Likelihood based Parameter Learning

Sebastian Nowozin
Microsoft Research

ICCV 2015 Tutorial on Graphical Models

(Slides by Christoph Lampert, http://pub.ist.ac.at/™ chl/)

References

» Nowozin and Lampert, “Structured Learning and Prediction in Computer
Vision", 2011

> PDF freely available on author homepages

2/1

References

Advanced Structured Prediction

o
Eatarian

P &
ey iy w4 Chocogh H Lamwent

» Nowozin, Gehler, Jancsary, Lampert (Eds.), “Advanced Structured
Prediction”, MIT Press, 2014.

» Many chapters freely available on the web

3/1

Refresher...
Model of a conditional probability distribution: @ @

_ 1 By

with — E(z,y) =Y Ep(z,yr)
er;: F F @ @

eg. FE(x,y) = Fi(z1,y1) + F12(y1, y2) + Ea(x2,y2) Factor graph

Refresher...

Model of a conditional probability distribution: @ @

—E(z,y)

p(ylr) = %e

with E(z,y) = Z Ep(z,yr) @ @
FeF
eg. E(z,y) = Ei(z1,y1) + E12(y1, y2) + Ea(z2, y2) Factor graph
Probabilistic Inference:
> compute probabilities of some variables/factors, e.g. p(y|x)

Refresher...

Model of a conditional probability distribution: @ @

—E(z,y)

1
plylz) = %e
with E(z,y) = Z Ep(z,yr)
= ()—=—1)
eg. E(z,y) = Ei(z1,y1) + E12(y1, y2) + Ea(z2, y2) Factor graph
Probabilistic Inference:
> compute probabilities of some variables/factors, e.g. p(y|x)

MAP Prediction / Energy Minimization:
» compute argmax, p(y|z), or equivalently argmin, E(x,y)

Refresher...

Model of a conditional probability distribution: @ @

—E(z,y)

1
plylz) = %e
with E(z,y) = Z Ep(z,yr)
= ()—=—1)
eg. E(z,y) = Ei(z1,y1) + E12(y1, y2) + Ea(z2, y2) Factor graph
Probabilistic Inference:
> compute probabilities of some variables/factors, e.g. p(y|x)

MAP Prediction / Energy Minimization:
» compute argmax, p(y|z), or equivalently argmin, E(x,y)

Structured Loss Functions:
> A(y,y): "how bad is predicting § if y is correct?”

Supervised Learning Problem
» Given training examples (z%,y1),..., (N, yN) e & x Y
x € X input, e.g. image
y € Y: structured output, e.g. human pose, sentence

Images: HumanEva dataset

» How to make predictions for new inputs, i.e. learn a function f: X —) ?

1

Supervised Learning Problem
» Given training examples (z%,y1),..., (N, yN) e & x Y
x € X input, e.g. image
y € Y: structured output, e.g. human pose, sentence

» How to make predictions for new inputs, i.e. learn a function f: X —)V ?

Approach 1) Discriminative Probabilistic Learning

1) Use training data to obtain an estimate p(y|x).

2) Use f(z) = argmingey, >, p(y|lz)A(y, §) to make predictions.

Approach 2) Loss-minimizing Parameter Estimation

1) Use training data to learn an energy function E(x,y)

2) Use f(x) := argmin, ¢y, F(z,y) to make predictions.

Conditional Random Fields

max,, p(y|e; w)

Conditional Random Field Learning

Goal: learn a posterior distribution
1
= — _EFE.F Er(yr;z))
p(ylz) 7@)°
with F = { all factors }: all unary, pairwise, potentially higher order, ...

> parameterize each Er(yp;z) = (wp, ¢r(x,yr)).

» fixed feature functions (¢1(21,9),..., 97 /(zF,y)) = ¢(z,y)

> weight vectors (wy,...,wF) = w

Result: log-linear model with parameter vector w

1 _
with Z(z;w) = Z e~ (w:(5,2))
gey

New goal: find best parameter vector w € R”. 1

Maximum Likelihood Parameter Estimation

Idea 1: Maximize likelihood of outputs 3, ... ,y" for inputs z!,... =&
.. N
w* =argmax p(y', ... yN|zt, ... 2N w) i argmax H p(y" ™ w)
weRP weRP 17
log (") -
2V argmin — Z log p(y"|=™; w)
weRP ne1

negative conditional log-likelihood (of D)

Maximum Likelihood Parameter Estimation

Idea 1: Maximize likelihood of outputs 3, ... ,y" for inputs z!,... =&
w* =argmax p(y', ... yN|zt, ... 2N w) i argmax H p(y" ™ w)
weRP weRP ;0
—log(-
oe()argmin — Z log p(y™|x™; w)
weRP —
negative conditional log-likelihood (of D)
N
=argmin — Z [log e~ (W@ V) _log Z(x; w)]
weRP ne1l
= argmin Z w, p(z™,y™)) + log Z e~ (wo(z"y))]
weRP yey

log-partition function

MAP Estimation of w

Idea 2: Treat w as random variable; maximize posterior p(w|D)

MAP Estimation of w

Idea 2: Treat w as random variable; maximize posterior p(w|D)

1,1 N , N N n|)T
B plr,y ...,y |W)p\W) i.i.d. ply"|x™;w
p(wl,D) ayes (5 |)() :p(w)H (|nn)
p(D) oo pyrfem)
p(w): prior belief on w (cannot be estimated from data).
w* = argmax p(w|D) = argmin | — log p(w|D)]
weRP weRP
N
:argmin[log p(w ZIng y"[a"; w) + log p(y"|z")
indep. of w
= argmin[log p(w Zlogp (y"|z=" w)}

weRP

N
w* = argmin [—log p(w) — Z log p(y™|z™; w)]

weRDP ne—1

Choices for p(w):
» p(w) :=const. (uniform; in R not really a distribution)

N
w* = argmin [— Z logp(y™|z™; w) + const.}

weRP n=1

negative conditional log-likelihood
“ A flw? .
» p(w) := const. - e~ 211" (Gaussian)

N
A
w* = argmin [§Hw||2 + g log p(y"|z";w) + const.]
weRP n—1

regularized negative conditional log-likelihood

Probabilistic Models for Structured Prediction - Summary

Negative (Regularized) Conditional Log-Likelihood (of D)

N
A _ n
£(w) = Sl + 3 [{w, 6(a, ™) + log 3 e~ {#C"90)
n=1 yeY
(A — 0 makes it unregularized)

Probabilistic parameter estimation or training means solving

w”* = argmin L(w).
weRP

Same optimization problem as for multi-class logistic regression.

Negative Conditional Log-Likelihood (Toy Example)

%
H o 3
&
1
0
-1
%
%
-2- 4
B
&
4
2 Q,;h
1
0
o1 R
N
»
-2
-3 4

Steepest Descent Minimization — minimize £(w)

input tolerance € > 0
1. Weyr <0
2: repeat
3 v Vi L(weyr)
4. 1< argmin, cg L(Weur — N0)
5 Weyr £ Weur — NV
until |lv|| < e
output w¢,,

S

Alternatives:
> L-BFGS (second-order descent without explicit Hessian)
» Conjugate Gradient

We always need (at least) the gradient of L.

Steepest Descent Minimization — minimize £(w)

negative log likelihood o®* =0.10

Steepest Descent Minimization — minimize £(w)

negative log likelihood o®* =0.10

Wo

Steepest Descent Minimization — minimize £(w)

negative log Iikelihooq,o2 =0.10

Steepest Descent Minimization — minimize £(w)

Steepest Descent Minimization — minimize £(w)

negative log likelihoogho® =0.10

00® ot

Steepest Descent Minimization — minimize £(w)

Steepest Descent Minimization — minimize £(w)

negative log likelihood o®* =0.10

Steepest Descent Minimization — minimize £(w)

negative log likelihood o®* =0.10

A al —{(w,p(x™
L(w) = 5Hw||2 + Z [(w@(m”,y")) + logz e~ {w-o(’y)>]
n=1

yey

—(w,8(@",y)) b(2™

§ e o™,

= \w+ g i n(— y)}
E:ye e—(w,é(z™.9))

—Aw-l-z 2" y") = Y pyla™;w)d(z", y)]

yey

n=1
N
= Z Eyp(ylansw) d(z 79)]

11)

N

AL(w) = Mdpxp + Y EyNP(ylm”;w){ Pz, y)o(a", y)T}

n=1

1

A N §
L(w) = §||w||2 + 3 [(w,d(@",y™) +log Y e~ (Wl)]
n=1

yeY

» continuous (not discrete), C'°-differentiable on all RP.

80
704
60
501
40
304
204
10+
04 L
3 2 4 0 1 2 3 4 5
slice through objective value (w, € [—3, 5], wy, = 0)

16

N
Vuw E(w) = Aw + Z [¢(mn7 yn) - Epr(yla:”;w)Cb(xna y)]
n=1

» For A — 0:

Ey~p(y|w”;w)¢(xn7 y) = ¢)(xn7 yn) = VUVC(w) = Oa

criticial point of L (local minimum/maximum /saddle point).

Interpretation:
» We want the model distribution to match the empirical one:

!
! b
EyNP(ylm;w)¢($ay) = ¢(x,y>)
» E.g. image segmentation
@unary: Correct amount of foreground vs. background
Opairwise: correct amount of fg/bg transitions — smoothness

N
AL(w) = Ndpxp + Y Eywmyw;w){ P(z", y)p(z", y)T}

n=1

> positive definite Hessian matrix — L(w) is convex
— VwL(w) = 0 implies global minimum.

804
70
604
504
40
30
20
101
o

: : ; : : . .
-3 -2 -1 0 1 2 3 4 5

slice through objective value (w, € [—3, 5], w, = 0)

Milestone I: Probabilistic Training (Conditional Random Fields)

» p(y|r;w) log-linear in w € RP.
» Training: minimize negative conditional log-likelihood, £(w)

> L(w) is differentiable and convex,
— gradient descent will find global optimum with V,,L(w) =0

> Same structure as multi-class logistic regression.

1

Milestone I: Probabilistic Training (Conditional Random Fields)

» p(y|r;w) log-linear in w € RP.
» Training: minimize negative conditional log-likelihood, £(w)

> L(w) is differentiable and convex,
— gradient descent will find global optimum with V,,L(w) =0

> Same structure as multi-class logistic regression.

For logistic regression: this is where the textbook ends. We're done.

For conditional random fields: we're not in safe waters, yet!

19/1

Solving the Training Optimization Problem Numerically

Task: Compute v = V,, L(weyr), evaluate L(we,r + nv):

A N §
L(w) = §Hw||2 + Z [(w, $(a™,y™) +1log S (w9

yey

Vi £

1\3\>/

N
Z y") = > plyla™;w)é(z", y)]

yey

Problem:) typically is very (exponentially) large:

» binary image segmentation: |)| = 2040%480 ~ 1092475

» ranking N images: |J| = N!, e.g. N = 1000: || ~ 102568,

We must use the structure in)/, or we're lost.

Solving the Training Optimization Problem Numerically

N

V = \w + Z ywp(y|ac” w)(ﬁ(/)]

Computing the Gradient (naive): O(K™ N D)

£w) = Sl + Z w,¢(z",y")) + log Z(a"; w)]
Line Search (naive): O(KM N D) per evaluation of £

N: number of samples

D: dimension of feature space

M: number of output variables

K: number of possible labels of each output variables

vVvYyyey

Solving the Training Optimization Problem Numerically

N

Vi L(w) = Xw + Z = Eypiylonin) #(2", 9)]

Computing the Gradient (naive): O(K N D)

£w) = Sl + Z w,§(a",y")) + log Z(a";w)]
Line Search (naive): O(K* ND) per evaluation of £

N: number of samples

D: dimension of feature space

M: number of output variables =~ 10s to 1,000,000s

K: number of possible labels of each output variables &~ 2 to 1000s

vVvYyyey

Solving the Training Optimization Problem Numerically

In a graphical model with factors F, the features decompose:

o(w,y) = (6r(z.yr))

FeF

]EyNP(y|$§w)¢(x’ y) = (Eywp(y\w;w)QSF (ZE, yF))

= (EyFNP(yFlﬂi;w)d)F(x? yF))Fe]:

FeF

Eyemp(yrlz)0F(@yr) = > plyrlziw) ép(z,yr)
YyrEYVF fact inal
N , factor marginals
K'F! terms
Factor marginals pur = p(yr|z; w)
> are much smaller than complete joint distribution p(y|z;w),
> compute/approximate them by probabilistic inference. .

Solving the Training Optimization Problem Numerically

N
Vw E(w) = Aw + Z [¢(mn7 yn) - Epr(yla:";w)Cb(xna y)]
n=1
Computing the Gradient: OTESXD), O(M K eI N D):

N
A
L(w) = §||w||2 + 37 [w, ¢z, y™) +log Y e~ (@l
n=1

yey

Line Search: OB, O(M K |Fne:I N D) per evaluation of £

N: number of samples

D: dimension of feature space

M: number of output variables

K: number of possible labels of each output variables

vVvyyy

Solving the Training Optimization Problem Numerically

N
Vw E(w) = Aw + Z [¢(mn7 yn) - Epr(yla:";w)Cb(xna y)]
n=1
Computing the Gradient: M O(M K!FneI N D).

N
A
L(w) = §||w||2 + 37 [w, ¢z, y™) +log Y e~ (@l
n=1

yey

Line Search: OB, O(M K |FnesI N D) per evaluation of £

N: number of samples =~ 10s to 1,000,000s

D: dimension of feature space

M: number of output variables

K: number of possible labels of each output variables

vVvyyy

Solving the Training Optimization Problem Numerically

What, if the training set D is too large (e.g. millions of examples)?

Stochastic Gradient Descent (SGD)

» Minimize L£(w), but without ever computing £(w) or V.L(w) exactly
» |n each gradient descent step:

» Pick random subset D’ C D, < often just 1-3 elements!
> Follow approximate gradient

?‘C(= \w + ‘lD‘|Z |:¢(11n7 yn) - Ey~p(y\z";w)¢(xn7 y)]

(zm,yn)ED’

more: see L. Bottou, O. Bousquet: " The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale 24/1

http://leon.bottou.org/research/largescale

Solving the Training Optimization Problem Numerically

What, if the training set D is too large (e.g. millions of examples)?

Stochastic Gradient Descent (SGD)

» Minimize L£(w), but without ever computing £(w) or V.L(w) exactly
» |n each gradient descent step:

» Pick random subset D’ C D, < often just 1-3 elements!
> Follow approximate gradient

?‘C(= \w “F ‘lv‘lz |:¢('1:n7 yn) - Ey~p(y\z";w)¢(xn7 y)]

(zm,yn)ED’

> Avoid line search by using fixed stepsize rule n (new parameter)

more: see L. Bottou, O. Bousquet: " The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale 24/1

http://leon.bottou.org/research/largescale

Solving the Training Optimization Problem Numerically

What, if the training set D is too large (e.g. millions of examples)?

Stochastic Gradient Descent (SGD)

» Minimize L£(w), but without ever computing £(w) or V.L(w) exactly
» |n each gradient descent step:

» Pick random subset D’ C D, < often just 1-3 elements!
> Follow approximate gradient

?‘C(= \w “F ‘lv‘lz |:¢('1:n7 yn) - Ey~p(y\z";w)¢(xn7 y)]

(zm,yn)ED’

> Avoid line search by using fixed stepsize rule n (new parameter)
» SGD converges to argmin, £(w)! (if n chosen right)

more: see L. Bottou, O. Bousquet: " The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale 24/1

http://leon.bottou.org/research/largescale

Solving the Training Optimization Problem Numerically

What, if the training set D is too large (e.g. millions of examples)?

Stochastic Gradient Descent (SGD)

» Minimize L£(w), but without ever computing £(w) or V.L(w) exactly
» |n each gradient descent step:

» Pick random subset D’ C D, < often just 1-3 elements!
> Follow approximate gradient

?‘C(= \w “F ‘lv‘lz |:¢('1:n7 yn) - Ey~p(y\z";w)¢(xn7 y)]

(zm,yn)ED’

v

Avoid line search by using fixed stepsize rule n (new parameter)
SGD converges to argmin,, L(w)! (if n chosen right)
SGD needs more iterations, but each one is much faster

vy

more: see L. Bottou, O. Bousquet: " The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale 24/1

http://leon.bottou.org/research/largescale

Solving the Training Optimization Problem Numerically

Vi L = \w+ Z y~p(y|x",w)¢()]

Computing the Gradient: O , O(MK?ND) (if BP is possible):

A S —{w,p(x™
L(w) = §||w||2 + 37 [(w, ¢z, y™)) +1log 3 e (Wl)]
n=1

yeY

Line Search: M O(MK?ND) per evaluation of £

N: number of samples

D: dimension of feature space: ~ ¢; ; 1-10s, ¢;: 10s to 10000s
M: number of output variables

K: number of possible labels of each output variables

vVvyyypy

Solving the Training Optimization Problem Numerically

Typical feature functions in image segmentation:

> ¢ (yi, x) € R¥1000: Jocal image features, e.g. bag-of-words
= {w;, di(yi, x)): local classifier (like logistic-regression)

> ¢i;(Yi,y;) = [yi = y;] € R': test for same label
— (wij, ¢i;(¥i,y;)): penalizer for label changes (if w;; > 0)

» combined: argmax, p(y|z) is smoothed version of local cues

original local confidence local + smoothness

Solving the Training Optimization Problem Numerically
Typical feature functions in pose estimation:

> ¢ (yi, x) € R¥1000: |ocal image representation, e.g. HoG
= (w;, i(yi, x)): local confidence map

> ¢i;(yi,y;) = good_fit(y;,y;) € R': test for geometric fit
— (wij, ¢i;(ys,y;)): penalizer for unrealistic poses

> together: argmax, p(y|z) is sanitized version of local cues

original local confidence local + geometry

[V. Ferrari, M. Marin-Jimenez, A. Zisserman: " Progressive Search Space Reduction for Human Pose Estimation”, CVPR 2008.]

Solving the Training Optimization Problem Numerically

Idea: split learning of unary potentials into two parts:
» local classifiers,
> their importance.

Two-Stage Training

» pre-train fY(z) = logp(yi|x)

> use ¢ (yi, z) := fY(x) € RX (low-dimensional)
> keep ¢;;(yi,y;) are before

» perform CRF learning with ¢; and bij

Solving the Training Optimization Problem Numerically

Idea: split learning of unary potentials into two parts:
» local classifiers,
> their importance.

Two-Stage Training

» pre-train fY(z) = logp(yi|x)

> use ¢ (yi, z) := fY(x) € RX (low-dimensional)
> keep ¢;;(yi,y;) are before

» perform CRF learning with ¢; and @ij

Advantage:
> lower dimensional feature space during inference — faster

» fY(x) can be any classifiers, e.g. non-linear SVMs, deep network,. . .

Disadvantage:
» if local classifiers are bad, CRF training cannot fix that.

28/1

Solving the Training Optimization Problem Numerically

Vi L(w) = Mw + Z Eynp(ylanuw) (2",)]

Computing the Gradient: O(KM N D), (if BP is possible: O(MK?N D))

A S —{(w,p(x™
L(w) = §|Iw||2 + 37 [w, ¢z, y™) +log Y e~ (@l w)]
n=1

yey
Line Search: O(KM N D) (if BP is possible: O(M K2N D))

N: number of samples

D: dimension of feature space: ~ ¢; ; 1-10s, ¢;: 10s to 10000s
M: number of output variables

K: number of possible labels of each output variables

vvyyvyy

Training with Approximate Likelihood

Problem: what if probabilistic inference is still too expensive?

Idea: optimize a simpler quantity instead of £

Training with Approximate Likelihood

Problem: what if probabilistic inference is still too expensive?

Idea: optimize a simpler quantity instead of £

Pseudolikelihood gesag, 1967

p(ylz) ~ Hp Yilyv\ (i})

=) —
= [pwilyne) '
@O

ti

Training with Approximate Likelihood — Pseudolikelihood (PL)

plz) = peL(ylz) = [[pwilyn, 5 0)
2%

For training data {(z!,y'),..., (2™, y™)}:
N
Lpr(w) =log [] peu(y"|2"; w)

n=1

N
= Z > log p(u} YRy @)
n=1:e€V
N
ZZ[“’ By a™)) —log 3 el i Rl 27)
n=14eV

keY;

Training with Approximate Likelihood — Pseudolikelihood (PL)

plz) = peL(ylz) = [[pwilyn, 5 0)
2%

For training data {(z!,y'),..., (2™, y™)}:
N
Lpr(w) =log [] pecy"|e™;w)

n=1

N
= Z > log p(u} YRy @)
n=1i€V
N
ZZ[“’ Sy am) —log 3 e iy Rl i)
n=14ieV

ke);

Partition functions sum only over one variable at a time — tractable

Efficient Training by Pseudolikelihood Subsampling

1M pixels

> (Nowozin et al., ICCV 2011), pseudolikelihood subsampling
» Decouples training complexity from instance count NV

Efficient Training by Pseudolikelihood Subsampling

. [] [] I -
A 1M pixels

> (Nowozin et al., ICCV 2011), pseudolikelihood subsampling
» Decouples training complexity from instance count NV

Training with Approximate Likelihood

Problem: what if probabilistic inference is still too expensive?

Idea: optimize a simpler quantity instead of £

Training with Approximate Likelihood

Problem: what if probabilistic inference is still too expensive?

Idea: optimize a simpler quantity instead of £

Piecewise Training isuon. mecaum, 200

®
O

1 —(wrérre)

pr(yr|z) = m @

()
p(ylz) ~ FI;LPF yr|z) for +_>
()

M@M
®

¥
©

O &-0O

Training with Approximate Likelihood — Piecewise Training (PW)

p(ylz) ~] pr(yrlz;wr) for pr(yrle) oc e= (e orre)
FEer

For training data {(z!,y'),..., (=™, y™)}:

N

N
Lpw (w) =log [| pew(yla";w) = Z > " logpr(yplz)
n=1FcF

n=1

N
= Z [(wF,ch(y?,x"» —log Z 6<wF1¢F(fJF,In)>:|

n=1FeF YrEYF

Training with Approximate Likelihood — Piecewise Training (PW)

p(ylz) ~] pr(yrlz;wr) for pr(yrle) oc e= (e orre)
FEer

For training data {(z!,y'),..., (=™, y™)}:

N N
Lpw (w) =log [| pew(yla";w) = Z > " logpr(yplz)
n=1FecF

n=1

N
= Z Z [(wF,ch(yl’é,x"» —log Z 6<wp,¢F(gF’xn)>}
n=1FeF

JrEYF

Partition functions sum over |F'| variables at a time — usually tractable

Optimization decomposes into a sum over the wrp — easy to parallelize

Training with Approximate Likelihood — Piecewise Training (PW)

p(ylz) ~] pr(yrlz;wr) for pr(yrle) oc e= (e orre)
FEer

For training data {(z!,y'),..., (=™, y™)}:

N N
Lpw (w) =log [| pew(yla";w) = Z > " logpr(yplz)
n=1FecF

n=1

N
- Z Z [<“’F’¢F(y?,$n)> —log Z 6<wF7¢F(fJF,In)>:|

FeFn=1 YrEYVF

Partition functions sum over |F| variables at a time — usually tractable

Optimization decomposes into a sum over the wr — easy to parallelize

Solving the Training Optimization Problem Numerically

CRF training methods is based on gradient-descent optimization.
The faster we can do it, the better (more realistic) models we can use:

N

Y £w) = X~ [35 6" ") —-¢<x",y)] €RP

A lot of research on accelerating CRF training:

problem | "solution” | method(s)
- exploit structure (loopy) belief propagation
fast sampling contrastive divergence

use approximate £ | pseudo-likelihood, piecewise

N too large mini-batches stochastic gradient descent

- pretrained Gunary two-stage training

35/1

CRFs with Latent Variables

So far, training was fully supervised, all variables were observed.
In real life, some variables can be unobserved even during training.

missing labels in training data latent variables, e.g. part location

latent variables, e.g. part occlusion latent variables, e.g. viewpoint

36/1

CRFs with Latent Variables

Three types of variables in graphical model:
> z € X always observed (input),
> y € Y observed only in training (output),
> z € Z never observed (latent).

Example:

> x:image
> g : part positions

> z€{0,1}: flag
front-view or side-view

images: [Felzenszwalb et al., "Object Detection with Discriminatively Trained Part Based Models", T-PAMI, 2010]

CRFs with Latent Variables

Marginalization over Latent Variables
Construct conditional likelihood as usual:

1

67<w:¢(z’yaz)>
Z(x;w)

Py, zlz; w) =
Derive p(y|x;w) by marginalizing over z:

(ylasw) = ply, z|a;w)
ZEZ

3 emtwdtew)
—_— (&
(fﬂ; w) =

1

Negative regularized conditional log-likelihood:

N

>\ n n
L(w) = Zllw]® + > logp(y"|a"; w)
n=1
= *Ilwllz + ZlogZp y", 2|z w)
zEZ
= 7||w||2 + Z log Z e~ (w:o(="y",2))
zeZ

_ Z log 3 e~ (w0(a"0:2)

n=1 z€EZ
yey

» L is not convex in w — local minima possible

How to best train CRFs with latent variables is active research.

39/1

Summary — CRF Learning

» Given: training set {(z',y'),..., (N, yM)}c A x Y

» Choose: feature functions ¢ : X x) — RP
that decompose over factors, ¢p : X x Yp — R? for F € F

Energy is linear in parameter vector w = (wp)per

E(yvm;w) = <w’ ¢($7y)> = Z <wF7 ¢F(yF,$)>

FeF

Overall model is log-linear: p(ylz; w) oc e (Wo@w)

40/1

Summary — CRF Learning

» Given: training set {(z',y'),..., (N, yM)}c A x Y

» Choose: feature functions ¢ : X x) — RP
that decompose over factors, ¢p : X x Yp — R? for F € F

Energy is linear in parameter vector w = (wp)per
E(y7 xz; U}) = <’LU, ¢($7 y)> = Z <wF7 ¢F(yF7 (E)>
FeF

Overall model is log-linear: p(ylz; w) oc e (Wo@w)

CREF training requires minimizing negative conditional log-likelihood:

N
w* = argmin %Hw”2 + Z [(w, ("™, y")) — log Z e—(w,¢(r”,y)>]
w n=1 yey
> convex optimization problem — (stochastic) gradient descent works
» training needs repeated runs of probabilistic inference

> latent variables are possible, but make training non-convex 0/1

Structured Support Vector Machines

miny E, Ay, f(z))

Supervised Learning Problem

» Training examples (z,y'),...,(@N,yM) € X x Y
» Loss function A: Y x)Y — R.
» How to make predictions g: X —) 7

Approach 2) Loss-minimizing Parameter Estimation

1) Use training data to learn an energy function E(z,y)

2) Use f(x) := argmin, ¢y, F(z,y) to make predictions.

Slight variation (for historic reasons):
1) Learn a compatibility function g(z,y) (think: "g = —E")
2) Use f(x) := argmax, v, g(,y) to make predictions.

Loss-Minimizing Parameter Learning

» D= {(zYy'),..., (&N, yV)} iid. training set
> ¢: X x) — RP be a feature function.
» A:Y x Y — R be a loss function.

» Find a weight vector w* that minimizes the expected loss

E(m,y)A(y7 f(l‘))

for f(z) = argmax, oy, (w, ¢(z,y)).

Loss-Minimizing Parameter Learning

» D= {(zYy'),..., (&N, yV)} iid. training set
> ¢: X x) — RP be a feature function.
» A:Y x Y — R be a loss function.

» Find a weight vector w* that minimizes the expected loss

for f(z) = argmax, oy, (w, ¢(z,y)).

Advantage:
» We directly optimize for the quantity of interest: expected loss.
» No expensive-to-compute partition function Z will show up.
Disadvantage:
» We need to know the loss function already at training time.
» We can't use probabilistic reasoning to find w*.

Reminder: Regularized Risk Minimization

Task: for f(x) = argmax,cy, (w,d(z,y))

min]E(w,y)A(y, f(x))

weRP

Two major problems:

» data distribution is unknown — we can’t compute E

» f: X —) has output in a discrete space
— f is piecewise constant w.r.t. w
— A(gy, f(x)) is discontinuous, piecewise constant w.r.t w

we can't apply gradient-based optimization

1

Reminder: Regularized Risk Minimization

Task: for f(x) = argmax,cy, (w,d(z,y))

weRP

Problem 1:
» data distribution is unknown

Solution:
» Replace]E(w)y)wd($7y)(:) with empirical estimate % Z(wn7yn) (.)

» To avoid overfitting: add a regularizer, e.g. 3|lw|?.

New task:

A 1
. 2 n n
iy, P+ 5 X AG" G

Reminder: Regularized Risk Minimization

Task: for f(x) = argmax,cy, (w,d(z,y))
A 1
. 2 n n
min Sl +N;A(y ™))

Problem:

» A(y", f(2")) = A(y, argmax, (w, ¢(z,y))) discontinuous w.r.t. w.
Solution:

> Replace A(y,y’) with well behaved ¢(z,y, w)

> Typically: £ upper bound to A, continuous and convex w.r.t. w.

New task:

: 2 § :
m _ + — g ’
w€]ng HU/” y w

Reminder: Regularized Risk Minimization

N
' Ml + Z w)
min —
iy, 5 2 nyt

Regularization + Loss on training data

Reminder: Regularized Risk Minimization

: A 2 1 n ,n
min Sl + 5 D>ty w)

Regularization + Loss on training data

Hinge loss: maximum margin training
Ua"y" w) = max [A(y",y) + (w, 6(e",y)) — (w, é(z",y"))]

Reminder: Regularized Risk Minimization

A 1 &
. 2 n .n
min Fhle)

weRP

Regularization + Loss on training data
Hinge loss: maximum margin training

fa",y", w) := max [A", y) + (w, ¢(z",y)) — (w, d(z", y™)) |

» ¢ is maximum over linear functions — continuous, convex.

» /(is an upper bound to A: "small £ = small A"

Reminder: Regularized Risk Minimization

A
min — Lz , W)
’LUG]RD 2 || Z 7 y
Regularization + Loss on training data

Hinge loss: maximum margin training

é(:rnv yn’w) = r;leaj)]([A(ynay) + <’LU, ¢(xn7y)> - <’LU, ¢($n7yn)>]

Alternative:

Logistic loss

e(ay w IOgZeXp w, ¢()> - <w7¢(xn7yn)>)

yey

Differentiable, convex, not an upper bound to A(y,y’).

Structured Output Support Vector Machine
A 1 &
i i 2 _ E n n - n ,n
rrgn 2“11_)” + anlr,;lEa)}}([A(y ,y)+(w,¢(x 7y)> (w,gb(x 'Y)>i|

Conditional Random Field

N
min Bl 3 tog 3 exp((667,40 — (v, 0667, 47)

yey

= —(w,¢(z™,ym))+log 3>, exp({w,é(z™,y))) = cond.log.likelihood

CRFs and SSVMs have more in common than usually assumed.
» log), exp(:) can be interpreted as a soft-max (differentiable)

» SSVM training takes loss function into account
» CREF is trained without specific loss, but loss enters at prediction time

Example: Multiclass Support Vector Machine

1 fory#y
> Y= {12 K] Ay = {0 oy

> (@) = (Iy = 116(@), [y =20, .., [y = K]o(x))

Solve:

N
min G+ S mas A7)+ (000 0) ~ .07)

Classification: f(z) = argmax, ¢y, (w, ¢(z,9)).

Crammer-Singer Multiclass SVM

[K. Crammer, Y. Singer: "On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines”, JMLR, 2001]

Example: Multiclass Support Vector Machine

1 fory#y
> Y= {12 K] Ay = {0 oy

> (@) = (Iy = 116(@), [y =20, .., [y = K]o(x))

Solve:

N
min G+ Smas (2070 + 0,006 0) — .06a" 1)

_Jo fory = y™
T (w, p@™) = (w, d(e™ y™)) fory # Y™

Classification: f(z) = argmax, ¢y, (w, ¢(z,9)).

Crammer-Singer Multiclass SVM

[K. Crammer, Y. Singer: "On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines”, JMLR, 2001]

Solving S-SVM Training Numerically

2

min 2 u? + Z[maxAy W)+ (w,6(",y) — (w, 6", y"))]

10/1

Solving S-SVM Training Numerically

We can solve SSVM training like CRF training:

vV V. v Vv

2

min 2 u? + Z[maxAy W)+ (w,6(",y) — (w, 6", y"))]

continuous ©
unconstrained ©
convex ©

non-differentiable ®
— we can't use gradient descent directly.
— we'll have to use subgradients

Solving S-SVM Training Numerically — Subgradient Method

Definition
Let f: RP — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

fw) > f(wo) + (v,w —wp) for all w.

Solving S-SVM Training Numerically — Subgradient Method

Definition
Let f: RP — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

fw) > f(wo) + (v,w —wp) for all w.

Solving S-SVM Training Numerically — Subgradient Method

Definition
Let f: RP — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

fw) > f(wo) + (v,w —wp) for all w.

Solving S-SVM Training Numerically — Subgradient Method

Definition
Let f: RP — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

fw) > f(wo) + (v, w —wp) for all w.

For differentiable f, the gradient v = V f(wy) is the only subgradient.

Subgradient Method Minimization — minimize F'(w) (st 109

> require: tolerance € > 0, stepsizes 7,
> Weyr < 0
> repeat

» v E VP Fwea)
> Weur <= Weur — MtV

» until F' changed less than ¢

> return we,,

Subgradient method looks very similar to gradient descent:
> iterative update in opposite direction of (sub)gradients
» converges to global minimum for convex F',

Caveats for non-differentiable F:
> only possible for convex functions (unlike gradient descent)
> not a descent method: the objective can go up in some steps

Subgradient method

1_

Subgradient method

1_

Subgradient method

1_

14/1

Subgradient method

-3 -2 -1 0 1 2 3 4 5

All points along subgradient have larger objective than starting point! s

Subgradient method

-3 -2 -1 0 1 2 3 4 5

All points along subgradient have larger objective than starting point! s

Subgradient method

-3 -2 -1 0 1 2 3 4 5

Why does it work anyway? Distance to optimum decreases in every step! s

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
n}li)n §||w||2 + N ;en(w)

with £ (w) = max,, £} (w), and

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
n}li)n §||w||2 + N ;en(w)

with £ (w) = max,, £} (w), and

=

For each y € ¥, £}(w) is a linear function of w.

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
n}li)n §||w||2 + N ;en(w)

with £ (w) = max,, £} (w), and

For each y € ¥, £}(w) is a linear function of w.

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
n}li)n §||w||2 + N ;en(w)

with £ (w) = max,, £} (w), and

w

/ / !

For each y € ¥, £}(w) is a linear function of w.

1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
n}li)n §||w||2 + N ;en(w)

with £ (w) = max,, £} (w), and

max over finite)): piece-wise linear

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1

- 2

i §||w|| + N;”(w)
with £ (w) = max,, £} (w), and

Wog/ /
Subgradient of £™ at wy:

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
n}li)n §||w||2 + N ;en(w)

with £ (w) = max,, £} (w), and

Wo”/ / ‘
Subgradient of ¢™ at wyp: find maximal (active) y.

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
n}li)n §||w||2 + N ;en(w)

with £ (w) = max,, £} (w), and

g

Wo / / /
Subgradient of ¢ at wy: find maximal (active) y, use v = V£ (wo).

15/1

Solving S-SVM Training Numerically — Subgradient Method

Computing a subgradient:

A 1 &
n}li)n §||w||2 + N ;en(w)

with £ (w) = max,, £} (w), and

/W 0 / ,r/

Not necessarily unique, but v = V/}(wg) works for any maximal y

15

Subgradient Method S-SVM Training

input training pairs {(z',y'),..., (2", y")} C X x),
input feature map ¢(x,y), loss function A(y,y’), regularizer A,
input number of iterations 7', stepsizes n; fort =1,...,T

1. w < 6

2: for t=1,...,T do
3;: fori=1,...,n do
4 § ¢ argmax, .y, A(y",y) + (w,d(z",y)) — (w, oz, y"))
5 o = ¢z, g) — ¢(z", y")

6: end for

7 wew—n(dw— %>, ")

8: end for

output prediction function f(z) = argmax,cy,(w, ¢(z,y)).

Obs: each update of w needs N argmax-prediction (one per example).
Obs: computing the argmax is (loss augmented) energy minimization

16/1

Example: Image Segmenatation

> X images,) = { binary segmentation masks }.
P

> Training example(s): (z",y") =

> AW§) =X [y # 5] (Hamming loss)

Example: Image Segmenatation

> X images,) = { binary segmentation masks }.
> Training example(s): (z",y") =

> Ay, y) =>_,[yp # Yp] (Hamming loss)
t=1. w=0,

= argmas | (,6(",9) + A") |

“=% argmax A(y",y) = "the opposite of 3"
y

Example: Image Segmenatation

> X images,) = { binary segmentation masks }.
Py o A
» Training example(s): (z",y") = | &)

> AW§) =X, [up # 5] (Hamming loss)

t=1: :Ij = ¢(y™) — #(9): black +, white 4, green —, blue —, gray —

Example: Image Segmenatation

> X images,) = { binary segmentation masks }.

e
7 n N .
¢(y™) — #(9): black +, white 4, green —, blue —, gray —

> Training example(s): (z",y") =

> Ay,5) = 5 [up £5,] (Hamming loss)

¢(y™) — #(y): black 4, white 4, green =, blue =, gray —

Example: Image Segmenatation

> X images,) = { binary segmentation masks }.

AT n X .
¢(y™) — #(9): black +, white 4, green —, blue —, gray —

> Training example(s): (z",y") =

> Ay,5) = 5 [up £5,] (Hamming loss)

~
I

=

NS
I

¢(y™) — #(y): black 4, white 4, green =, blue =, gray —

~
I

N

<>
I

d(y™) — ¢(y): black =, white =, green —, blue —, gray —

~
Il

i

<>
I

Example: Image Segmenatation

> X images,) = { binary segmentation masks }.

?(y™) — ¢(9): black +, white +, green —, blue —, gray —

> Training example(s): (z",y") =

> AW§) =X, [up # 5] (Hamming loss)

~
I
=

NS

~
I

N

<>

¢(y™) — #(y): black 4, white 4, green =, blue =, gray —

~
Il

i

<>

d(y™) — ¢(y): black =, white =, green —, blue —, gray —

~
Il

=

<>

d(y™) — ¢(y): black =, white =, green —, blue =, gray =

Example: Image Segmenatation

> X images,) = { binary segmentation masks }.

?(y™) — ¢(9): black +, white +, green —, blue —, gray —

> Training example(s): (z",y") =

> AW§) =X, [up # 5] (Hamming loss)

~
I
=

NS

~
I
N

<>

¢(y™) — #(y): black 4, white 4, green =, blue =, gray —

~
Il

i

<>

d(y™) — ¢(y): black =, white =, green —, blue —, gray —

~
Il
=

<>

d(y™) — ¢(y): black =, white =, green —, blue =, gray =

d(y™) — ¢(g): black =, white =, green =, blue =, gray =

~
Il
o

<

t =6,...: no more changes. 17/1

Solving S-SVM Training Numerically — Subgradient Method

Stochastic Subgradient Method S-SVM Training

input training pairs {(z%,y'),..., (2", y")} C X x),
input feature map ¢(z,y), loss function A(y,y’), regularizer X,
input number of iterations T', stepsizes n; fort =1,...,T
1w+ 0
2: for t=1,...,T do
3 (z™,y™) < randomly chosen training example pair
4§« argmax,cy AY",y) + (w, ¢(2",y)) — (w, (2", y"))
5w w—n(dw — go(a", g) — ¢a”,y™)])
6: end for

output prediction function f(z) = argmax, cy,(w, #(z,y)).

Observation: each update of w needs only 1 argmax-prediction
(but we'll need many iterations until convergence)

Solving S-SVM Training Numerically

Structured Support Vector Machine:

R N ' "
min 5 w Nn_lrynea))}i[(" y) + (w,0(z",y)) — (w, o(z",y)>)}

Subgradient method converges slowly. Can we do better? ‘

19/1

Solving S-SVM Training Numerically

Structured Support Vector Machine:

min Al + 5 3 ma (A" y) + (.66 y) - (w,66"y™)]
2 N = yeY ’ ’ ’ ’ ’

Subgradient method converges slowly. Can we do better? ‘

We can use inequalities and slack variables to reformulate the optimization.

19/1

Solving S-SVM Training Numerically

Structured SVM (equivalent formulation):

Idea: slack variables

. - 2 n
min IIwH Zf

)

subject to, forn=1,...,N,

max [A@",y) + (w, o(c",y) = (w,o(a",y™)| <€

yeY

Note: £ > 0 automatic, because left hand side is non-negative.

’ Differentiable objective, convex, N non-linear contraints,

Solving S-SVM Training Numerically

Structured SVM (also equivalent formulation):

Idea: expand max term into individual constraints

)

A 1 &
: 2 n
min S| +N;§
subject to, forn=1,... N,

forally e Y

’ Differentiable objective, convex, N|)| linear constraints

Solving S-SVM Training Numerically

Solve an S-SVM like a linear Support Vector Machine:

A 1 &
: - 2 il n
weRIgl,?eRn 2Hw|| + N;g

subject to, fori =1,...n,

<w7¢(xn’yn)>7<w’¢(xn’y)> 2> A(ynay) - gn’ for all ye y

Introduce feature vectors o (z™, y™, y) := d(z™, y™) — d(z", y).

Solving S-SVM Training Numerically

Solve
N
A 9 1
min = ||w||* + — "
et Sl + 53 e
subject to, fori=1,...n,forally ey,

(w,do(z", y",y)) = Aly",y) — &
Same structure as an ordinary SVM!

» quadratic objective ©
» linear constraints ®

Solving S-SVM Training Numerically

Solve
N
. A 9 1 "
min —||w -
et Bl + 30
subject to, fori=1,...n,forally ey,

(w,do(z", y",y)) = Aly",y) — &
Same structure as an ordinary SVM!

» quadratic objective ©
» linear constraints ®

Question: Can we use an ordinary SVM/QP solver?

Solving S-SVM Training Numerically

Solve
D T | .
w3 gl 4 2L

(w,do(z", y",y)) = Aly",y) — &
Same structure as an ordinary SVM!

> quadratic objective ®
> linear constraints ©

Question: Can we use an ordinary SVM/QP solver?

Answer: Almost! We could, if there weren't _

» E.g. 100 binary 16 x 16 images: 107 constraints

Solving S-SVM Training Numerically — Working Set

Solution: working set training
> It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically — Working Set

Solution: working set training
> It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically — Working Set

> Start with working set S =((no contraints)
» Repeat until convergence:

> Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set

> if no: we found the optimal solution, terminate.
> if yes: add most violated constraints to S, iterate.

24 /1

Solving S-SVM Training Numerically — Working Set

Solution: working set training
> It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Solving S-SVM Training Numerically — Working Set

> Start with working set S =((no contraints)
» Repeat until convergence:

> Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set

> if no: we found the optimal solution, terminate.
> if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:
» polynomial time convergence e-close to the global optimum /1

Working Set S-SVM Training

input training pairs {(z',y'),..., (2", y")} C X x),

input feature map ¢(x,y), loss function A(y,y’), regularizer A
Lw+ 0 S0
2: repeat
3 (w,&) « solution to QP only with constraints from S
4 for i=1,...,n do
5 g« argmax,cy, A(y",y) + (w, d(z",y))
6 if §#y" then

7 S« Su{(=z",9)}

8 end if

9: end for

10: until S doesn’t change anymore.

output prediction function f(z) = argmax, cy,(w, ¢(z,y)).

Obs: each update of w needs N argmax-predictions (one per example),
but we solve globally for next w, not by local steps.

Frank-Wolfe Algorithm

Most important algorithm in use today:
» Frank-Wolfe algorithm for S-SVM training (Lacoste-Julien et al., 2013)
> lteration complexity of primal stochastic subgradient method
» Explicit duality gap stopping criterion

» Simpler to implement than cutting plane approaches

SSVMS with Latent Variables [Yu, Joachims, 2009], see also [Felzenszwalb et al., 2008]

Latent variables also possible in S-SVMs

» x € X always observed,
> y €)Y observed only in training,
> z € Z never observed (latent).

Decision function: f(z) = argmax, cy, max.cz (w,d(z,y,2))

SSVMS Wlth Latent Varia bles [Yu, Joachims, 2009], see also [Felzenszwalb et al., 2008]

Latent variables also possible in S-SVMs

» x € X always observed,
> y €)Y observed only in training,
> z € Z never observed (latent).

Decision function: f(z) = argmax, cy, max.cz (w,d(z,y,2))

Maximum Margin Training with Maximization over Latent Variables

Solve: mln— w||? + maX o
i 5] + Z

with
ew(y) = A(y 7y) +I;1€a2),(<w,¢(x ay’z» - géag (w,gb(x Y 7Z)>

Problem: not convex — can have local minima

Summary — S-SVM Learning

Given:
» training set {(z!,y1),..., (2", y")} C X x Y
> loss function A: Y x Y — R.
» parameterize f(z) := argmax, (w, #(z,y))
Task: find w that minimizes expected loss on future data, E(,) A(y, f(z))

Summary — S-SVM Learning

Given:
» training set {(z',yY),..., (2", y")} CX x Y
> loss function A: Y x Y — R.
» parameterize f(z) := argmax, (w, #(z,y))
Task: find w that minimizes expected loss on future data, E(,) A(y, f(z))

S-SVM solution derived from regularized risk minimization:
> enforce correct output to be better than all others by a margin :

(w,d(z",y")) > Ay",y) + (w,d(z",y)) forallye .

» convex optimization problem, but non-differentiable
» many equivalent formulations — different training algorithms

> training needs many argmax predictions, but no probabilistic inference

Latent variable possible, but optimization becomes non-convex.

Summary — S-SVM Learning

Structured Learning is full of Open Research Questions

» How to train faster?

» CRFs need many runs of probablistic inference,
» SSVMs need many runs of argmax-predictions.

v

How to reduce the necessary amount of training data?
> semi-supervised learning? transfer learning?

» Can we understand structured learning with approximate inference?

> often computing V.L(w) or argmax, (w, ¢(z,y)) exactly is infeasible.
> can we guarantee good results even with approximate inference?

v

Learning data representations
> e.g. by combinations with deep learning

» More and new applications!

