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Abstract PatchMatch (PM) is a simple, yet very powerful
and successful method for optimizing continuous labelling
problems. The algorithm has two main ingredients: the
update of the solution space by sampling and the use of
the spatial neighbourhood to propagate samples. We show
how these ingredients are related to steps in a specific form
of belief propagation (BP) in the continuous space, called
max-product particle BP (MP-PBP). However, MP-PBP has
thus far been too slow to allow complex state spaces. In the
case where all nodes share a common state space and the
smoothness prior favours equal values, we show that unify-
ing the two approaches yields a new algorithm, PMBP, which
is more accurate than PM and orders of magnitude faster than
MP-PBP. To illustrate the benefits of our PMBP method we
have built a new stereo matching algorithm with unary terms
which are borrowed from the recent PM Stereo work and
novel realistic pairwise terms that provide smoothness. We
have experimentally verified that our method is an improve-
ment over state-of-the-art techniques at sub-pixel accuracy
level.

Keywords Correspondence fields · Belief propagation ·
PatchMatch

1 Introduction

This paper draws a new connection between two existing
algorithms for estimation of correspondence fields between
images: belief propagation (BP; Pearl 1988; Yedidia et al.
2005) and PatchMatch (PM; Barnes et al. 2009, 2010). Cor-
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respondence fields arise in problems such as dense stereo
reconstruction, optical flow estimation, and a variety of
computational photography applications such as recoloring,
deblurring, high dynamic range imaging, and inpainting. By
analysing the connection between the methods, we obtain
a new algorithm which has performance superior to both its
antecedents, and in the case of stereo matching, represents the
current state-of-the-art on the Middlebury benchmark at sub-
pixel accuracy. The first contribution of our work is a detailed
description of PM and BP in terms that allow the connection
between the two to be clearly described. This analysis is
largely self-contained, and comprises the first major section
of the paper. Our second contribution is in the use of this
analysis to define a new algorithm: PMBP which, despite its
relative simplicity, is more accurate than PM and orders of
magnitude faster than max-product particle BP (MP-PBP).

BP is a venerable approach to the analysis of correspon-
dence problems. The correspondence field is parametrized by
a vector grid {us}ns=1, where s indexes nodes, typically cor-
responding to image pixels, and us ∈ R

d parametrizes the
correspondence vector at node s. We shall consider a spe-
cial case of BP, viewed as an energy minimization algorithm
where the energy combines unary and pairwise terms

E (u1, . . . ,un)=
n∑

s=1

ψs (us)+
n∑

s=1

[ ∑

t∈N (s)

ψst (us, ut )

]
,

(1)

with N (s) being the set of pairwise neighbours of node s.
The unary energyψs(us), also called the data term, computes
the local evidence for the correspondence us . For example,
if us = (us, vs) is a parametrization of a two-dimensional
(2D) flow field between images I1 and I2, then one might
define a weighted patch data term (where (xs, ys) are the
image coordinates of pixel s)
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Fig. 1 Example: denoising with a reference image. a Source image. b
Synthetic displacement field ugt

s := [sin xs , 0]�. c Warped target image
with 10 % Gaussian noise added (note, red rectangle is a zoom of the
top left corner. All images can be found in supplementary material).
Estimated displacement field using PatchMatch (d) and our method
(f), with total end-point error EPE = ∑

s ‖us − ugt
s ‖2. Reconstructed

target image using PatchMatch (e) and our method (g), with peak
signal-to-noise ratio (PSNR). Our method is considerably better for both

error measures. The difference between e and g is especially noticeable
in the smooth, green background where PatchMatch suffers from the
ambiguous data term. h, i Plots error and energy for PatchMatch and
our method. It is noticeable that the full energy with pairwise terms is
a much better fit for the task, since in i both error measures are well
correlated with the regularized energy, in contrast to h, where the error
curves increase as the PatchMatch iterations decrease the unary-only
energy (Color figure online)

ψ
wpf
s

([
us

vs

])
=

h∑

i=−h

h∑

j=−h

wsi j

∥∥∥I1
(
xs + i, ys + j

)

−I2
(
xs + i + us, ys + j + vs

)∥∥∥. (2)

Here, the weights wsi j are precomputed based on the
intensity values surrounding pixel s, and the norm ‖·‖ repre-
sents magnitude of difference in an appropriate colour space.
For stereo correspondence, with us = [Δs] being the single
scalar disparity, the equivalent data term is ψwps

s ([Δs]) =
ψ

wpf
s ([Δs, 0]�). The problem with such a data term is that

it implicitly assumes a constant correspondence field in the
(2h+1)× (2h+1) patch surrounding every pixel. For large
h, this over smooths the solution, even with clever choices
of wsi j . The oversmoothing can be addressed by using more
complex parametrizations of the field within the patch (see
ψ

pms
s below), but within traditional BP frameworks, this

comes at intractable computational cost. Alternatively, h may
be reduced, but as h decreases, the data term becomes increas-

ingly ambiguous. This ambiguity is addressed by the intro-
duction of pairwise terms, typically encouraging piecewise
smoothness of the correspondence field, by assigning low
energy to neighbouring nodes with similar parameter vec-
tors, for example ψst (us, ut ) = min(τst , ωst‖us − ut‖2)
for image-derived constants τst , ωst . It is generally under-
stood that the presence of such pairwise term makes energy
minimization difficult. For discrete problems, where the u
live in a finite set of size D, this is clearly true in prin-
ciple: without pairwise terms, minimization can be com-
puted in O(nD) time, while with pairwise terms, the worst-
case complexity becomes O(Dn). In practice, although BP
offers no strong guarantees, it often finds good minimizers
in time far below this worst case prediction. For correspon-
dence problems, however, the u live in an effectively contin-
uous space, so D must be very large (say 102–105), mean-
ing that even the O(nD) complexity of tabulating the unary
costs is extremely high. Some algorithms have been pro-
posed to address this complexity (Ihler and McAllester 2009;
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Noorshams and Wainwright 2011; Pal et al. 2006; Sudderth
et al. 2010), and it is on this class of methods that we improve
in this paper. First, however, let us consider another school
of related work.

The PM algorithm (Barnes et al. 2009) was initially intro-
duced as a computationally efficient way to compute a near-
est neighbour field (NNF) between two images. The NNF
is then used for image editing operations such as denoising,
inpainting, deblurring, as illustrated in Fig. 1. In terms of
energy minimization, the NNF is the global minimizer of
an energy comprising unary terms only (ψst = 0). The PM
algorithm computes good minima while evaluating the unary
term many fewer than D times per node. With such a powerful
optimizer, more complex unary terms can be defined, yield-
ing another class of state-of-the-art correspondence finders,
exemplified by the recent introduction of PM Stereo (Bleyer
et al. 2011). There, disparity is overparametrized by a 3D
vector at each node us = [as, bs, cs]�, parametrizing a pla-
nar disparity surfaceΔs(x, y) = as(x−xs)+bs(y−ys)+cs,

giving a unary cost whose essential form is:

ψ
pms
s ([as, bs, cs]�) =

h∑

i=−h

h∑

j=−h

wsi j

∥∥∥I1
(
xs + i, ys + j

)

−I2
(
xs + i + (asi + bs j + cs), ys + j

)∥∥∥. (3)

Without PM, optimization of an energy containing such a data
term, even without pairwise terms, would be computation-
ally demanding, requiring millions of operations per pixel.
Intriguingly, the key operations to which PM owes its effi-
ciency are very close to those used in continuous BP, and in
particular to the message-passing that is central to optimiza-
tion in the presence of pairwise terms. Conversely, a key defi-
ciency of PM is that it lacks an explicit smoothness control on
the output field. Indeed, recent developments of PatchMatch
have noted that PM “has difficulty finding reliable correspon-
dences in very large smooth regions” (HaCohen et al. 2011).
He et al. (2011) require a smooth field when applying PM to
an alpha matting problem, but impose smoothness as a post-
process, by solving the matting Laplacian. Boltz and Nielsen
(Boltz and Nielsen (2010)) achieve smoothness by dividing
the images into superpixels and running PM on these, mean-
ing that a failure of superpixelization cannot be recovered
from. A related deficiency is the tendency of PatchMatch
to require a form of “early stopping”: the global optimum
of the unary energy is not necessarily the best solution in
terms of image error, as we show in Fig. 1h, and as can be
seen in Fig. 9 of Mansfield et al. (Mansfield et al. (2011)).
These difficulties are exacerbated by more powerful PM algo-
rithms (Barnes et al. 2010; Korman and Avidan 2011) which,
although getting closer to the globally optimal NNF, lose the
implicit smoothness that early stopping provides. We char-
acterize this tradeoff by looking at error versus energy: the

correlation between ground-truth errors (e.g. peak signal-to-
noise ratio (PSNR) for denoising problems, end-point error
(EPE) for 2D correspondence fields, or disparity error for
stereo) and the values of the energy functions the algorithms
implicitly or explicitly minimize.

The contribution of this paper is to define a new family of
algorithms, called PMBP, which combine the best features
of both existing approaches, and which includes the existing
methods as special cases. We first describe both existing algo-
rithms using a unified notation, showing the close relations
between the two (also illustrated as an “algorithm by num-
bers” in Table 1). We then investigate the combination in var-
ious experimental settings, in order to explore the key terms
which contribute to the combined algorithm’s performance.
The paper closes with a discussion of future directions.

Notation To simplify the descriptions below, the following
notation will be helpful. Define the application of a function
f to a set S by f (S) := { f (s)|s ∈ S}. Define the function
fargminK (S, f ) as the function that returns the K elements
of S which minimize f :

fargminK (S, f ) := SK ⊂ S s.t. |SK | = min(K , |S|)
and max f (SK ) ≤ min f (S\SK ) . (4)

1.1 PM with Particles

In this section we describe generalized PM (GPM; Barnes
et al. 2010) in terms that will allow easy unification with
standard descriptions of continuous-domain BP. With each
node s, we associate a set of K particles Ps ⊂ R

d , where
each particle p ∈ Ps is a candidate solution for the mini-
mizing correspondence parameters u∗s . Initializing these sets
uniformly at random gives good performance, which may be
improved slightly by using some more data-driven strategy,
as discussed in Sect. 4.1.

One PM iteration then comprises a linear sweep through
all nodes. The order in which nodes are visited is defined
by a schedule function φ(s), so that s is visited before
s′ if φ(s) < φ(s′). We also define the predecessor set
Φs = {s′|φ(s′) < φ(s)}. On odd-numbered iterations, the
typical choice of scheduling function φ(·) defines a top-
left to bottom-right ordering, while even-numbered iterations
reverse the ordering, from bottom-right to top-left. If i ter is
an iteration counter, we write φi ter (·) to select the appro-
priate schedule. At node s, two update steps are performed:
propagation and resampling:

– In the propagation step, the particle set is updated to
contain the best K particles from the union of the current
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set and the set Cs of already-visited neighbour candidates

Cs =
⋃{

Pt | t ∈ N (s) ∩Φs
}
, (5)

where “best” is defined as minimizing the unary cost
ψs(·) :

Ps ← fargminK (Ps ∪ Cs, ψs) . (6)

– The local resampling step (called “random search” in
Barnes et al. 2010) perturbs the particles locally accord-
ing to a proposal distribution which we model as a
Gaussian N (0, σ ).This mechanism mimics the random
search of the original PM algorithm which uses concen-
tric circles of decreasing radii instead. The second step of
the PM iteration updates Ps with any improved estimates
from the local resampling set, for m resampling steps:

Rs = {p +N (0, σ )|p ∈ Ps} (7)

Ps ← fargminK (Ps ∪ Rs, ψs) . (8)

After several alternating sweeps, the best particle in each
set typically represents a good optimum of the unary-only
energy. At first sight, it may appear surprising that such a
simple algorithm can effectively minimize complex ener-
gies such as

∑
s ψ

pms
s , but as the analysis in Barnes et al.

(2009) shows, the piecewise smoothness in typical image
flow fields1 effectively shares the optimization burden among
neighbouring pixels in the same smooth segment, without any
need to identify those segments in advance.

1.2 Max Product Particle BP (MP-PBP)

As mentioned above, our view of BP is as a minimizer of the
energy (1). Thus we present a rather spartan description of
max-product BP, sufficient to derive our new algorithm. BP
is a message-passing algorithm, where messages are defined
as functions from nodes to their neighbours, so that the mes-
sage Mt→s(us) represents, in words, “node t’s opinion of
the [negative log of the] likelihood that node s has value us”.
Before defining the messages, which are themselves defined
recursively, it is useful to define the log disbelief 2 at node s
as

Bs (us) := ψs (us)+
∑

t∈N (s)

Mt→s(us), (9)

1 Note that “flow field” is intentionally left imprecise here. The key is
that the globally optimum NNF is not smooth, but the approximate NNF
found by PM tends to be, due to the smoothness of the underlying real-
world physical process which generates the image correspondences.
2 This energy-based formulation can be converted to a probabilistic
form using the conversions: belief bs(us) := exp(−Bs(us)) and mes-
sage mt→s(us) = exp(−Mt→s(us)).

in terms of which the messages are defined as

Mt→s(us) :=min
ut
ψst (us, ut )+ Bt (ut )− Ms→t (us), (10)

or, in words: “the belief at t, modified by the pairwise
term, and neglecting s’s contribution to t’s belief”. When
implemented as an iterative algorithm, messages are updated
according to a schedule, like PM, and messages on the
right-hand side of (10) are those of the previous iteration,
or those computed earlier in the current iteration. Mes-
sages are typically initialized to all-zero. At convergence,
ûs := argminu Bs(u) is the estimate of the minimizer.

The key to implementing BP for continuous state vari-
ables u is in the representation chosen for the messages and
beliefs. Isard et al. (2008) propose a solution by discretizing
the space in a way that minimises a Kullback–Leibler diver-
gence measure. Noorshams and Wainwright (2011) work on
large discrete spaces, and use a randomisation step to incre-
mentally and stochastically update partial messages, reduc-
ing the complexity from quadratic to linear. Pal et al.(2006)
also operate on large discrete spaces, and maintain sparse
local marginals by using Kronecker delta functions, keeping
only labels carrying the highest probability mass. Sudderth
et al.(2010) extend particle filters to loopy BP, and use a reg-
ularisation kernel to ensure that message products are well
defined. Particle convex BP (Peng et al. 2011) uses a local
resampling step like MP-PBP, but instead of keeping the K
best particles per node, or drawing from a distribution, it
keeps the one particle which optimizes a discrete MRF with
K candidate particles per node. Very recently, Yamaguchi et
al.(2012) apply it to dense stereo estimation, combining the
plane parameterization from (3) with a discrete line process.
However, to allow tractable inference, they use a superpix-
elization into 1,200 regions, meaning the results are strongly
dependent on an accurate segmentation.

In our case, a natural representation already presents itself,
closely related to the MP-PBP of Kothapa et al.(2011), based
in turn on Ihler and McAllester (2009). As above, we asso-
ciate with each node s a particle set Ps .Then all messages and
beliefs evaluated at any node η are in terms of the particles
Pη, so the message definition becomes

Mt→s(us) := min
ut∈Pt

ψst (us, ut )+Bt (ut )− Ms→t (ut ). (11)

We note that this definition is still in terms of a continuous
us, not restricted to the current particle set Ps, but the con-
tinuous minimization over ut in (10) is replaced by a discrete
minimization over the particles Pt .

The final step of each iteration at node s is to choose a
new set of particles Ps to represent the belief at s. The ideal
set of particles would be a draw (including the mode, as our
goal is to minimize the energy) from the true belief b∗s (·),
which is of course unavailable. As an alternative, Kothapa et
al.(2011) propose MCMC sampling from the current belief
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Table 1 Pseudo-code for different algorithms

Note that whenever Bs is computed, for MP-PBP and PMBP, we have to also recompute the minimizations in the messages Mt→s
PM PatchMatch, MP-PBP max product particle BP, PMBP PatchMatch BP

estimate with a Gaussian proposal distribution. We show that
other alternatives can be valuable.

2 PatchMatch BP

We are now in a position to make the second of our contribu-
tions, combining the PM and MP-PBP algorithms. We shall
consider MP-PBP our base, as the goal is to minimize a more
realistic energy than PM, that is to say, an energy with pair-
wise terms encouraging piecewise smoothness. Referring to
Table 1, two key differences between PM and MP-PBP are
evident.

First, PM resamples Ps from the neighbours of node s,
while MP-PBPs resampling is only via MCMC from the ele-
ments of Ps . As illustrated in Fig. 2, this may be viewed as
sampling from the continuous incoming messages at s, with
the property that important modes of the belief may be uncov-
ered, even when Ps lacks particles at those modes. It should
be clarified that the samples are evaluated using Bs, so this
is a resampling of the particle set under the current belief, as
proposed in MP-PBP, but with a quite different source of par-
ticle proposals. Thus PMBP augments MP-PBP with samples
from the neighbours (or, as argued in Fig. 2, samples from
the incoming messages). This can also viewed as a return
to the sampling strategies of non-parametric BP (Sudderth
et al. 2010), but with a much simpler message representa-

Fig. 2 Message calculation. Green bars represent the set of particles at
s, Ps = (s1, s2, s3) and the red bars represent Pt = (t1, t2, t3). In MP-
PBP (Ihler and McAllester 2009; Kothapa et al. 2011), the continuous
message m∗t→sus is evaluated only at particles in Ps , and minimized
only over Pt , evaluated at the yellow dots. When Ps and Pt differ,
much of the message may be uninformative (represented by the green
particles m Ps

t→s ). If the pairwise potential favours smoothness, including
particles from Pt increases the likelihood that high probability parts of
the message are included (Color figure online)

tion. One way to look at this contribution is simply to say
we are running some form of NBP but with algorithm set-
tings (number of particles, number of samples) that would
never make sense for NBP, and that this in itself is a use-
ful contribution. Note that taking directly particles from the

123



Int J Comput Vis (2014) 110:2–13 7

100 101 102 103 104
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 10
4

Algorithms comparison

time (log scale) 

en
er

gy

PM
PBP uniform init.
PBP local potential init.
PMBP MCMC uniform init.
PMBP local potential init.
PMBP uniform init.

_

Fig. 3 Comparison of the energies produced by the different algo-
rithms on a denoising experiment. Notice that MP-PBP cannot reach
the energy of PMBP even if allowed four orders of magnitude longer,
supporting our claim that previous BP implementations were intractable

neighbouring node only works because our pairwise term is
a smoothing term, i.e. has the lowest value when both entries
are the same. Hence for arbitrary pairwise terms this strategy
has to be modified.

Second, MP-PBP uses an MCMC framework where parti-
cles are replaced in Ps with probability given by the Metropo-
lis acceptance ratio, while PM accepts only particles with
higher belief than those already in Ps . We have found that
this non-Metropolis replacement strategy further accelerates
convergence, so it is included in PMBP.

Making these two modifications yields “PatchMatch BP”,
a powerful new optimization algorithm for energies with pair-
wise smoothness terms. In the case of a zero pairwise term
ψst = 0, PMBP exactly yields GPM. Conversely, running
PMBP with a non-zero pairwise term is a strict generalization
of GPM, allowing the incorporation of an explicit smooth-
ness control which directly addresses the deficiencies of PM
while retaining its speed.

Note that we can also use any external information to
get reasonable candidate particles, such as matching nodes
between image pairs in the stereo matching case, similarly
to Bleyer et al. (2011).

3 Implementation Details

While the algorithm is described in Table 1, there are some
implementation details that are worth describing.

3.1 Caching

First, PMBP and in general all loopy BP algorithms are
defined in a recursive manner. Equations 10 and 11 illustrate

this, as the computation of a message at one node depends
on the messages at other nodes. Therefore, the usual method
is to proceed in an iterative fashion, where the new messages
are computed from the messages calculated in a previous iter-
ation. This implies that the messages need to be stored for
later use. To illustrate this, let us explicitly label messages
and particle sets with the iteration number at which they are
computed. We consider the message from node t to s at itera-
tion k, Mk

t→s .We call Pk
s the particle set at node s at iteration

k. We also call Bk
s the disbelief at node s at iteration k, and

it is computed as follows:

Bk
s (us) := ψs(us) +

∑

t∈N (s)

Mk−1
t→s(us), (12)

which is equivalent to Eq. 9, except that we explicitly indicate
which messages need to be used.

Having introduced these notations, we can now see that
there is a conceptual problem with respect to storing previ-
ously computed messages, as messages are functions of the
receiver state. In a nutshell, this is due to the fact that the
particle set at each node changes continuously due to the
resampling procedure, which invalidates previously stored
messages as they can only be evaluated on the set of parti-
cles that was present at the time they were stored. This can
be easily seen in Eq. 12: the belief needs to evaluate sev-
eral messages at particle position us, which might not have
been part of the previous particle set Pk−1; in other words
the values of the message at us might simply not exist.

To resolve this issue, let us consider how the messages are
computed. We can rewrite Eq. 11 as follows:

Mt→s(us) := min
ut∈Pt

ψst (us, ut )+ mt→s(ut ), (13)

with

mt→s(ut ) = Bt (ut )− Ms→t (ut ). (14)

We call the object mt→s the “pre-message” or “message
foundation” from node t to s. This object has an interest-
ing property: it is a function of the sender node and not of the
receiver. It contains information about t and is expressed
in terms of particles of t. It is converted through Eq. 13
into Mt→s(u)s, i.e., information about s and is expressed
in terms of particles of s.As the pairwise term ψst is known,
our caching strategy can be reduced to caching the message
foundations only. As they are not tied to the particle states of
the receiver, and depend only on the state of the sender, it is
suitable for our framework. In practice, after having updated
the particle set of node t at a given iteration, we compute all
the message foundations outgoing from t and store them for
later use, before continuing to the next node according to the
schedule.
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Fig. 4 A comparison of the results of PM and our algorithm on a pair
of images taken from a video, one of which having been degraded by
adding noise. We run the algorithms for 500 iterations, using 3 × 3
patches and we allow for subpixel translations only. We can see that our
algorithm, using a smooth Gaussian pairwise term, manages to recon-

struct an image having a higher PSNR than the result output by PM.
Furthermore, we once again see that the end iteration of PM yields worse
results than its result at an early iteration (iteration 19), from which the
PSNR starts decreasing
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3.2 Existing Particles Update

Another implementation detail that is important to consider is
the update of the disbelief at the previously existing particles
of a set. When following the schedule and reaching a node s,
the particles of the current set Ps are associated with existing
disbelief values that were computed at the previous iterations.
These values were computed using the messages that existed
at the previous iteration, which might now have changed.
Therefore, the first step that is run when reaching a node
is to recompute the disbelief values for the existing set of
particles, so that they reflect the new changes of the incoming
messages.

3.3 Normalisation

As mentioned in Nowozin and Lampert (2011), using a max-
product formulation creates a numerical instability as large
numbers are formed from accumulation of the messages. This
happens very quickly, as the growth is exponential. To keep
the algorithm stable, a normalisation is performed on the
message foundations whenever they are recomputed, which
consists in shifting the values so that they all sum to zero.
That is, assuming that m̄t→s is the non-normalised message
foundation from t to s, we have:

δ = 1

|Pt |
∑

ut∈Pt

m̄t→s (ut ) , (15)

mt→s (ut ) = m̄t→s (ut )− δ. (16)

Therefore, after having finished caching the message foun-
dations at a node, we run this normalization process to ensure
stability of the algorithm.

4 Experiments

Experiments were performed to quantify the effects of the
various algorithm components, as well as real-world perfor-
mance on a stereo benchmark.

4.1 Initialization

As mentioned above, there are two ways of initializing the
particles: using a uniform distribution, or using the local
potentials, as suggested in Ihler and McAllester (2009). How-
ever, sampling from the local potentials is not an easy task,
as they are defined on a continuous, high dimensional space.
The original PM algorithm, optimizing only the unary energy,
can be used to find an approximation of these local potentials.
A benchmark can be seen in Fig. 3, which shows that PMBP
outperforms MP-PBP, with both types of initializations, and
that convergence is orders of magnitude faster. Furthermore,

we show that resampling using the neighbours is the key
step of our algorithm. To do so, we run PMBP with MCMC
instead of using the PM randomisation mechanism, which
in effect replicates MP-PBP, the only difference now being
the use of the neighbours for resampling, and we see that
although much slower than PMBP, it converges to the same
energy.

4.2 Denoising

Denoising an image is an application where PM is expected
to perform poorly, as it is only optimizing the unary term
and thus will ultimately match the noise which is a behav-
iour observed in Barnes et al. (2010). We use this example
application to illustrate the benefits of being able to optimize
an energy comprising a pairwise term. In this experiment we
aim at reconstructing a noisy target image from a noise-free,
but slightly different, source image. The results can be seen
in Fig. 4. PM reaches its minimum energy after a few itera-
tions (19 in our case) before starting producing worse results.
We can see that final image still seems to contain noise. On
the other hand, PMBP manages to produce a smoother solu-
tion (this is visible on both the reconstructed image and the
displacement field) while reaching a higher PSNR.

We also use this application to show the effect of using
more particles in PMBP. Results on a cropped region of the
Goose example can be found in Fig. 5. We see that, at an early
stage, fewer particles yield a lower energy than using more
particles. After enough processing time more particles yield a
solution with slightly lower energy. However, the differences
in energy between the solutions after 500 s is relatively small.

4.3 Stereo

In the following we demonstrate the benefits of introducing
smoothness for the stereo matching case, and by doing so we
are able to achieve state-of-the art results.

For the data term we use the same energy as in PM Stereo
(Bleyer et al. 2011). The weight wsi j is defined as

wsi j =exp (− ‖ I (xs, ys)− I (xs + i, ys + j) ‖ /ω) . (17)

In this equation ω is a user-defined parameter and ‖ Is− It ‖
is the L1 distance between s and t in RGB space. The image
difference is adapted to include an image gradient term, so
that ‖I1(x, y)− I2(x ′, y′)‖ in (3) is replaced by

(1− α)min
(‖I1(x, y)− I2(x

′, y′)‖, τcol
)

+αmin
(‖∇ I1(x, y)−∇ I2(x

′, y′)‖, τgrad
)
, (18)

where ‖∇ I −∇ I ′‖ is the L1-distance between the grey-level
gradient, and α is a parameter controlling the influence of the
colour and the gradient terms. τcol and τgrad are the truncated
costs used to add robustness.
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Fig. 5 Effect of using more particles. a First 20 s. b Close-up of the energy range 1,480–1,500 for the whole time range (0–500 s)

Table 2 Results on the Middlebury dataset with subpixel threshold (t = 0.5) as of 2012-05-10

Tsukuba Venus Teddy Cones

NOCC All Disc NOCC All Disc NOCC All Disc NOCC All Disc

PM Stereo 15.0 (45) 15.4 (44) 20.3 (56) 1.00 (6) 1.34 (6) 7.75 (9) 5.66 (2) 11.8 (2) 16.5 (2) 3.80 (2) 10.2 (2) 10.2 (2)

Ours 11.9 (27) 12.3 (24) 17.8 (29) 0.85 (5) 1.10 (3) 6.45 (6) 5.60 (1) 12.0 (3) 15.5 (1) 3.48 (1) 8.88 (1) 9.41 (1)

Bold entries indicates where our algorithm is ranked first. Our method has the first rank, with an average rank of 8.5, in contrast to 14.9 for
PatchMatch Stereo

Fig. 6 Qualitative results of PMBP on the Middlebury dataset

The pairwise term captures the deviation between the two
local planes in (x, y, dispari t y) space. Let the plane normal
at node s be ns = orth([as, bs, −1]�), where orth(v) :=
v/‖v‖, and let xs = [xs, ys, cs]� be a point on the plane.
Then the pairwise energy is given by

ψst (us, ut )=βwst
(|ns · (xt − xs) |+|nt · (xs − xt ) |

)
.

(19)

The data-dependent term wst is defined as in Eq. 17 with
i = xt − xs and j = yt − ys . The weight β is a constant

weighting of the pairwise term with respect to the unary term.
Note, for β = 0 we obtain PM Stereo.

The energy ψpms is augmented to symmetrize left and
right views, and we label the left and right images in two
consecutive steps. To be precise, the main loop at line 3 in
Table 1 is first executed for the left view and then for the
right view. Furthermore, as in the PM Stereo algorithm, we
have implemented the concept of “view propagation”. The
idea is that a good particle for a pixel s in the left view, may
be in the particle set Pt of the corresponding (warped) pixel
t in the right view, and vice versa. In terms of code, lines
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Fig. 7 Raw results on the Bowling1 dataset. b is a pairwise weighting coefficient, controlling the amount of smoothness

5–8 in Table 1 are duplicated, with the change that in line 5,
the neighbourhood N (s) is t = (xs + cs, ys). Finally, after
optimizing the energy, there is a post-processing which is the
same left-right consistency check as in Bleyer et al. (2011)
in order to fill-in occluded pixels.

We use the same parameters as Bleyer et al. (2011), which
are {ω, α, τcol , τgrad} = {10, 0.9, 10, 2}, with a larger
patch size of 40 × 40 pixels. The weighting of the pairwise
terms is set to β = 7.5.

We tested our algorithm on stereo pairs of the Middlebury
dataset. We run our PMBP on the full energy and compare
it to PM Stereo with no smoothness cost, i.e. β = 0. In
both cases we use the same number of particles K = 5. The
results are summarized in Table 2 and Fig. 6. We observe that
we are superior to PM Stereo in all cases. For the sub-pixel

accuracy level, we are overall rank 1 of all methods. Note
that we perform particularly well on the challenging datasets
“Teddy” and “Cones”.

Figures 7 and 8 illustrate again the importance of the
smoothness term. As expected, PM Stereo struggles in areas
of low textures (e.g. middle of the bowling ball [top row],
and white pages of the book [bottom row]). By increasing the
weight β of the pairwise term, the output becomes increas-
ingly smoother. Naturally, overshooting occurs after a certain
a point, which can be seen in Figs. 7 and 8 for large values
of β.

A comment on the performance, with our settings and
with five particles PMBP has a 20 % overhead compared to
PM, due to the message computations being more expen-
sive.
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Fig. 8 Raw results on the Baby2 dataset. b is a pairwise weighting coefficient, controlling the amount of smoothness

5 Conclusion

In this work we have made the link between the popular PM
method and the very well-known BP algorithm. By doing
so, we were able to extend the PM algorithm by introducing
additional pairwise terms. We validated experimentally that
we achieve state-of-the art results for stereo matching at sub-
pixel accuracy level.

There are many exciting avenues for future work, both in
terms of applications, such as optical flow, as well as algo-
rithms, such as adapting PMBP to different forms of message
passing e.g. tree-reweighted message passing (Kolmogorov
2006). Another interesting component to add to the algo-
rithm would be a mechanism to ensure a certain amount of

diversity of the particles within each set, as in our current
implementation it is possible to obtain several particles with
the same, or similar states.

Acknowledgements We thank Christoph Rhemann and Michael
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fruitful discussions.
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