Differentiable RANSAC for Camera Localization

Motivation
RANSAC (Random Sample Consensus) is an important algorithm in robust optimization. It cannot be used in deep learning pipelines because it is non-differentiable.

Our Goal: Use RANSAC in end-to-end learning.

RANSAC in a Nutshell:
1) Sample multiple hypotheses \(h \).
2) Score each hypothesis: \(s(h) \).
3) Take best one (and refine): \(h_{\text{best}} \).

Not differentiable

Contributions
- We explore two ways of making RANSAC differentiable: soft \(\arg\max \) selection and probabilistic selection.
- We put both options in a new end-to-end trainable camera localization pipeline.
- We show experimentally that probabilistic selection is superior. We call RANSAC with this option DSAC.
- We exceed state-of-the-art on camera localization by 7.2% (new results: by 12.8%).

Differentiable Alternatives to \(\arg\max \)
Our hypotheses depend on learnable parameters \(w \): \(h^w := h(w) \).

We wish to minimize the loss \(\ell \) of selected hypotheses over training images \(i \): \[\hat{w} = \arg\min_w \sum_i \ell(h^w(i)) \]

We define a softmax score distribution:
\[P(j|i) = \frac{\exp \left(f(h^w(i)) \right)}{\sum_k \exp \left(f(h^k(i)) \right)} \]

Soft \(\arg\max \) Selection
\[h_{\text{SoftAM}} = \sum_k P(j|i) h^k \]

Hard, probabilistic decision

Derivatives
Soft \(\arg\max \) Selection:
\[\frac{\partial}{\partial w} h_{\text{SoftAM}} = \sum_j \left(h^w \frac{\partial}{\partial w} P(j|i) + P(j|i) \frac{\partial}{\partial w} h^w \right) \]

Probabilistic Selection:
We derive the expectation of the task loss.
\[\frac{\partial}{\partial w} E_j P(j|i) \left[f(h^w) \right] = E_j P(j|i) \left[\frac{\partial}{\partial w} h^w \right] \log P(j|i) + \frac{\partial}{\partial w} \left(\frac{f(h^w)}{\prod_k \exp \left(f(h^k) \right)} \right) \]

Application: Camera Localization
Training Data: Annotated Images
Test Input: RGB Image
Test Output: \(h \): 6D Pose
3D Translation \(t \)
3D Rotation \(\theta \)

Previous Work: Scene Coordinate Regression [Sho13, Bra16]

Scene Coordinate Regression
RANSAC + Refinement

Our Pipeline
Input RGB
Scene Coordinate (y)
Regression
Hypothesis Sampling
Scoring (s)
Hypothesis Selection
Refinement (R)

We learn two CNNs with parameters \(w \) and \(v \) jointly by minimizing:
\[E_j P(j|i) \left[f(R(h^w, v)^w, h^v) \right], \text{with} \quad f(h^w, h^v) = \max \{ f(\theta, \theta^v), \| t - t^v \| \} \]

New Results
7-Scenes: 68.0%
Median Accuracy on a Large Outdoor Scene:
PoseNet [Ken15]: 88cm, 1.0°
Sparse Features [Sat16]: 42cm, 0.5°
Our Results: 25cm, 0.5°

Experiments
Dataset: 7-Scenes [Sho13]
RGB-D images of 7 indoor scenes with pose annotations.
1k-5k training resp. test images.
We use only RGB at test time.

Initialisation: Componentwise Training
Scene Coordinate Regression:
Generate ground truth scene coordinates \(y \) and minimize:
\[\hat{w} = \arg\min_w \sum_i \| y_i - y_i \| \]

Score Regression: Optimize a dummy score of hypotheses sampled around ground truth poses.

Results:
\[\begin{array}{ccc}
\text{Scene} & \text{Componentwise} & \text{End-to-End} \\
\text{Input} & \text{Training} & \text{Training} \\
\text{w.r.t.} & \text{w.r.t.} & \text{End-to-End} \\
\text{Shotton et al. [Sho13]} & 38.0% & - \\
\text{Brachmann et al. [Bra16]} & 55.2% & - \\
\text{Ours, RANSAC} & 61.0% & - \\
\text{Ours, SoftAM} & 61.6% & 59.6% (2.0%) \\
\text{Ours, DSAC} & 60.3% & 62.4% (2.1%) \\
\end{array} \]

Componentwise Results:

Uncertainty

Scores

Efficient & Effective Prioritized Matching for Large Images in Real-Time

Microsoft

© 2017 Microsoft Corporation. All rights reserved.

© 2017 Microsoft Corporation. All rights reserved.