
Visual Learning Lab Heidelberg

Expert Sample Consensus Applied to Camera Re-Localization Eric Brachmann and Carsten Rother - Heidelberg University (HCI/IWR)

Contributions

- Expert Sample Consensus (ESAC): a combination of **Differentiable RANSAC** (DSAC) and • Mixture of Experts (MoE) [Jac91]
- jointly and end-to-end
 - large-scale camera re-localization in ambiguous environments
- [Bra18] Learning Less is More 6D Camera Localization via 3D Surface Regression, Brachmann and Rother, CVPR18 [Bra17] DSAC - Differentiable RANSAC for camera localization, Brachmann et al., CVPR17 [Jac91] Adaptive Mixtures of Local Experts, Jacobs et al., Neural Computation 1991
- [Sho13] Scene coordinate regression forests for camera relocalization in RGB-D images, Shotton et al., CVPR13
- [Val16] Learning to navigate the energy landscape, Valentin et al., 3DV16
- [Sat18] Benchmarking 6dof outdoor visual localization in changing conditions, Sattler et al., CVPR18
- [Sat16] Efficient & effective prioritized matching for large-scale image-based localization, Sattler et al., TPAMI16

Horizon 2020 European Union funding for Research & Innovatio

erc

The gating network **distributes** model hypotheses among experts:

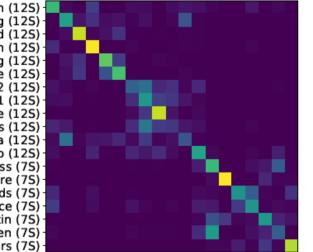
$$p(\mathcal{H}) = \frac{N!}{\prod_e n_e!} \prod_e g(e, I; \mathbf{w})^{n_e}$$

 $\hat{\mathbf{h}} = \mathbf{h}_{(e,j)} \text{ with } (e,j) \sim p(e,j|\mathcal{H}) = \frac{\exp(s(\mathbf{h}_{(e,j)},\mathcal{Y}_e))}{\sum_{e'} \sum_{j'} \exp(s(\mathbf{h}_{(e',j')},\mathcal{Y}_{e'}))}$ ESAC:

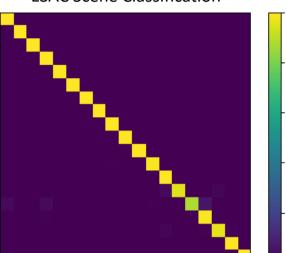
ESAC Training Objective: $\mathcal{L}(\mathbf{w}) = \mathbb{E}_{\mathcal{H} \sim p(\mathcal{H})} \mathbb{E}_{(e,j) \sim p(e,j|\mathcal{H})} [\ell(\mathbf{h}_{(e,j)})]$

Code and **UNIVERSITÄ** trained HEIDELBERG models:

ESAC for Indoor Camera Re-Localization

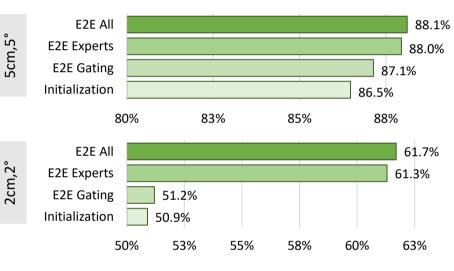

We combine the **7Scenes** [Sho13] and **12Scenes** [Val16] re-loc. datasets.

Both datasets contair multiple ambiguous offices, kitchens, etc



Apt1 Living Apt2 Be Apt2 Kitcher Apt2 Living Office1 Gates36 Office1 Gates381 Office1 Lounge (ffice1 Manolis Office2 5a (1) Office2 5b (1 Pumpkin (Redkitchen

ESAC Scene Classification



Gating Scene Classification

	Max. Experts	Avg. Experts	Accuracy	Avg. Time (ms)
DSAC++	-	-	53.3%	940
Expert Selection	1	1	47.5%	307
ESAC (Ours)	1	1	49.9%	276
	2	2	67.2%	343
	3	2.9	75.3%	398
	19	6.1	88.1%	555
Uniform Gating	19	19	87.8%	1,377
Oracle Gating	1	1	89.0%	120

Effect of end-to-end training.

ESAC for Outdoor Camera Re-Localization

Evaluation on the Aachen Day [Sat18] SfM dataset.

Method	0.25m, 2° / 0.5m, 5° / 5m, 10°
DSAC++	0.4% / 2.4% / 34.0%
ESAC (10 Experts)	30.3% / 49.3% / 73.7%
ESAC (20 Experts)	39.7% / 55.9% / 77.8%
ESAC (50 Experts)	42.6% / 59.6% / 75.5%
Active Search [Sat16]	57.3% / 83.7% / 96.6%

ESAC hypotheses distribution.

Sample Consens

