the high-level semantic information. The weights λa, λe, and λs are
used to control the effect of the low-level, the mid-level and the
high-level information on the final smoothed output, respectively.
These three parts are explained in detail below.

3.2.1. Appearance potential

The appearance potential wa
i, j of the pixel i and the pixel j is defined

as

wa
i, j = exp(−

||fi− f j||2

σa
), (5)

where fi and f j are three-dimensional vectors representing the Lab
color values of the pixel i and the pixel j and σa is a range param-
eter.

We use the appearance potential to measure the difference of the
low-level vision feature, i.e. color, between the pixel i and the pixel
j. In this setting, neighboring pixels of the input image with similar
colors are assigned to larger weights and neighboring pixels with
different colors are assigned to smaller weights.

3.2.2. Edge potential

The edge potential we
i, j between the pixel i and the pixel j is defined

as

we
i, j = exp(−

β
2
i, j

σe
), (6)

where βi, j ∈ [0,1] is the boundary strength measure between the
pixel i and the pixel j and σe is a range parameter.

Recently, Yang [Yan16] uses an edge detector [DZ13] for edge-
preserving image filtering. In contrast, we utilize image edges as
the mid-level vision cue to help the appearance potential and the
semantic potential. In this work, we use the structured edge detec-
tor [DZ13] to calculate boundary strength measure βi, j.

3.2.3. Semantic potential

The semantic potential is the key part of our semantic smoothing.
Based on the semantic labeling s, the semantic potential between
the pixel i and the pixel j can be written as

ws
i, j =

{
γhigh if si = s j

γlow otherwise,
(7)

where si and s j present semantic labeling of the pixel i and the
pixel j. γhigh and γlow are weight parameters and γhigh > γlow. When
neighboring pixels i and j have the same semantic labeling, we as-
sign a larger weight to encourage these two pixels to have close
color values in the output smoothed image. In contrast, when neigh-
boring pixels i and j have different semantic labeling, they are as-
signed a smaller weight. For each class label, it is possible to set
different γhigh values to control the different smoothing strength. In
this work, for simplicity, we set γhigh to 1.0 for all semantic classes
and we set γlow to zero.

Semantic information help to reduce the adverse effect of the
object’s interior sharp edges and texture.

4. Optimization

The objective function in Equation 1 is strictly convex and can be
written in a matrix and vector form as

E(x) = (x− t)T(x− t)+xTAx (8)
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where matrix A is a Laplacian matrix which is defined as

A = D−W, (9)

where W is an adjacency matrix {Wi, j‖ j ∈N (i)} and D is a degree
matrix which is defined as

Di, j =

{
∑ j∈N (i)Wi, j i = j
0 i 6= j.

(10)

By setting the gradient of E(x) defined as in Equation 8 to zero, the
final smoothing result x is obtained by solving the linear system
based on a large sparse matrix:

(I+A)x = t (11)

where I is an identity matrix.

5. Experimental Results and Applications

Our semantic smoothing method can benefit several image edit-
ing and manipulation applications due to its special properties, i.e.
meaningful structure preservation and interior detail removal.

In this section first, we introduce the datasets which we used
in our experiments. Second, we visually compare the texture re-
moval results of our proposed semantic smoothing approach with
the state-of-the-art methods. Finally, to show the effect of our ap-
proach, we apply it to three applications: detail enhancement, edge
detection, and image segmentation.

5.1. Datasets

MSRC-21 dataset [SWRC06] consists of 591 color images with
following 21 object classes, such as grass, tree, cow, sheep, wa-
ter and so forth. Cimpoi [CMV15] also use MSRC-21 dataset for
texture recognition and segmentation task. In order to ensure pro-
portional contributions from each class approximately, the dataset
is split into 45% training, 10% validation and 45% test images.
We use the standard split of the dataset from [SWRC06] to train
the textonboost [SWRC06], which incorporates shape, texture, lo-
cation, and color descriptors. Then, we use the trained textonboost
to obtain the semantic segmentation. Lastly, we apply the dense
CRF [KK11] to refine the semantic segmentation results and we
use this refined version as high-level semantic information input to
our smoothing approach.

PASCAL VOC dataset [EVGW∗10] consists of one background
class and 20 foreground object classes including person, bird, cat,
cow, dog and so forth. There are 1464 images for training, 1449
for validating and 1456 for testing, respectively. Recently, the fully
convolutional network (FCN) [LSD15] is mainly utilized for es-
timating the semantic segmentation on PASCAL VOC dataset.
Also in this work, we employ the publicly available pre-trained
FCN [LSD15] for obtaining the semantic labeling for PASCAL
VOC. Then, we use the dense CRF [KK11] to refine the FCN re-
sults for using it as the input to our semantic smoothing.

5.2. Texture Removal

Texture removal, which is also called as texture smoothing, aim to
separate the meaningful structures from textures. We compare our

semantic smoothing results with the state-of-the-art image smooth-
ing techniques, such as Relative Total Variation (RTV) [XYXJ12]
and Semantic Filtering (SF) [Yan16]. We use the authors’ publicly
available implementations. It is difficult to quantitatively evaluate
image smoothing methods, therefore similar to the most of the
state-of-the-art methods [Yan16, XYXJ12], we present the visual
comparison evaluation in Figure 2 and Figure 3.

We visually compare our proposed semantic smoothing tech-
nique with [XYXJ12, Yan16] on MSRC-21 dataset (see Figure 2)
and PASCAL VOC dataset (see Figure 3). As illustrated in these
figures, our semantic-aware image smoothing performs better in
terms of preserving meaningful structures and reducing object in-
terior textures. For instance, if we look at the black cow in the first
row of Figure 2, there are strong edges inside of the cow’s body
in other approaches’ results, while our approach is able to remove
these semantically meaningless edges.

5.3. Applications

5.3.1. Detail Enhancement

Detail enhancement aims to increase visual appearance of images,
which is widely used in image editing. Thanks to the property
of structure-preserving image smoothing, i.e. structure-texture de-
composition, we can apply our semantic smoothing method to en-
hance the underlying details or textures of an image. First, we use
our semantic smoothing method to decompose the input image into
structures and details. Then we add the details back to the input im-
age. That means we augment the contrast in detail components of
the input image.

Figure 4 shows two examples. Given two input images Figure 4
(a) and (e) and their semantic smoothing results Figure 4 (b) and (f),
we can decompose the texture information Figure 4 (c) and (g) and
obtain the detail enhancement results Figure 4 (d) and (h). Since our
smoothing method can effectively preserve the object-level struc-
ture and remove object interior edges, it can effectively enhance the
underlying detail, particularly interior texture and edges of objects,
without blurring the main structure of objects.

5.3.2. Edge Detection

Edge detection is one of the challenging tasks in computer vision
for a long time. The purpose of edge detection is to extract visually
salient edges or object boundaries from the input image. Boundary
and edge can be used in a broad range of computer vision or graph-
ics tasks, such as semantic segmentation, object recognition, image
editing and tone mapping. Our method can be applied to object-
level edge extraction thanks to its ability to preserve semantically
meaningful structures and remove many unimportant details, such
as interior edges of the object especially.

Figure 5 (a) shows an input image in grass texture with a salient
foreground, i.e. a cow. Since the texture has high contrast, apply-
ing the Canny edge detector [Can86] cannot produce reasonable
results directly from the input image, see Figure 5(c). Structured
edge detection [DZ13] is a popular edge detection method based
on random forests, which can detect salient edges. It achieves bet-
ter results as demonstrated in Figure 5(e) and thinned edges Fig-
ure 5(g), which is obtained by standard non-maximal suppression
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(a) Image (b) SF [Yan16] (c) RTV [XYXJ12] (d) Ours Smoothing

Figure 2: Visual comparison of texture removal results on MRSC dataset. (a) input images, (b) Semantic Filtering (SF) [Yan16], (c) Relative
Total Variation (RTV) [XYXJ12] and (d) Our semantic smoothing results. Best viewed in color.

(a) Imput image (b) SF [Yan16] (c) RTV [XYXJ12] (d) Ours smoothing

Figure 3: Visual comparison of texture removal results on PASCAL VOC dataset. (a) input images, (b) Semantic Filtering (SF) [Yan16], (c)
Relative Total Variation (RTV) [XYXJ12] and (d) Our semantic smoothing results. Best viewed in color.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Detail Enhancement. (a) and (e) are the input images. (b) and (f) are our semantic image smoothing results. (c) and (g) are
decomposed texture information outputs. (d) and (h) are the detail enhancement results. Best viewed in color.

technique. We can see that some of the detected edges come from
the textures. In contrast, our method first produces an object-level
structure-preserving smoothed image, which removes insignificant
details as Figure 5(b). We can improve the result of these edge de-
tection approaches by applying them to our smoothed images Fig-
ure 5(b). Figures 5 (d), (f), and (h) illustrate the refined edge detec-
tion results of Figures 5 (c), (e), and (g) correspondingly.

5.3.3. Semantic Segmentation

In this section, we show that the smoothed image also can
help semantic segmentation. Fully connected conditional random
field [KK11], which is also called as dense conditional random field
(Dense-CRF), is a very popular tool to refine semantic image seg-
mentation results. We propose to use a modified version of Dense-
CRF, which we call Dense-CRF+, where the smoothed images are
used to model appearance kernel of Gaussian edge pairwise term
instead of the typical RGB color vectors. For the sake of compar-
ison with original Dense-CRF, we use the MSRC-21 dataset, the
same data splits and unary potentials as the one used by [KK11].

We choose two standard measures of multi-class segmentation
accuracy as [KK11] used, i.e. Overall and Average. Overall is the
pixel-wise labeling accuracy, which is computed over the whole
image pixels for all classes. Average is the pixel-wise labeling ac-
curacy computed for all classes and the averaged over these classes.
The original ground truth labelings of the MSRC-21 dataset are rel-
atively imprecise. There are some regions around objects bound-

Class Unary Dense-CRF Dense-CRF+
Average 76.39 79.37 79.55
Overall 83.18 87.78 88.01

Table 1: The quantitative semantic segmentation results on the
MSRC-21 dataset.

aries left unlabeled. This makes it difficult to evaluate the quan-
titative performance of semantic segmentation results. Therefore,
we evaluated our results on the 94 accurate ground truth labelings
provided by [KK11], which is fully annotated at the pixel-level,
with accurate labeling around complex boundaries. Table 1 shows
the quantitative experimental results. We get the Average accuracy
79.55 and Overall accuracy 88.01. Our method outperforms the
original Dense-CRF approach [KK11] on the MSRC-21 dataset.
Figure 6 shows some qualitative semantic segmentation results on
the MSRC-21 dataset. Our Dense-CRF+ obtains more accurate re-
sults than the Dense-CRF, which produces many spatially disjoint
object segments. As a future work, it is possible to jointly inference
semantic smoothing and segmentation.

6. Conclusion

In this paper, we propose a semantic-aware image smoothing
method. Unlike previous image smoothing techniques which use
the low-level vision features, such as appearance and gradient, or
the mid-level vision features, such as edge or boundary detection,
our proposed technique is developed based on the high-level se-
mantic information of the image. Besides exploiting the high-level
semantic information, our method also combine the low-level and
the mid-level features. Effectiveness of our approach is demon-
strated in different applications, including texture removal, detail
enhancement, edge detection, and semantic segmentation. The lim-
itation of the semantic smoothing is that it depends on the qual-
ity of the semantic segmentation. But with the development of
semantic segmentation techniques, particularly using deep learn-
ing, we will have enough confidence to believe that using seman-
tic information will be advantageous for image smoothing.In fu-
ture work, we would like to extend our method by exploiting di-
verse levels of semantic information, such as instance segmenta-
tion [DHS16], object part segmentation [WSL∗15a] and material
segmentation [BUSB15].
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(a) (b) Semantic Smoothing

(c) (d)

(e) (f)

(g) (h)

Figure 5: Edge Detection. (a) Input image, (c) Canny edge detec-
tion [Can86] applied to (a), (e) Structure edge detection [DZ13]
applied to (a), (g) Non-maximal suppression applied to (e). (b) Our
semantic smoothing result, (d) Canny edge detection [Can86] ap-
plied to (b), (f) Structure edge detection [DZ13] applied to (b), (h)
Non-maximal suppression applied to (f).

References

[BLKU16] BAI M., LUO W., KUNDU K., URTASUN R.: Exploiting
semantic information and deep matching for optical flow. In European
Conference on Computer Vision (ECCV) (2016), Springer, pp. 154–170.
2

[BP16] BARRON J. T., POOLE B.: The fast bilateral solver. In European
Conference on Computer Vision (ECCV) (2016), Springer, pp. 617–632.
2

[BUSB15] BELL S., UPCHURCH P., SNAVELY N., BALA K.: Material
recognition in the wild with the materials in context database. In Com-
puter Vision and Pattern Recognition (CVPR) (2015), pp. 3479–3487.
6

[Can86] CANNY J.: A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6 (1986),
679–698. doi:10.1109/TPAMI.1986.4767851. 4, 7

(a) Imput image (b) Dense-CRF

(c) Ours smoothing (d) Dense-CRF+

(e) Input image (f) Dense-CRF

(g) Ours smoothing (h) Dense-CRF+

Figure 6: Semantic segmentation. (a) and (e) are input images. (b)
and (f) are Dense-CRF segmentation results. (c) and (g) are our se-
mantic smoothing results. (d) and (h) are Dense-CRF+ segmenta-
tion results. Our method predicts segmentations which are localized
around object boundaries and are spatially smooth. Best viewed in
color.

[CMV15] CIMPOI M., MAJI S., VEDALDI A.: Deep filter banks for
texture recognition and segmentation. In Computer Vision and Pattern
Recognition (CVPR) (2015), pp. 3828–3836. 4

[CPK∗15] CHEN L.-C., PAPANDREOU G., KOKKINOS I., MURPHY K.,
YUILLE A. L.: Semantic image segmentation with deep convolutional
nets and fully connected crfs. In ICLR (2015). 2

[CSRP10] CRIMINISI A., SHARP T., ROTHER C., P’EREZ P.: Geodesic
image and video editing. ACM Trans. Graph. 29, 5 (Nov. 2010), 134:1–
134:15. doi:10.1145/1857907.1857910. 2

[DHS16] DAI J., HE K., SUN J.: Instance-aware semantic segmenta-
tion via multi-task network cascades. In Computer Vision and Pattern
Recognition (CVPR) (2016). 6

[DZ13] DOLLÁR P., ZITNICK C. L.: Structured forests for fast edge de-
tection. In International Conference on Computer Vision (ICCV) (2013),
pp. 1841–1848. 3, 4, 7

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1145/1857907.1857910


Weihao Li & Omid Hosseini Jafari / Semantic-Aware Image Smoothing

[ED04] EISEMANN E., DURAND F.: Flash photography enhancement
via intrinsic relighting. ACM Trans. Graph. 23, 3 (Aug. 2004), 673–678.
doi:10.1145/1015706.1015778. 2

[EVGW∗10] EVERINGHAM M., VAN GOOL L., WILLIAMS C. K.,
WINN J., ZISSERMAN A.: The pascal visual object classes (voc) chal-
lenge. International Journal of Computer Vision 88, 2 (2010), 303–338.
doi:10.1007/s11263-009-0275-4. 4

[FFL10] FARBMAN Z., FATTAL R., LISCHINSKI D.: Diffusion maps
for edge-aware image editing. ACM Trans. Graph. 29, 6 (Dec. 2010),
145:1–145:10. doi:10.1145/1882261.1866171. 1

[FFLS08] FARBMAN Z., FATTAL R., LISCHINSKI D., SZELISKI R.:
Edge-preserving decompositions for multi-scale tone and detail manip-
ulation. ACM Trans. Graph. 27, 3 (Aug. 2008), 67:1–67:10. doi:
10.1145/1360612.1360666. 2

[GO11] GASTAL E. S. L., OLIVEIRA M. M.: Domain transform for
edge-aware image and video processing. ACM Trans. Graph. 30, 4 (July
2011), 69:1–69:12. doi:10.1145/2010324.1964964. 2

[HGY15] HUANG W., GONG X., YANG M. Y.: Joint object segmenta-
tion and depth upsampling. IEEE Signal Processing Letters 22, 2 (2015),
192–196. doi:10.1109/LSP.2014.2352715. 2

[HST10] HE K., SUN J., TANG X.: Guided image filtering. In European
Conference on Computer Vision (ECCV) (2010), Springer, pp. 1–14. 1

[HZC∗13] HANE C., ZACH C., COHEN A., ANGST R., POLLEFEYS
M.: Joint 3d scene reconstruction and class segmentation. In Computer
Vision and Pattern Recognition (CVPR) (2013), pp. 97–104. 2

[JGK∗17] JAFARI O. H., GROTH O., KIRILLOV A., YANG M. Y.,
ROTHER C.: Analyzing modular cnn architectures for joint depth pre-
diction and semantic segmentation. In International Conference on
Robotics and Automation (ICRA) (2017). doi:10.1109/ICRA.
2017.7989537. 1, 2

[KD] KYPRIANIDIS J. E., DÖLLNER J.: Image abstraction by struc-
ture adaptive filtering. In TPCG, pp. 51–58. doi:10.2312/
LocalChapterEvents/TPCG/TPCG08/051-058. 2

[KEE13] KARACAN L., ERDEM E., ERDEM A.: Structure-preserving
image smoothing via region covariances. ACM Trans. Graph. 32, 6 (Nov.
2013), 176:1–176:11. doi:10.1145/2508363.2508403. 1, 2

[KK11] KRÄHENBÜHL P., KOLTUN V.: Efficient inference in fully con-
nected crfs with gaussian edge potentials. In Neural Information Pro-
cessing Systems (NIPS) (Granada, Spain., 2011), pp. 109–117. 4, 6

[KLD∗14] KUNDU A., LI Y., DELLAERT F., LI F., REHG J. M.: Joint
semantic segmentation and 3d reconstruction from monocular video. In
European Conference on Computer Vision (ECCV) (2014), Springer,
pp. 703–718. 2

[LKZ∗17] LARSSON M., KAHL F., ZHENG S., ARNAB A., TORR P.
H. S., HARTLEY R. I.: Learning arbitrary potentials in crfs with gradient
descent. CoRR abs/1701.06805 (2017). 2

[LSD15] LONG J., SHELHAMER E., DARRELL T.: Fully convolutional
networks for semantic segmentation. In Computer Vision and Pattern
Recognition (CVPR) (2015), pp. 3431–3440. 1, 2, 4
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