DSAC — Differentiable RANSAC for Camera Localization
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RANSAC (Random Sample Consensus) Is an important algorithm in robust
optimization. It cannot be used in deep learning pipelines because it is
non-differentiable.

Our Goal: Use RANSAC in end-to-end learning.

RANSAC in a Nutshell:

1) Sample multiple hypotheses h;
2) Score each hypothesis: s(h;)
3) Take best one (and refine): h =|argmax s(h;)

_ _ h. Naive Fit RANSAC Fit
Not differentiable - J
Contributions
« We explore two ways of making « We show experimentally that

RANSAC differentiable: soft argmax
selection and probabilistic selection.
 We put both options in a new end-to-
end trainable camera localization

pipeline.

probabilistic selection is superior. We
call RANSAC with this option DSAC.
We exceed state-of-the-art on camera
localization by 7.2% (new results: by
12.8%).

Differentiable Alternatives to argmax
Our hypotheses depend on learnable parameters w: h;" := h;(w)

We wish to minimize the loss ¢ of
selected hypotheses over training images I

W = argminE ¢(h")
w I

Selection depends on all
hypotheses and all scores!
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We define a softmax score distribution: | P(j|w) = exp (hw) /z exp(s(hy))

Soft argmax Selection
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Soft, deterministic decision

Probabilistic Selection
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Hard, probabillistic decision
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Probabilistic Selection: We derive the expectation of the task loss.
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Application: Camera Localization
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Previous Work: Scene Coordinate Regression [Shol3, Bral6]

Scene Coordinate Regression

Our Pipeline
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IEj~P(j|w,v) ['g(R(hw, W), h*) ],Wit'\
£(h,h*) = max(»(0,0%), ||t — t*|)

We learn two CNNs with parameters
w and v jointly by minimizing:

Dataset. 7-Scenes [Shol3]

RGB-D images of 7 indoor
scenes with pose annotations,
1k-5k training resp. test images.
We use only RGB at test time.
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Difficult frames of 7-Scenes.

Initialization: Componentwise Training

Score Regression:
Optimize a dummy
score of hypotheses

Scene Coordinate Regression:
Generate ground truth scene
coordinates y*and minimize:

R | ) E____ 3 sampled around ground
W= argmlnz_“)’i -yl | y* truth poses.
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Shotton et al. [Sho13]

Change in Prediction Error after End-to-End Training
w.r.t. Componentwise Training:

Brachmann et al. [Bral6] SoftAM DSAC

Ours, RANSAC

Ours, SoftAM
Ours, DSAC

59.6% (-2.0%)

60.3% 62.4% (+2.1%)

SCORE DISTRIBUTION

+10cm

Decrease

B Componentwise SoftAM  m DSAC

00 Q
I~ o
~
N3

I :
0.00

New Results‘
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Dataset of [Ken15]

7-Scenes: 68.0%

Median Accuracy on a Large Outdoor Scene:
PoseNet [Kenl7]: 88cm, 1.0°
Sparse Features [Sat16]: 42cm, 0.5°
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Our Results: 25cm, 0.5°
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