

Motivation

RANSAC (Random Sample Consensus) is an important algorithm in robust optimization. It cannot be used in deep learning pipelines because it is non-differentiable.

Our Goal: Use RANSAC in end-to-end learning.

RANSAC in a Nutshell:

- 1) Sample multiple hypotheses \mathbf{h}_i
- 2) Score each hypothesis: $s(\mathbf{h}_i)$
- 3) Take best one (and refine): $\hat{\mathbf{h}} = \operatorname{argmax} s(\mathbf{h}_i)$ Not differentiable

Contributions

- We explore **two ways** of making RANSAC differentiable: **soft** argmax selection and probabilistic selection.
- We put both options in a **new** end-toend trainable camera localization pipeline.
- We show experimentally that probabilistic selection is superior. We call RANSAC with this option **DSAC**.

Naïve Fit

We exceed state-of-the-art on camera localization **by 7.2%** (new results: by 12.8%).

Differentiable Alternatives to argmax

Our hypotheses depend on learnable parameters w: $\mathbf{h}_i^{\mathbf{w}} \coloneqq \mathbf{h}_i(\mathbf{w})$

We wish to minimize the loss ℓ of selected hypotheses over training images *I*:

$$\frac{\partial}{\partial \mathbf{w}} \ell(\mathbf{\hat{h}^w}) = \frac{\partial \ell}{\partial \mathbf{\hat{h}^w}} \frac{\partial \mathbf{\hat{h}^w}}{\partial \mathbf{w}} \text{ but } \frac{\partial}{\partial \mathbf{w}} \underset{\mathbf{h}_j^w}{\operatorname{argmax}} s(\mathbf{h}_j^w) \qquad \text{Selection}$$

We define a softmax score distribution:

Soft argmax **Selection** $\mathbf{h}_{\text{SoftAM}}^{w} = \sum P(j|\mathbf{w})\mathbf{h}_{j}^{w}$ Soft, deterministic decision $\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{\mathbf{v}} \ell(\widehat{\mathbf{h}}^{\mathbf{w}})$

 $P(j|\mathbf{w}) \coloneqq \exp\left(s(\mathbf{h}_{j}^{w})\right) / \sum_{i} \exp(s(\mathbf{h}_{k}^{w}))$

Probabilistic Selection

 $\mathbf{h}_{\text{DSAC}}^{\mathbf{w}} = \mathbf{h}_{i}^{\mathbf{w}}$, where $j \sim P(j|\mathbf{w})$

Hard, probabilistic decision

DSAC – Differentiable RANSAC for Camera Localization

Eric Brachmann¹, Alexander Krull¹, Sebastian Nowozin², Jamie Shotton², Frank Michel¹, Stefan Gumhold¹, Carsten Rother¹ ¹TU Dresden, ²Microsoft

$$\mathbf{h}_{j}^{\mathbf{w}} \frac{\partial}{\partial \mathbf{w}} P(j|\mathbf{w}) + P(j|\mathbf{w}) \frac{\partial}{\partial \mathbf{w}} \mathbf{h}_{j}^{\mathbf{w}} \right)$$

3D Translation t

Experiments

Dataset: 7-Scenes [Sho13]

RGB-D images of 7 indoor scenes with pose annotations, 1k-5k training resp. test images. We use only RGB at test time.

Initialization: Componentwise Training

Scene Coordinate Regression: Generate ground truth scene coordinates y*and minimize:

 $\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i} \|\mathbf{y}_{i} - \mathbf{y}_{i}^{*}\|.$

% Frames with Error <5°,5cm	Trained Component
Shotton et al. [Sho13]	38.6%
Brachmann et al. [Bra16]	55.2%
Ours, RANSAC	61.0%
Ours, SoftAM	61.6%
Ours, DSAC	60.3%

oarse Features [Sat16]:	42cm, (
ur Results:	25cm, (

[Ken17] "Geometric Loss Functions for Camera Pose Regression with Deep Learning" Kendall and Cipolla, CVPR 2017 [Sat16] "Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization" Sattler et al., PAMI 2016

Microsoft

Code and trained models:

Score Regression: Optimize a dummy score of hypotheses sampled around ground truth poses.

uropean

European Research Co Established by the European Con