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Code and 
trained 
models:

Problem Statement

Contributions

Estimate the 6D camera pose (position + orientation) 

relative to a known scene from a single RGB image.

We show that learning less is more. See right:

- Red: Learn everything.

CNN predicts pose directly.

- Orange: Learn two components of a geometric pipeline.

Our previous work [Bra17].

- Cyan: Learn one component of a geometric pipeline.

This work.

- Green: Ground truth camera path.

Estimated Camera PoseInput

• Fully differentiable, robust pose 

optimization without learnable 

parameters on top of learned scene 

coordinate regression

• Learning scene coordinate regression 

without a 3D scene model or depth 

maps

• Stable end-to-end training due to new 

approximation of refinement gradients, 

and controlling the entropy of pose 

hypotheses

• We exceed state-of-the-art on camera 

localization on three datasets (indoor 

and outdoor)

Previous Work: Differentiable RANSAC (DSAC) [Bra17]
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Probabilistic Pose Selection

መ𝐡𝐰 = 𝐡𝑗
𝐰, where 𝑗~𝑃(𝑗|𝐰)

𝑃(𝑗|𝐰) = exp 𝑠 𝐡𝑗
𝑤 /

𝑘
exp(𝑠(𝐡𝑘

𝐰))

DSAC Learning Objective
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Updated Pipeline
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Learning without a 3D Scene Model

Training scene coordinate regression in 3 stages:

Input RGB Ground Truth

Scene Coordinates

1) Assume 

constant depth 𝑑

2) Optimize Re-

projection Error
3) End-to-end 

training (DSAC)

1) min σ𝑖 𝐲𝑖 𝐰 − 𝐲𝑖
∗ , with 𝐲𝑖

∗ = 𝐡∗ 𝑑𝑥𝑖
𝑓
,
𝑑𝑦𝑖
𝑓
, 𝑑, 1

𝑇
2) min σ𝑖 𝐶𝐡∗−1𝐲𝑖 𝐰 − 𝐩𝑖

Hypothesis Score: Soft Inlier Count

Reprojection Error:  

𝑟𝑖 𝐡,𝐰

= 𝐶𝐡−1𝐲𝑖 𝐰 − 𝐩𝑖

Inlier Count: 𝑠 𝐡 = σ𝑖 𝟙 𝜏 − 𝑟𝑖 𝐡,𝐰 - not differentiable

Soft In. Count: 𝑠 𝐡 = σ𝑖 sig(𝜏 − 𝛽𝑟𝑖 𝐡,𝐰 )− differentiable

Previously: learned 𝑠 𝐡 - hard to regularize, overfits 

Hypothesis Score: Entropy Control

𝑃 𝑗 𝐰, 𝛼 =
exp(𝛼𝑠(𝐡𝑗,𝐰)

σ𝑘 exp(𝛼𝑠(𝐡𝑘,𝐰)
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Hypothesis Distribution:

High Entropy: 

No separation,

Instable

Low Entropy: 

Few Learning 

Signals, Instable

Medium Entropy: 

Rich Learning 

Signals, Stable

Entropy:

𝑆 𝛼 = −

𝑗

𝑃 𝑗 𝐰, 𝛼 log 𝑃 𝑗 𝐰, 𝛼

Keep target entropy 𝑆∗during training by adjusting 𝛼: argmin𝛼|𝑆 𝛼 − 𝑆∗|

Differentiable Refinement

Refinement 𝐑 optimizes re-

projection errors 𝐫ℐ of inlier set ℐ:  𝐑 𝐡 = argmin𝐡′ 𝐫ℐ 𝐡′, 𝐰 2

Gauss-Netwon update step: 𝐑𝒕+𝟏 = 𝐑𝒕 − 𝐽𝐫
𝑇𝐽𝐫

−𝟏𝐽𝐫
𝑇𝐫ℐ 𝐑𝒕, 𝐰

𝜕

𝜕𝐰
𝐑 𝐡 ≈ − 𝐽𝐫

𝑇𝐽𝐫
−𝟏𝐽𝐫

𝑇
𝜕

𝜕𝐰
𝐫ℐ 𝐡O, 𝐰

Last update: 𝐑 𝐡 = 𝐡O − 𝐽𝐫
𝑇𝐽𝐫

−𝟏𝐽𝐫
𝑇𝐫ℐ 𝐡O, 𝐰 , with 𝐡O = 𝐑𝒕=∞ (𝐡)

Gradient approximation:
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ORB+PNP [Sho13]

DSAC (w/ 3D Model)

Our (w/o 3D Model)

DSAC (w/ Depth)
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% Correct Test Frames

7Scenes [Sho13] Results (Error < 5cm,5°)

Avg. Median Err. w/ 3D Model w/o 3D Model

PoseNet [Ken17] 1.43m, 2.9° 1.63m, 2.8°

Active Search [Sat16] 0.29m, 0.6° -

DSAC [Bra17] 0.31m, 0.8° -

Our 0.14m, 0.3° 0.19m, 0.5°

Cambridge Landmarks [Ken15] Results

DSAC (w/ 3D Model) Our (w/ 3D Model) Our (w/o 3D Model)
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