Tutorial on
 Inference and Learning in Discrete Graphical Models: Theory and Practice

ICCV 2015, Santiago de Chile

Bogdan Savchynskyy*, Jörg Hendrik Kappes*, Thorsten Beier, Sebastian Nowozin, and Carsten Rother

December 12th, 2015 (full day)

About Us

Schedule

- (08:30-08:40) Opening
- (08:40-09:30) Discrete Graphical Models (50 min)
- Applications in Computer Vision (20 min)
- Definitions and Notation (20 min)
- Overview of Existing Software-packages (10 min)
- (09:30-10:00) Inference in Discrete Graphical Models I (150 min)
- Exact Inference Methods (50 min)
- (10:00-10:30) Coffee Break
- (10:30-12:30) Inference in Discrete Graphical Models II
- ... Exact Inference Methods
- Inference Methods based on Relaxations (40 min)
- Partial Optimality (10 min)
- Approximative and Move Making Methods (40 min)
- Meta-Methods : Combining Methods to get a better overall performance (10 min)
- (12:15-14:00) Lunch
- (14:00-15:00) From Benchmarks to the Current Limits
- Insights from Benchmark Studies (20 min)
- How to deal with Huge Models and Higher-order Potentials? (20 min)
- Models with Discrete and Continuous Variables (20 min)
- (15:00-15:30) Coffee Break
- (15:30-16:20) Learning in Discrete Graphical Models (50 min)
- Problem Setting
- Maximum Likelihood based Methods
- Prediction-based Parameter Learning Methods
- (16:20-16:30) Closing

Good to know ...

Good to know ...

- Slides will be online.

Good to know ...

- Slides will be online.
- point You to references with further informations.

Good to know ...

- Slides will be online.
- point You to references with further informations.
- Formulas are only important for the tutorial if we mention them.

Good to know ...

- Slides will be online.
- point You to references with further informations.
- Formulas are only important for the tutorial if we mention them.
- If You have questions please ask.

Good to know ...

- Slides will be online.
- point You to references with further informations.
- Formulas are only important for the tutorial if we mention them.
- If You have questions please ask.
- It is more important to get the concepts than the details!

Applications for Graphical Models in Computer Vision

Learning and Inference in Graphical Models

Applications of Graphical Models - outside CV

Label Chemical Structures

VLSI integrated-circuit design

Speech recognition

Flywing partitioning and tracking

Semantic segmentation of the worm

Applications of Graphical Models - inside CV

Semantic segmentation

Pose Estimation

Depth Estimation

Motion Estimation and Tracking

Debluring and Denoising

Graphical Models in Computer Vision: A Success Story

- Video Segmentation
- Dense Discrete-Continuous Optimization

Video Enhancement
[Rav-Acha et al. Siggraph 2008]

Graphical Models in Computer Vision: A Success Story

Books Sequence Input

- Sparse Graph matching
- 6D Dense Continuous Motion

Scene Flow Estimation
[Abu Alhaija et. al. GCPR 2015]

Graphical Models in Computer Vision: A Success Story

Input

Output

- Learning Gaussian Markov Random Fields
- State-of-the art deconvolution

Image Deconvolution
[Schmidt et al. CVPR 2013]

Graphical Models in Computer Vision: A Success Story

Current Leader of Semantic Segmentation Challenge VOC2012

(a) Testing

(b) Truth

(d) Full model

[Efficient Piecewise Training of Deep
Structured Models for Semantic Segmentation, Lin, Shen Reid, Hegel, Arxiv 2015]

Open Challenges

1. Inference in Large and Complex Models
2. Exact inference
3. Fast Inference
4. Continuous Variables and Mixed Models
5. Deep Learning and Graphical Models

Open Challenges

1. Inference in Large and Complex Models
2. Exact inference
3. Fast Inference
4. Continuous Variables and Mixed Models
5. Deep Learning and Graphical Models

1. Large Scale Models

Drosophila Embryo, Keller Lab, Janelia, US e.g. $2,880 \times 250 \mathrm{MB}$ stack with 100 K cells

Track each individual cell perfectly (99.9\% accuracy needed!)

1. Large Scale Models

Fly Wing, Eaton Lab, MPI-CBG, Dresden

Track each individual cell perfectly (99.9 \% accuracy needed!)

1. Complex Models

Curvature-based Segmentation [Shekhovtsov et al. GCPR 2010]

Higher-order Potentials penalizing high Curvature

Curvature Model

Pairwise MRF

Curvature Model

Pairwise
MRF

- Right model ... but inference too hard!

1. TRW-S
2. TRW-S (hard constraints)
3. Block-ICM

LB=1.25

Open Challenges

1. Inference in Large and Complex Models
2. Exact inference
3. Fast Inference
4. Continuous Variables and Mixed Models
5. Deep Learning and Graphical Models

2. Exact Inference

Input:
 Image sequence

[Data courtesy from Oliver Woodford]

Output: New view

Model: Minimize a binary 4-connected pair-wise graph (choose a colour-mode at each pixel)
[Fitzgibbon et al. ICCV ‘03]

2. Exact Inference

Ground Truth

Graph Cut with truncation
[Rother et al. '05]

Belief Propagation (approximate solution)

ICM, Simulated
Annealing

QPBOP
[Boros et al. '06;
Rother et al. '07]
(approximate solution)
(approximate solution) (exact solution)

Why is the result not perfect? Model or Optimization

Open Challenges

1. Inference in Large and Complex Models
2. Exact inference
3. Fast Inference
4. Continuous Variables and Mixed Models
5. Deep Learning and Graphical Models

2. Fast Inference

1D cell tracking

3. Fast Inference

- Human in-the Loop
- Deep Learning

Joint Segmentation and Tracking [Jug et al. BAMBI (MICCAI) 2014]

Open Challenges

1. Inference in Large and Complex Models
2. Exact inference
3. Fast Inference
4. Continuous Variables and Mixed Models
5. Deep Learning and Graphical Models

4. Continuous Variables Models

Discrete Variables

Continuous Variables
[Bleyer, Rhemann, Rother. BMVC '2011]

Open Challenges

1. Inference in Large and Complex Models
2. Exact inference
3. Fast Inference
4. Continuous Variables and Mixed Models
5. Deep Learning and Graphical Models

5. Deep Learning and Structured Models

Input

Ground Truth

CNN Trained separately

+ CRF Trained separately (87.6\%)

CNN Trained jointly

+ CRF Trained jointly
(89.0\%)
- CRF gives CNN additional regularization
- What is the optimal combination of CRFs and CNNs?

ML Learning of a generic CNN-CRF model
[Kirrilov et al. arxiv 2015]

Summary

1. Graphical Models are everywhere in Vision
2. Many interesting open challenges
3. Enjoy the Tutorial!

Definitions and Notation

Graphical Models

Definition: Graphical Model
A graphical model is a model for which a graph denotes some structure between variables (represented by its nodes).

Graphical Models

Definition: Graphical Model
A graphical model is a model for which a graph denotes some structure between variables (represented by its nodes).

$$
\begin{aligned}
& \text { (ㄴi. } \Leftrightarrow x_{i} \in X_{i}=\left\{0,1,2, \ldots, L_{i}\right\} \\
& \text { or } \\
& \Omega \subset \mathbb{R}
\end{aligned}
$$

Discrete Variable
Continuous Variable

Graphical Models: Probabilistic Graphical Model

Definition: Probabilistic Graphical Model
A probabilistic graphical model is a probabilistic model for which a graph $G=(V, E \subset V \times V)$ denotes the conditional independence structure between random variables (represented by its nodes).

Graphical Models: Probabilistic Graphical Model

Definition: Probabilistic Graphical Model

A probabilistic graphical model is a probabilistic model for which a graph $G=(V, E \subset V \times V)$ denotes the conditional independence structure between random variables (represented by its nodes).

Bayesian Network

$$
\begin{array}{ll}
G \Rightarrow \text { Markov Properties (MP) } & \text {, e.g. } X_{v} \Perp X_{V \backslash \operatorname{de}(v)} \mid X_{\mathrm{pa}(v)} \\
G \Rightarrow \text { Factorization } & , P(X)=\prod_{v \in V} P\left(X_{v} \mid X_{\mathrm{pa}(v)}\right)
\end{array}
$$

G has to be a directed acyclic graph (DAG)

Graphical Models: Probabilistic Graphical Model

Definition: Probabilistic Graphical Model

A probabilistic graphical model is a probabilistic model for which a graph $G=(V, E \subset V \times V)$ denotes the conditional independence structure between random variables (represented by its nodes).

Bayesian Network

$G \Rightarrow$ Markov Properties (MP) \quad, e.g. $X_{v} \Perp X_{V \backslash \operatorname{de}(v)} \mid X_{\text {pa(v) }}$
$G \Rightarrow$ Factorization $\quad, P(X)=\prod_{v \in V} P\left(X_{v} \mid X_{\mathrm{pa}(v)}\right)$
G has to be a directed acyclic graph (DAG)

Markov Random Field (MRF)

$$
G \Rightarrow \text { Markov Properties (MP) } \quad \text {, e.g. }{ }^{1} X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\}} \Leftrightarrow(u v) \notin E
$$

$\mathrm{MP} \stackrel{*}{\Rightarrow}$ Factorization $\quad, P(X=x) \propto \prod_{C \in \operatorname{cliques}(G)} \varphi_{C}\left(x_{C}\right)$
${ }^{1}$ Pairwise Markov property

* P has to be a positive density or G has to be chordal

Graphical Models: MRF vs. CRF

Markov Random Field (MRF)

$$
\begin{array}{ll}
G \Rightarrow \text { Markov Properties (MP) } & , \text { e.g. } X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\}} \Leftrightarrow(u v) \notin E \\
M P \stackrel{*}{\Rightarrow} \text { Factorization } & , P(X=x) \propto \prod_{C \in \operatorname{cliques}(G)} \varphi_{C}\left(x_{C}\right)
\end{array}
$$

* P has to be a positive density or G has to be chordal

Conditional Random Field (CRF)

$G \Rightarrow$ Markov Properties (MP)

$$
\begin{aligned}
& \text {, e.g. }{ }^{1} X_{u} \Perp X_{v} \mid X_{v \backslash\{u, v\}} \Leftrightarrow(u v) \notin E \\
& , P(X=x \mid D=d) \underset{C \in \operatorname{cliques}(G)}{\propto} \varphi_{C}\left(X_{H(C)}, d_{O(C)}\right)
\end{aligned}
$$

MP $\stackrel{*}{\Rightarrow}$ Factorization
${ }^{1}$ Pairwise Markov property

* P has to be a positive density or G has to be chordal

Graphical Models: Factor Graph Model

Definition: Factor Graph (Graphical) Model

A factor graph model is a model for which a factor graph
$G=(V, F, E \subset V \times F)$ denotes the factorization of the objective function over its variables (represented by its nodes).

Graphical Models: Factor Graph Model

Definition: Factor Graph (Graphical) Model

A factor graph model is a model for which a factor graph
$G=(V, F, E \subset V \times F)$ denotes the factorization of the objective function over its variables (represented by its nodes).

$$
\begin{array}{lll}
G=(V, F, E) & \\
\\
G \Rightarrow \text { Factorization: } & \text { func }(x) & =\bigotimes_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right) \\
\text { e.g. } & P(X=x) & =\prod_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right) \\
& J(x) & =\sum_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right)
\end{array}
$$

Graphical Models: Factor Graph Model

Definition: Factor Graph (Graphical) Model A factor graph model is a model for which a factor graph $G=(V, F, E \subset V \times F)$ denotes the factorization of the objective function over its variables (represented by its nodes).

$$
G=(V, F, E)
$$

$$
G \Rightarrow \text { Factorization: } \quad \text { func }(x) \quad=\bigotimes_{f \in F} \varphi_{f}\left(x_{\operatorname{ne}(f)}\right)
$$

e.g.

$$
\begin{array}{ll}
P(X=x) & =\prod_{f \in F} \varphi_{f}\left(x_{\operatorname{ne}(f)}\right) \\
J(x) & =\sum_{f \in F} \varphi_{f}\left(x_{\operatorname{ne}(f)}\right)
\end{array}
$$

$$
\operatorname{func}(x)=\varphi_{f_{1}}\left(x_{n e\left(f_{1}\right)}\right) \otimes \varphi_{f_{2}}\left(x_{n e\left(f_{2}\right)}\right) \otimes \varphi_{f_{3}}\left(x_{n e\left(f_{3}\right)}\right) \otimes \varphi_{f_{4}}\left(x_{n e\left(f_{4}\right)}\right) \otimes \varphi_{f_{5}}\left(x_{n e\left(f_{5}\right)}\right) \quad \otimes \varphi_{f_{6}}\left(x_{n e\left(f_{6}\right)}\right)
$$

Graphical Models: Factor Graph Model

Definition: Factor Graph (Graphical) Model A factor graph model is a model for which a factor graph $G=(V, F, E \subset V \times F)$ denotes the factorization of the objective function over its variables (represented by its nodes).

$$
\begin{array}{lll}
G=(V, F, E) & & \\
\\
G \Rightarrow \text { Factorization: } & f u n c(x) & =\bigotimes_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right) \\
\text { e.g. } & P(X=x) & =\prod_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right) \\
& J(x) & =\sum_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right)
\end{array}
$$

$$
\begin{aligned}
\text { func }(x) & =\varphi_{f_{1}}\left(x_{n e\left(f_{1}\right)}\right) \otimes \varphi_{f_{2}}\left(x_{n e\left(f_{2}\right)}\right) \otimes \varphi_{f_{3}}\left(x_{n e\left(f_{3}\right)}\right) \otimes \varphi_{f_{4}}\left(x_{n e\left(f_{4}\right)}\right) \otimes \varphi_{f_{5}}\left(x_{n e\left(f_{5}\right)}\right) \quad \otimes \varphi_{f_{6}}\left(x_{n e\left(f_{6}\right)}\right) \\
& =\varphi_{f_{1}}\left(x_{1}\right) \quad \otimes \varphi_{f_{2}}\left(x_{2}, x_{3}\right) \otimes \varphi_{f_{3}}\left(x_{2}, x_{4}\right) \otimes \varphi_{f_{4}}\left(x_{1}, x_{4}\right) \otimes \varphi_{f_{5}}\left(x_{2}, x_{3}, x_{4}\right) \otimes \varphi_{f_{6}}\left(x_{2}, x_{3}, x_{5}, x_{6}\right)
\end{aligned}
$$

Graphical Models: Factor Graph Model

Definition: Factor Graph (Graphical) Model A factor graph model is a model for which a factor graph $G=(V, F, E \subset V \times F)$ denotes the factorization of the objective function over its variables (represented by its nodes).

$$
\begin{array}{lll}
G=(V, F, E) & & \\
\\
G \Rightarrow \text { Factorization: } & f u n c(x) & =\bigotimes_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right) \\
\text { e.g. } & P(X=x) & =\prod_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right) \\
& J(x) & =\sum_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right)
\end{array}
$$

$$
\begin{aligned}
\text { func }(x) & =\varphi_{f_{1}}\left(x_{\text {ne }\left(f_{1}\right)}\right) \otimes \varphi_{f_{2}}\left(x_{\text {ne }\left(f_{2}\right)}\right) \otimes \varphi_{f_{3}}\left(x_{n e\left(f_{3}\right)}\right) \otimes \varphi_{f_{4}}\left(x_{\text {ne }\left(f_{4}\right)}\right) \otimes \varphi_{f_{5}}\left(x_{\text {ne }\left(f_{5}\right)}\right) \quad \otimes \varphi_{f_{6}}\left(x_{\text {ne }\left(f_{6}\right)}\right) \\
& =\varphi_{f_{1}}\left(x_{1}\right) \quad \otimes \varphi_{f_{2}}\left(x_{2}, x_{3}\right) \otimes \varphi_{f_{3}}\left(x_{2}, x_{4}\right) \otimes \varphi_{f_{4}}\left(x_{1}, x_{4}\right) \otimes \varphi_{f_{5}}\left(x_{2}, x_{3}, x_{4}\right) \otimes \varphi_{f_{6}}\left(x_{2}, x_{3}, x_{5}, x_{6}\right) \\
J(x) \quad & =\varphi_{f_{1}}\left(x_{1}\right) \quad+\varphi_{t_{2}}\left(x_{2}, x_{3}\right)+\varphi_{t_{3}}\left(x_{2}, x_{4}\right)+\varphi_{f_{4}}\left(x_{1}, x_{4}\right)+\varphi_{t_{5}}\left(x_{2}, x_{3}, x_{4}\right) \varphi_{f_{6}}\left(x_{2}, x_{3}, x_{5}, x_{6}\right)
\end{aligned}
$$

Graphical Models: Factor Graph Model

Definition: Factor Graph (Graphical) Model

A factor graph model is a model for which a factor graph
$G=(V, F, E \subset V \times F)$ denotes the factorization of the objective function over its variables (represented by its nodes).

$$
\begin{array}{lll}
G=(V, F, E) & & \\
G \Rightarrow \text { Factorization: } & \text { func }(x) & =\bigotimes_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right) \\
\text { e.g. } & P(X=x) & =\prod_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right) \\
& J(x) & =\sum_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right)
\end{array}
$$

Definition: Order
The order of a factor is its degree, i.e.

$$
o(f)=|\{v \in V \mid(v, f) \in E\}|
$$

The order of a factor graph is the maximal order of its factors, i.e.

$$
o(G)=\max _{f \in F} o(f)
$$

Graphical Models

Conditional Factor Graph Model

Graphical Models

Conditional Factor Graph Model

Discrete Factor Graph Model

Graphical Models

Conditional Factor Graph Model

Discrete Factor Graph Model

Extended Factor Graph Model

$G=(V, F, E, F, \mathcal{E})$

Graphical Models

Conditional Factor Graph Model

Extended Factor Graph Model

$G=(V, F, E, \mathcal{F}, \mathcal{E})$

Discrete Factor Graph Model

Weighted Factor Graph Model

Graphical Models

Conditional Factor Graph Model

Extended Factor Graph Model

$G=(V, F, E, \mathcal{F}, \mathcal{E})$

Discrete Factor Graph Model

Weighted Factor Graph Model

$\boldsymbol{G}=\left(V, F, E, \mathcal{F}, \mathcal{E}, W, E_{W}\right)$

Graphical Models

Conditional Factor Graph Model

Extended Factor Graph Model

$G=(V, F, E, F, \mathcal{E})$

Discrete Factor Graph Model

Weighted Factor Graph Model

$\boldsymbol{G}=\left(V, F, E, \mathcal{F}, \mathcal{E}, W, E_{W}\right)$

Graphical Models: Shorthands for Factor Graphs

$$
\begin{aligned}
& G=(V, F, E) \\
& J(x)=\sum_{f \in F} \varphi_{f}\left(X_{\mathrm{ne}(f)}\right)
\end{aligned}
$$

Common used Shorthand for 2nd order Factor Graph Models

$$
\begin{aligned}
& G=(V, E \subset V \times V) \\
& J(x)=\sum_{v \in V} \varphi_{V}\left(x_{V}\right)+\sum_{e \in E} \varphi_{e}\left(x_{e}\right)
\end{aligned}
$$

Important: This is not a MRF, because G decodes directly the factorization!

Graphical Models: Shorthands for Factor Graphs

Factor Graph Models

$$
\begin{aligned}
& G=(V, F, E) \\
& J(x)=\sum_{f \in F} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right)
\end{aligned}
$$

Common used Shorthand for general Factor Graph Models

$$
\begin{aligned}
& G=\left(V, E \subset 2^{V}\right) \\
& J(x)=\sum_{v \in V} \varphi_{v}\left(x_{v}\right)+\sum_{C \in E} \varphi_{C}\left(x_{C}\right)
\end{aligned}
$$

Important: This is not a MRF, because G decodes directly the factorization!

Graphical Models: Factor-Graph Model vs. Markov Random Fields

Factor graph models are more powerful than MRFs/CRFs and Bayesian networks in expressing factorization.

Bayesian networks are more powerful than Factor graph models and MRFs/CRFs in expressing conditional independences.

The terms MRFs/CRFs are often loosely used in computer vision!
Further information: [Lauritzen, 1996, Koller and Friedman, 2009]

Graphical Models: Gibbs Distribution

- Given an energy function

$$
J(x)=\sum_{C \in \mathcal{C} \subset 2^{v}} \varphi_{C}\left(x_{C}\right)
$$

Graphical Models: Gibbs Distribution

- Given an energy function

$$
J(x)=\sum_{C \in \mathcal{C} \subset 2^{v}} \varphi_{C}\left(x_{C}\right)
$$

we can define the Gibbs distribution for a given free parameter β by

$$
P(X=x)=p(x)=\frac{1}{Z} \exp (-\beta \cdot J(x))=\frac{1}{Z} \prod_{C \in \mathcal{C} \subset 2^{V}} \exp \left(-\beta \cdot \varphi_{C}\left(x_{C}\right)\right)
$$

Graphical Models: Gibbs Distribution

- Given an energy function

$$
J(x)=\sum_{C \in \mathcal{C} \subset 2^{v}} \varphi_{C}\left(x_{C}\right)
$$

we can define the Gibbs distribution for a given free parameter β by

$$
P(X=x)=p(x)=\frac{1}{Z} \exp (-\beta \cdot J(x))=\frac{1}{Z} \prod_{C \in \mathcal{C} \subset 2^{V}} \exp \left(-\beta \cdot \varphi_{C}\left(x_{C}\right)\right)
$$

where the partition function is given by

$$
Z=\sum_{x \in \mathcal{X}} \exp (-\beta \cdot J(x))
$$

Graphical Models: Gibbs Distribution

- Given an energy function

$$
J(x)=\sum_{C \in \mathcal{C} \subset 2^{V}} \varphi_{C}\left(x_{C}\right)
$$

we can define the Gibbs distribution for a given free parameter β by

$$
P(X=x)=p(x)=\frac{1}{Z} \exp (-\beta \cdot J(x))=\frac{1}{Z} \prod_{C \in \mathcal{C} \subset 2^{v}} \exp \left(-\beta \cdot \varphi_{C}\left(x_{C}\right)\right)
$$

where the partition function is given by

$$
Z=\sum_{x \in \mathcal{X}} \exp (-\beta \cdot J(x)) .
$$

And what is the statistical meaning of $p(x)$?

Graphical Models: Gibbs Distribution

- Given a distribution
$p(x)$ with Markov properties given by $G=(V, E)$

Graphical Models: Gibbs Distribution

- Given a distribution

$$
p(x) \text { with Markov properties given by } G=(V, E)
$$

- If $p(\cdot)$ is strict positive $(p(x)>0)$ or G is chordal it factorize into

$$
p(x)=\prod_{c \in \mathcal{C} \subset 2^{V}} \phi_{C}\left(x_{C}\right)
$$

where \mathcal{C} the maximal cliques in G.
\rightarrow Hammersley-Clifford theorem [Hammersley and Clifford, 1971].

Graphical Models: Gibbs Distribution

- Given a distribution

$$
p(x) \text { with Markov properties given by } G=(V, E)
$$

- If $p(\cdot)$ is strict positive $(p(x)>0)$ or G is chordal it factorize into

$$
p(x)=\prod_{c \in \mathcal{C} \subset 2^{V}} \phi_{C}\left(x_{C}\right)
$$

where \mathcal{C} the maximal cliques in G.
\rightarrow Hammersley-Clifford theorem [Hammersley and Clifford, 1971].

- We can define a energy function which has $p(x)$ as Gibbs distribution

$$
J(x)=-\frac{1}{\beta} \log (p(x))=\sum_{c \in \mathcal{C} \subset 2^{v}}-\frac{1}{\beta} \log \left(\phi_{C}\left(x_{C}\right)\right)
$$

Graphical Models: Inference

Graphical Models: Inference

Probabilistic Inference

$$
\begin{array}{rlr}
p\left(x_{i}\right) & =\sum_{x^{\prime} \in \mathcal{X}, x_{i}^{\prime}=x_{i}} p\left(x^{\prime}\right) & \text { Marginals } \\
p_{\max }\left(x_{i}\right) & =\max _{x^{\prime} \in \mathcal{X}, x_{i}^{\prime}=x_{i}} p\left(x^{\prime}\right) & \text { Max-Marginals } \\
\tilde{x} & \sim p(x) & \text { Sampling } \\
Z & =\sum_{x^{\prime} \in \mathcal{X}} \exp \left(-J\left(x^{\prime}\right)\right) & \text { Partition Function }
\end{array}
$$

MAP Inference and Energy Minimization

```
\(x^{*} \in \arg \max p(x)\)
    \(x \in \mathcal{X}\)
\(x^{*} \in \arg \min J(x) \quad\) Configuration with the Lowest Energy
```


Graphical Models: Inference

Using MAP-inference to approximate marginals

- Perturb and MAP
- Expected MAP solution of perturbed model \Rightarrow marginals
- [Papandreou and Yuille, 2011, Hazan et al., 2013]
- Frank-Wolf Algorithm
- Perturbed MAP-problems show up in Frank-Wolf algorithm for calculating marginals
- [R. Krishnan, 2015]

Graphical Models: Inference

MAP Inference and Energy Minimization

$$
\begin{array}{lr}
x^{*} \in \underset{x \in \mathcal{X}}{\arg \max } p(x \mid d) & \text { Most Likely Explanation } \\
x^{*} \in \underset{x \in \mathcal{X}}{\arg \min } J(x \mid d) & \text { Configuration with the Lowest Energy }
\end{array}
$$

Graphical Models: Inference

MAP Inference and Energy Minimization

$$
\begin{array}{lr}
x^{*} \in \underset{x \in \mathcal{X}}{\arg \max } p(x \mid d) & \text { Most Likely Explanation } \\
x^{*} \in \underset{x \in \mathcal{X}}{\arg \min } J(x \mid d) & \text { Configuration with the Lowest Energy }
\end{array}
$$

Graphical Models: Inference

MAP Inference and Energy Minimization

$$
\begin{array}{lr}
x^{*} \in \underset{x \in \mathcal{X}}{\arg \max } p(x \mid d) & \text { Most Likely Explanation } \\
x^{*} \in \underset{x \in \mathcal{X}}{\arg \min } J(x \mid d) & \text { Configuration with the Lowest Energy }
\end{array}
$$

Graphical Models: Inference

MAP Inference and Energy Minimization

$$
\begin{array}{lr}
x^{*} \in \underset{x \in \mathcal{X}}{\arg \max } p(x \mid d) & \text { Most Likely Explanation } \\
x^{*} \in \underset{x \in \mathcal{X}}{\arg \min } J(x \mid d) & \text { Configuration with the Lowest Energy }
\end{array}
$$

Graphical Models: Inference

MAP Inference and Energy Minimization

$$
\begin{array}{lr}
x^{*} \in \underset{x \in \mathcal{X}}{\arg \max } p(x \mid d) & \text { Most Likely Explanation } \\
x^{*} \in \underset{x \in \mathcal{X}}{\arg \min } J(x \mid d) & \text { Configuration with the Lowest Energy }
\end{array}
$$

Graphical Models: Inference

MAP Inference and Energy Minimization

$$
\begin{array}{lr}
x^{*} \in \underset{x \in \mathcal{X}}{\arg \max } p(x \mid d) & \text { Most Likely Explanation } \\
x^{*} \in \underset{x \in \mathcal{X}}{\arg \min } J(x \mid d) & \text { Configuration with the Lowest Energy }
\end{array}
$$

Graphical Models: Learning

Graphical Models: Learning

Graphical Models: Learning

1. Select (Learn) the (number of) variables and labels and their meaning

(3)

Graphical Models: Learning

1. Select (Learn) the (number of) variables and labels and their meaning
2. Select (Learn) the structure of the model

Graphical Models: Learning

1. Select (Learn) the (number of) variables and labels and their meaning
2. Select (Learn) the structure of the model
3. Learn independently local potentials/feature-functions

- physical priors
- handcrafted features
- output of random forest or any local model from pattern recognition textbook
- output of CNNs

$$
J(x)=\sum_{i=1}^{3} \varphi_{f_{i}}\left(x_{i}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}^{1}}\left(x_{2}, x_{3}\right)+\varphi_{f_{23}^{2}}\left(x_{2}, x_{3}\right)
$$

Graphical Models: Learning

1. Select (Learn) the (number of) variables and labels and their meaning
2. Select (Learn) the structure of the model
3. Learn independently local potentials/feature-functions

- physical priors
- handcrafted features
- output of random forest or any local model from pattern recognition textbook
- output of CNNs

4. Learn global parameters that adjust local terms (optional)

$$
J(x)=\sum_{i=1}^{3} \varphi_{f_{i}}\left(x_{i}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)+\varphi_{f_{23}^{2}}\left(x_{2}, x_{3}\right)
$$

$$
J(x)=\sum_{i=1}^{3} w_{f_{i}}{\overline{f_{i}}}\left(x_{i}\right)+w_{f_{12}} \bar{\varphi}_{f_{12}}\left(x_{1}, x_{2}\right)+w_{f_{12}^{\prime}} \bar{\varphi}_{f_{23}^{\prime}}\left(x_{2}, x_{3}\right)+w_{f_{12}^{2}} \bar{\varphi}_{f_{23}^{2}}\left(x_{2}, x_{3}\right)
$$

Graphical Models: Learning

1. Select (Learn) the (number of) variables and labels and their meaning
2. Select (Learn) the structure of the model
3. Learn independently local potentials/feature-functions

- physical priors
- handcrafted features
- output of random forest or any local model from pattern recognition textbook
- output of CNNs

4. Learn global parameters that adjust local terms (optional)

$$
\begin{gathered}
J(x)=\sum_{i=1}^{3} \varphi_{f_{i}}\left(x_{i}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}^{1}}\left(x_{2}, x_{3}\right)+\varphi_{f_{23}^{2}}\left(x_{2}, x_{3}\right) \\
J(x)=\sum_{i=1}^{3} w_{f_{i}} \bar{\varphi}_{f_{i}}\left(x_{i}\right)+w_{f_{12}} \bar{\varphi}_{f_{12}}\left(x_{1}, x_{2}\right)+w_{f_{12}^{1}} \bar{\varphi}_{f_{23}^{1}}\left(x_{2}, x_{3}\right)+w_{f_{12}^{2}} \bar{\varphi}_{f_{23}^{2}}\left(x_{2}, x_{3}\right)
\end{gathered}
$$

Graphical Models: Learning

Problem Setting

Given some training-data $\left(d^{1}, \ldots, d^{N}\right)$ and ground truth configuration ($x^{G T ; 1}, \ldots, x^{G T ; N}$) we would like to learn the optimal model parameters.

Graphical Models: Learning

Problem Setting

Given some training-data $\left(d^{1}, \ldots, d^{N}\right)$ and ground truth configuration ($x^{G T ; 1}, \ldots, x^{G T ; N}$) we would like to learn the optimal model parameters.

Maximum Likelihood Learning

$$
\left.w^{*} \in \arg \max _{w} \prod_{i} p\left(x^{G T ; i} \mid w, d^{i}\right)\right)
$$

Maximum Margin Learning

$$
w^{*} \in \arg \min _{w} \sum_{i} \Delta\left(x^{G T ; i}, \arg \max _{x \in X} p\left(x \mid w, d^{i}\right)\right)+\lambda\|w\|_{2}^{2}
$$

Software Packages

Software Packages

Library	Authors	Language	Last Updated	License	Model	Inference	Learning
OpenGM2	Andres, Beier, Kappes	C++, MatLab, Python	2015	MIT	DFGM	(P), E	(ML, MM)
BNT	Murphy	MatLab	2007	GPL 2	BN	P	ML
PMTK	Dunham,Murphy	MatLab, (Python)	2011	MIT	DFGM,MRF	P, (E)	ML
UGM	Schmidt	MatLab	2015 (2011)	BSD-2	DFGM	P, E	ML
Darwin	Gould	c++	2015	BSD-2	DFGM	P, E	-
FastInf	Jaimovich, Meshi, et al.	c++	2011	GPL 3	DFGM	P, (E)	ML
Infer.NET	Bronskill, Guiver, et al.	C++,C\#	2014	MSR-LA	BN	P, (E)	ML
libDAI	Mooij	C++, Python, Matlab	2015 (2010)	BSD 2	DFGM	P,(E)	-
JGMT	Domke	Matlab	2014	MIT	DFGM P	P	ML
grante	Nowozin	C++,Matlab wrappers		MSR-LA	DFGM	P, (E)	ML, MM
Factorie	UMass	Scala (Java)		Apache	FGM	P	ML
pystruct	Müller	Python	2015	BSD	DFGM	(E)	MM
mrf-lib	Szeliski et al.	C++	2012	-	DFGM ${ }^{\text {PS }}$	E	-
gco-lib	Veksler, Delong	C++, MatLab, Python	2014	research only	DFGM ${ }^{P}$	E	-
mplp	Globerson, Sontag, Choe, Li	C++	2014	GPL	DFGM	E	-
SRMP (TRWS)	Kolmogorov	C++	2014	GPL	DFGM	E	-
DAOOPT	Otten	C++	2012	GPL	DFGM	E	-
...							

Models: discrete factor graph models (DFG), Bayesian Nets (BN), ${ }^{P}$ only pairwise, ${ }^{S}$ restiction on the graph structure Models: probabilistic inference (P), energy minimization (\mathbf{E})
Learning: maximum likelihood based (ML), max margin based (MM)

Software Packages

Library	Authors	Language	Last Updated	License	Model	Inference	Learning
OpenGM2	Andres, Beier, Kappes	C++, MatLab, Python	2015	MIT	DFGM	(P), E	(ML, MM)
BNT	Murphy	MatLab	2007	GPL 2	BN	P	ML
PMTK	Dunham,Murphy	MatLab, (Python)	2011	MIT	DFGM,MRF	P, (E)	ML
UGM	Schmidt	MatLab	2015 (2011)	BSD-2	DFGM	P, E	ML
Darwin	Gould	c++	2015	BSD-2	DFGM	P, E	-
FastInf	Jaimovich, Meshi, et al.	c++	2011	GPL 3	DFGM	P, (E)	ML
Infer.NET	Bronskill, Guiver, et al.	C++,C\#	2014	MSR-LA	BN	P, (E)	ML
libDAI	Mooij	C++, Python, Matlab	2015 (2010)	BSD 2	DFGM	P,(E)	-
JGMT	Domke	Matlab	2014	MIT	DFGM P	P	ML
grante	Nowozin	C++,Matlab wrappers		MSR-LA	DFGM	P, (E)	ML, MM
Factorie	UMass	Scala (Java)		Apache	FGM	P	ML
pystruct	Müller	Python	2015	BSD	DFGM	(E)	MM
mrf-lib	Szeliski et al.	C++	2012	-	DFGM ${ }^{\text {PS }}$	E	-
gco-lib	Veksler, Delong	C++, MatLab, Python	2014	research only	DFGM ${ }^{P}$	E	-
mplp	Globerson, Sontag, Choe, Li	C++	2014	GPL	DFGM	E	-
SRMP (TRWS)	Kolmogorov	C++	2014	GPL	DFGM	E	-
DAOOPT	Otten	C++	2012	GPL	DFGM	E	-
...							

Models: discrete factor graph models (DFG), Bayesian Nets (BN), ${ }^{P}$ only pairwise, ${ }^{S}$ restiction on the graph structure Models: probabilistic inference (P), energy minimization (E)
Learning: maximum likelihood based (ML), max margin based (MM)

Which Library is the Best?

Software Packages

Library	Authors	Language	Last Updated	License	Model	Inference	Learning
OpenGM2	Andres, Beier, Kappes	C++, MatLab, Python	2015	MIT	DFGM	(P), E	(ML, MM)
BNT	Murphy	MatLab	2007	GPL 2	BN	P	ML
PMTK	Dunham,Murphy	MatLab, (Python)	2011	MIT	DFGM,MRF	P, (E)	ML
UGM	Schmidt	MatLab	2015 (2011)	BSD-2	DFGM	P, E	ML
Darwin	Gould	c++	2015	BSD-2	DFGM	P, E	-
FastInf	Jaimovich, Meshi, et al.	c++	2011	GPL 3	DFGM	P, (E)	ML
Infer.NET	Bronskill, Guiver, et al.	C++,C\#	2014	MSR-LA	BN	P, (E)	ML
libDAI	Mooij	C++, Python, Matlab	2015 (2010)	BSD 2	DFGM	P,(E)	-
JGMT	Domke	Matlab	2014	MIT	DFGM P	P	ML
grante	Nowozin	C++,Matlab wrappers		MSR-LA	DFGM	P, (E)	ML, MM
Factorie	UMass	Scala (Java)		Apache	FGM	P	ML
pystruct	Müller	Python	2015	BSD	DFGM	(E)	MM
mrf-lib	Szeliski et al.	C++	2012	-	DFGM ${ }^{\text {PS }}$	E	-
gco-lib	Veksler, Delong	C++, MatLab, Python	2014	research only	DFGM ${ }^{P}$	E	-
mplp	Globerson, Sontag, Choe, Li	C++	2014	GPL	DFGM	E	-
SRMP (TRWS)	Kolmogorov	C++	2014	GPL	DFGM	E	-
DAOOPT	Otten	C++	2012	GPL	DFGM	E	-
...							

Models: discrete factor graph models (DFG), Bayesian Nets (BN), ${ }^{P}$ only pairwise, $S^{\text {restiction on the graph structure }}$ Models: probabilistic inference (P), energy minimization (E)
Learning: maximum likelihood based (ML), max margin based (MM)

Which Library is the Best? Depends on Your Goal!

Software Packages

Library	Authors	Language	Last Updated	License	Model	Inference	Learning
OpenGM2	Andres, Beier, Kappes	C++, MatLab, Python	2015	MIT	DFGM	(P), E	(ML, MM)
BNT	Murphy	MatLab	2007	GPL 2	BN	P	ML
PMTK	Dunham,Murphy	MatLab, (Python)	2011	MIT	DFGM,MRF	P, (E)	ML
UGM	Schmidt	MatLab	2015 (2011)	BSD-2	DFGM	P, E	ML
Darwin	Gould	c++	2015	BSD-2	DFGM	P, E	-
FastInf	Jaimovich, Meshi, et al.	c++	2011	GPL 3	DFGM	P, (E)	ML
Infer.NET	Bronskill, Guiver, et al.	C++,C\#	2014	MSR-LA	BN	P, (E)	ML
libDAI	Mooij	C++, Python, Matlab	2015 (2010)	BSD 2	DFGM	P,(E)	-
JGMT	Domke	Matlab	2014	MIT	DFGM P	P	ML
grante	Nowozin	C++,Matlab wrappers		MSR-LA	DFGM	P, (E)	ML, MM
Factorie	UMass	Scala (Java)		Apache	FGM	P	ML
pystruct	Müller	Python	2015	BSD	DFGM	(E)	MM
mrf-lib	Szeliski et al.	C++	2012	-	DFGM ${ }^{\text {PS }}$	E	-
gco-lib	Veksler, Delong	C++, MatLab, Python	2014	research only	DFGM ${ }^{P}$	E	-
mplp	Globerson, Sontag, Choe, Li	C++	2014	GPL	DFGM	E	-
SRMP (TRWS)	Kolmogorov	C++	2014	GPL	DFGM	E	-
DAOOPT	Otten	C++	2012	GPL	DFGM	E	-
...							

Models: discrete factor graph models (DFG), Bayesian Nets (BN), ${ }^{P}$ only pairwise, $S^{\text {restiction on the graph structure }}$ Models: probabilistic inference (P), energy minimization (E)
Learning: maximum likelihood based (ML), max margin based (MM)

Which Library is the Best? Depends on Your Goal!

Software Packages

Library	Authors	Language	Last Updated	License	Model	Inference	Learning
OpenGM2	Andres, Beier, Kappes	C++, MatLab, Python	2015	MIT	DFGM	(P), E	(ML, MM)
BNT	Murphy	MatLab	2007	GPL 2	BN	P	ML
PMTK	Dunham,Murphy	MatLab, (Python)	2011	MIT	DFGM,MRF	P, (E)	ML
UGM	Schmidt	MatLab	2015 (2011)	BSD-2	DFGM	P, E	ML
Darwin	Gould	c++	2015	BSD-2	DFGM	P, E	-
FastInf	Jaimovich, Meshi, et al.	c++	2011	GPL 3	DFGM	P, (E)	ML
Infer.NET	Bronskill, Guiver, et al.	C++,C\#	2014	MSR-LA	BN	P, (E)	ML
libDAI	Mooij	C++, Python, Matlab	2015 (2010)	BSD 2	DFGM	P,(E)	-
JGMT	Domke	Matlab	2014	MIT	DFGM P	P	ML
grante	Nowozin	C++,Matlab wrappers		MSR-LA	DFGM	P, (E)	ML, MM
Factorie	UMass	Scala (Java)		Apache	FGM	P	ML
pystruct	Müller	Python	2015	BSD	DFGM	(E)	MM
mrf-lib	Szeliski et al.	C++	2012	-	DFGM ${ }^{\text {PS }}$	E	-
gco-lib	Veksler, Delong	C++, MatLab, Python	2014	research only	DFGM ${ }^{P}$	E	-
mplp	Globerson, Sontag, Choe, Li	C++	2014	GPL	DFGM	E	-
SRMP (TRWS)	Kolmogorov	C++	2014	GPL	DFGM	E	-
DAOOPT	Otten	C++	2012	GPL	DFGM	E	-
...							

Models: discrete factor graph models (DFG), Bayesian Nets (BN), ${ }^{P}$ only pairwise, $S^{\text {restiction on the graph structure }}$ Models: probabilistic inference (P), energy minimization (E)
Learning: maximum likelihood based (ML), max margin based (MM)

Which Library is the Best? Depends on Your Goal!

functionality generality / flexibility

How to use OpenGM

How to use OpenGM

How to use OpenGM

Inference Methods for Energy Minimization with Discrete Graphical Models

Energy Minimization Methods available in OpenGM

Exact Inference Methods for Energy Minimization with Discrete Graphical Models

Exact Inference Methods

Exact Inference Methods for Energy Minimization with Discrete Graphical Models

$$
\arg \min _{x \in \mathcal{X}} \sum_{f \in F} \varphi_{f}\left(x_{\text {ne(f) }}\right)
$$

Exact Inference Methods for Energy Minimization with Discrete

 Graphical Models$$
\arg \min _{x \in \mathcal{X}} \sum_{f \in F} \varphi_{f}\left(x_{\text {ne(f) }}\right)
$$

Stop! This problem is NP-hard, so exact inference is in general not tractable!

Exact Inference Methods for Energy Minimization with Discrete Graphical Models

$$
\arg \min _{x \in \mathcal{X}} \sum_{f \in F} \varphi_{f}\left(x_{\text {ne(f) }}\right)
$$

Stop! This problem is NP-hard, so exact inference is in general not tractable!

	Problem Restriction	Runtime Complexity
Dynamic Programming		
\rightarrow Viterbi Algorithm	acyclic structure	polynomial
\rightarrow Junction Tree Algorithm	limited tree-width	polynomial in the tree-width polynomial in the model order per iteration Reduction to
\rightarrow Max Flow	no, but not exact	
\rightarrow Submodular Minimization	pairwise submodular	polynomial
\rightarrow Perfect Matching	submodular	polynomial
\rightarrow Multicut / Multiway Cut Problem	(outer) planar binary	polynomial
Redts-(like) functions	exponential in the worst case	
\rightarrow Brute Force Search Problem		no
\rightarrow Best First Search	no	exponential
Integer Linear Program	no	exponential in the worst case

[^0]
Exact Inference by Dynamic Programming (aka Viterbi algorithm)

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{t_{2}}\left(x_{2}\right)+\varphi_{t_{3}}\left(x_{3}\right)+\varphi_{t_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{f_{3}}\left(x_{3}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Optimization by Dynamic Programming

$$
\min _{x_{1}} \varphi_{f_{1}}\left(x_{1}\right)+\min _{x_{2}} \varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{t_{2}}\left(x_{2}\right)+\min _{x_{3}} \varphi_{f_{23}}\left(x_{2}, x_{3}\right)+\varphi_{f_{3}}\left(x_{3}\right)
$$

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{f_{3}}\left(x_{3}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Optimization by Dynamic Programming

$$
\min _{x_{1}} \varphi_{f_{1}}\left(x_{1}\right)+\min _{x_{2}} \varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{\bar{F}_{2}}\left(x_{2}\right)
$$

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{t_{2}}\left(x_{2}\right)+\varphi_{t_{3}}\left(x_{3}\right)+\varphi_{t_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{f_{3}}\left(x_{3}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{f_{3}}\left(x_{3}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{f_{3}}\left(x_{3}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{f_{3}}\left(x_{3}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{f_{3}}\left(x_{3}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{f_{3}}\left(x_{3}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Chain

Optimization Problem

$$
\arg \min _{x_{1}, x_{2}, x_{3}} \varphi_{f_{1}}\left(x_{1}\right)+\varphi_{f_{2}}\left(x_{2}\right)+\varphi_{f_{3}}\left(x_{3}\right)+\varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{f_{23}}\left(x_{2}, x_{3}\right)
$$

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Tree

Factor Graph Model

Exact Inference Methods: Dynamic Programming on a Tree

Factor Graph Model

Exact Inference Methods: Dynamic Programming on a Tree

 Factor Graph Model

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Tree

 Factor Graph Model

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Tree

 Factor Graph Model

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Tree

 Factor Graph Model

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Tree

 Factor Graph Model

Optimization by Dynamic Programming

Exact Inference Methods: Dynamic Programming on a Higher-Order Tree

Factor Graph Model

Algorithmic Idea

Exact Inference Methods: Dynamic Programming on General Graphs

Exact Inference Methods: Dynamic Programming on General Graphs

Why did't You merge node 2 and 3

Exact Inference Methods: Dynamic Programming on General Graphs

Why did't You merge node 2 and 3

Exact Inference Methods: Dynamic Programming on General Graphs

Why did't You merge node 2 and 3 ... and node 4 and $5 \ldots$

Exact Inference Methods: Dynamic Programming on General Graphs

Why did't You merge node 2 and 3 ... and node 4 and $5 \ldots$

Exact Inference Methods: Dynamic Programming on General Graphs

Why did't You merge node 2 and 3
... and node 4 and $5 \ldots$ now it looks

like a tree!

Exact Inference Methods: Dynamic Programming on General Graphs

Background

- Idea: Reduce inference to dynamic programming on the Junction Tree
- The junction tree is a cluster tree that fulfills the Running Intersection Property. It exists if and only if the node-adjacency graph is chordal.
- Finding the triangulation that generates a graph with the lowest clique-size is NP-hard.

[Lauritzen, 1996, Koller and Friedman, 2009]

(Loopy) Belief Propagation (Not always exact, but most often useful)

Belief Propagation

Belief Propagation

Messages

$$
\begin{aligned}
& m_{v \rightarrow f}\left(x_{v}\right)=\sum_{f^{\prime} \in \operatorname{ne}(v) \backslash\{f\}} m_{f^{\prime} \rightarrow v}\left(x_{v}\right) \\
& m_{f \rightarrow v}\left(x_{v}\right)=\min _{x_{\mathrm{ne}(f) \backslash\{v\}} \in X_{\mathrm{ne}(f) \backslash\{v\}}} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right)+\sum_{u \in \operatorname{ne}(f) \backslash\{v\}} m_{u \rightarrow f}\left(x_{v}\right)
\end{aligned}
$$

Belief Propagation

Messages

$$
\begin{aligned}
& m_{v \rightarrow f}\left(x_{v}\right)=\sum_{f^{\prime} \in \operatorname{ne}(v) \backslash\{f\}} m_{f^{\prime} \rightarrow v}\left(x_{v}\right) \\
& m_{f \rightarrow v}\left(x_{v}\right)=\min _{x_{\mathrm{ne}(f) \backslash\{v\}} \in X_{\mathrm{ne}(f) \backslash\{v\}}} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right)+\sum_{u \in \operatorname{ne}(f) \backslash\{v\}} m_{u \rightarrow f}\left(x_{v}\right)
\end{aligned}
$$

Belief Propagation

Messages

$$
\begin{aligned}
& m_{v \rightarrow f}\left(x_{v}\right)=\sum_{f^{\prime} \in \operatorname{ne}(v) \backslash\{f\}} m_{f^{\prime} \rightarrow v}\left(x_{v}\right) \\
& m_{f \rightarrow v}\left(x_{v}\right)=\sum_{x_{\text {ne }(f) \backslash\{v\}} \in X_{\text {ne }(f) \backslash\{v\}}} \varphi_{f}\left(x_{\text {ne }(f)}\right)+\sum_{u \in \operatorname{ne}(f) \backslash\{v\}} m_{u \rightarrow f}\left(x_{v}\right)
\end{aligned}
$$

Damping

$$
m^{\text {new }}\left(x_{v}\right)=(1-\alpha) \cdot m\left(x_{v}\right)+\alpha \cdot m^{\text {old }}\left(x_{v}\right)
$$

Belief Propagation

Messages

$$
\begin{aligned}
& m_{v \rightarrow f}\left(x_{v}\right)=\sum_{f^{\prime} \in \operatorname{ne}(v) \backslash\{f\}} m_{f^{\prime} \rightarrow v}\left(x_{v}\right) \\
& m_{f \rightarrow v}\left(x_{v}\right)=\min _{x_{\text {ne }(f) \backslash\{v\}} \in X_{\text {ne }(f) \backslash\{v\}}} \varphi_{f}\left(x_{\text {ne }(f)}\right)+\sum_{u \in \operatorname{ne}(f) \backslash\{v\}} m_{u \rightarrow f}\left(x_{v}\right)
\end{aligned}
$$

Damping

$$
m^{\text {new }}\left(x_{v}\right)=(1-\alpha) \cdot m\left(x_{v}\right)+\alpha \cdot m^{\text {old }}\left(x_{v}\right) \quad m^{\text {new }}\left(x_{v}\right)=m\left(x_{v}\right)-\min _{x_{v}^{\prime} \in X_{v}} m\left(x_{v}^{\prime}\right)
$$

Normalization

Belief Propagation

Messages

$$
\begin{aligned}
& m_{v \rightarrow f}\left(x_{v}\right)=\sum_{f^{\prime} \in \operatorname{ne}(v) \backslash\{f\}} m_{f^{\prime} \rightarrow v}\left(x_{v}\right) \\
& m_{f \rightarrow v}\left(x_{v}\right)=\min _{x_{\text {ne }(f) \backslash\{v\}} \in X_{\text {ne }(f) \backslash\{v\}}} \varphi_{f}\left(x_{\text {ne }(f)}\right)+\sum_{u \in \operatorname{ne}(f) \backslash\{v\}} m_{u \rightarrow f}\left(x_{v}\right)
\end{aligned}
$$

Damping

$$
m^{\text {new }}\left(x_{v}\right)=(1-\alpha) \cdot m\left(x_{v}\right)+\alpha \cdot m^{\text {old }}\left(x_{v}\right) \quad m^{\text {new }}\left(x_{v}\right)=m\left(x_{v}\right)-\min _{x_{v}^{\prime} \in X_{v}} m\left(x_{v}^{\prime}\right)
$$

Normalization

Belief Propagation

Messages

$$
\begin{aligned}
& m_{v \rightarrow f}\left(x_{v}\right)=\sum_{f^{\prime} \in \operatorname{ne}(v) \backslash\{f\}} m_{f^{\prime} \rightarrow v}\left(x_{v}\right) \\
& m_{f \rightarrow v}\left(x_{v}\right)=\min _{x_{\mathrm{ne}(f) \backslash\{v\}} \in X_{\mathrm{ne}(f) \backslash\{v\}} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right)+\sum_{u \in \operatorname{ne}(f) \backslash\{v\}} m_{u \rightarrow f}\left(x_{v}\right)}
\end{aligned}
$$

Damping

$$
m^{\text {new }}\left(x_{v}\right)=(1-\alpha) \cdot m\left(x_{v}\right)+\alpha \cdot m^{\text {old }}\left(x_{v}\right) \quad m^{\text {new }}\left(x_{v}\right)=m\left(x_{v}\right)-\min _{x_{v}^{\prime} \in X_{v}} m\left(x_{v}^{\prime}\right)
$$

Normalization

Belief Propagation

Messages

$$
\begin{aligned}
& m_{v \rightarrow f}\left(x_{v}\right)=\sum_{f^{\prime} \in \operatorname{ne}(v) \backslash\{f\}} m_{f^{\prime} \rightarrow v}\left(x_{v}\right) \\
& m_{f \rightarrow v}\left(x_{v}\right)=\min _{x_{\mathrm{ne}(f) \backslash\{v\}} \in X_{\mathrm{ne}(f) \backslash\{v\}}} \varphi_{f}\left(x_{\mathrm{ne}(f)}\right)+\sum_{u \in \operatorname{ne}(f) \backslash\{v\}} m_{u \rightarrow f}\left(x_{v}\right)
\end{aligned}
$$

Damping
$m^{\text {new }}\left(x_{v}\right)=(1-\alpha) \cdot m\left(x_{v}\right)+\alpha \cdot m^{\text {old }}\left(x_{v}\right)$

Normalization

$$
m^{\text {new }}\left(x_{v}\right)=m\left(x_{v}\right)-\min _{x_{v}^{\prime} \in X_{v}} m\left(x_{v}^{\prime}\right)
$$

Works surprisingly good for cyclic models...

Belief Propagation

Message Schedule

- Parallel \rightarrow Loopy Belief Propagation (LBP) [Pearl, 1988]
- Sequential \rightarrow Sequential Belief Propagation (BPS) [Felzenszwalb and Huttenlocher, 2006]
- Informed \rightarrow Residual Belief Propagation (RBP)
[Elidan et al., 2006]

Belief Propagation

Message Schedule

- Parallel \rightarrow Loopy Belief Propagation (LBP) [Pearl, 1988]
- Sequential \rightarrow Sequential Belief Propagation (BPS) [Felzenszwalb and Huttenlocher, 2006]
- Informed \rightarrow Residual Belief Propagation (RBP)
[Elidan et al., 2006]
Message Update Rules (from a theoretical point of view)
- Original Updates: Optimize a non-convex objective function \rightarrow lack of convergence
- Modified Updates: Optimize a convex objective function \rightarrow we will come back to this point later

Belief Propagation

Message Schedule

- Parallel \rightarrow Loopy Belief Propagation (LBP)
[Pearl, 1988]
- Sequential \rightarrow Sequential Belief Propagation (BPS) [Felzenszwalb and Huttenlocher, 2006]
- Informed \rightarrow Residual Belief Propagation (RBP)
[Elidan et al., 2006]
Message Update Rules (from a theoretical point of view)
- Original Updates: Optimize a non-convex objective function \rightarrow lack of convergence
- Modified Updates: Optimize a convex objective function \rightarrow we will come back to this point later
[3.6 [Kschischang et al., 2001] \rightarrow generalization to other semi-rings

Reduction to Min-st-Cut/Max-Flow Problem (aka GraphCut)

Minimal st-Cut Problem

Definition: Min-st-Cut Problem

Given a weighted directed graph $G=(V, E, w)$ with a source-node $s \in V$ and a sink-node $t \in V$. Find the subset of edges $E^{\prime} \subset E$ with the minimal edge-weight $\sum_{e \in E^{\prime}} w(e)$ such that no path from s to t exists in $G^{\prime}=\left(V, E \backslash E^{\prime}\right)$.

Remark

If the edge-weights are non-negative the Min-st-Cut problem is efficiently solvable.

Max Flow Problem

Definition: Max-Flow Problem

Given a weighted directed graph $G=(V, E, w)$ with a source-node $s \in V$ and a sink-node $t \in V$. Find the maximal flow passing from s to t, where a positive flow smaller than $w(e)$ flow can be passed over the edge e and conservation holds.

Max-Flow Min-Cut Theorem

The maximum value of an st flow with capacity $w(e)$ is equal to the minimum st cuts with edge weights $w(e)$.

Max Flow Problem

Definition: Max-Flow Problem

Given a weighted directed graph $G=(V, E, w)$ with a source-node $s \in V$ and a sink-node $t \in V$. Find the maximal flow passing from s to t, where a positive flow smaller than $w(e)$ flow can be passed over the edge e and conservation holds.

Max-Flow Min-Cut Theorem

The maximum value of an st flow with capacity $w(e)$ is equal to the minimum st cuts with edge weights $w(e)$.

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms $(\beta+\gamma-\alpha-\delta \geq 0)$

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms ($\beta+\gamma-\alpha-\delta \geq 0$)

Reformulation:

Exact Inference Methods: Reformulate into Min-st-Cut

Requirements:

- Binary label-space
- Regular/submodular pairwise terms ($\beta+\gamma-\alpha-\delta \geq 0$)

Reformulation:

Reduction to Submodular Minimization

Submodular Minimization

$$
\arg \min _{S \in 2^{V}} f(S)
$$

Submodular Function
If V is a finite set, a submodular function is a set function $f: 2^{V} \rightarrow \mathbb{R}$, where 2^{V} denotes the power set of V, for which for every $S, T \subseteq V$ the inequality $f(S)+f(T) \geq f(S \cup T)+f(S \cap T)$ holds.

Minimizing Submodular Function

Finding the subset $S \subset V$ that minimize a submodular function is computable in polynomial time [Schrijver, 2000, lyer et al., 2013]

Relation to Binary Graphical Models
Let S be the set of variables taking label 0 and $V \backslash S$ the set of labels taking label 1.

ICML-2013 Tutorial by Stefanie Jegelka and Andreas Krause
(http://submodularity.org/)

Reduction to Perfect Matching via Max-Cut on Planar Graphs

Max Cut Problem

Definition:

Given a weighted undirected graph $G=(V, E, w)$ the Max-Cut problem is to find a cut $E^{\prime} \subset E$, that divide V into two sets, that the sum of the weights of cut edges is maximized.

Max Cut Problem

Definition:

Given a weighted undirected graph $G=(V, E, w)$ the Max-Cut problem is to find a cut $E^{\prime} \subset E$, that divide V into two sets, that the sum of the weights of cut edges is maximized.

Remark:
For planar graphs the Max Cut problem can be efficiently
solved [Kasteleyn, 1961, Fisher, 1961] [Globerson and Jaakkola, 2006,
Schraudolph and Kamenetsky, 2008] by a reduction to a Perfect Matching problem, e.g. Blossom V [Kolmogorov, 2009], on some expanded dual graph.

Reduction to a Max Cut Problem

$$
x_{i} \in\{0,1\} \quad \varphi_{f_{i j}}\left(x_{i}, x_{j}\right)=-\lambda_{i j} \mathbb{I}\left(x_{i} \neq x_{j}\right) \quad \varphi_{u_{i}}\left(x_{i}\right)=-\alpha_{i} \mathbb{I}\left(x_{i}=0\right)
$$

Planar Potts Model without Unaries

$x_{i}=$ cluster number of node i

Outer-Planar Potts Model with Unaries

$x_{i}= \begin{cases}1 & \text { if the edge }(t i) \text { is not cut } \\ 0 & \text { otherwise }\end{cases}$
(30) [Schraudolph and Kamenetsky, 2008]

Reduction to Minimal Multicut Problem

Minimal Multicut Problem

Definition:
Given a weighted undirected graph $G=(V, E, w)$ the Minimal Multicut problem is to find a cut $E^{\prime} \subset E$, that divide V into a unknown number of sets, that the sum of the weights of cut edges is minimized.

Minimal Multicut Problem

Definition:
Given a weighted undirected graph $G=(V, E, w)$ the Minimal Multicut problem is to find a cut $E^{\prime} \subset E$, that divide V into a unknown number of sets, that the sum of the weights of cut edges is minimized.

Remark:
The above multicut is not a cut, since the clustering is not 2-colorable!

Reduction to a Minimal Multicut Problem

$$
x_{i} \in\{0, \ldots, L\} \quad \varphi_{t_{i j}}\left(x_{i}, x_{j}\right)=\lambda_{i j} \mathbb{I}\left(x_{i} \neq x_{j}\right) \quad \varphi_{u_{i}}\left(x_{i}\right)=\alpha_{i ; x_{i}}
$$

Potts Model with $L=|V|$ and without Unaries \rightarrow Multicut

$x_{i}=$ cluster number of node i

Potts Model with Unaries \rightarrow Multiway Cut

$$
\begin{aligned}
& \left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
1 & \cdots & 1 & 0
\end{array}\right)\left(\begin{array}{c}
w_{t_{i} i} \\
\vdots \\
\vdots \\
w_{t_{L} i}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{i ; 1}-\alpha_{i ; 0} \\
\vdots \\
\vdots \\
\alpha_{i ; L}-\alpha_{i ; 0}
\end{array}\right) \\
& x_{i}= \begin{cases}l & \text { if the edge }\left(t_{i} i\right) \text { is not cut } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Reduction to Multicut/Multiway Cut Problem

```
Reduction to Max Flow
```

Label-space: Unary terms: Pairwise terms:
Problem structure:
Runtime complexity:
$x_{i} \in\{0,1\}$ arbitrary
$\varphi_{f_{i j}}\left(x_{i}, x_{j}\right)=\lambda_{i j} \mathbb{I}\left(x_{i} \neq x_{j}\right) \quad \lambda_{i j} \in \mathbb{R}^{+} \quad$ (submodular) arbitrary
polynomial

Reduction to Multicut/Multiway Cut Problem

Reduction to Max Flow			
Label-space:	$x_{i} \in\{0,1\}$		
Unary terms:	arbitrary		
Pairwise terms:	$\varphi_{f_{i j}}\left(x_{i}, x_{j}\right)=\lambda_{i j} \mathbb{I}\left(x_{i} \neq x_{j}\right)$	$\lambda_{i j} \in \mathbb{R}^{+}$	(submodular)
Problem structure:	arbitrary		
Runtime complexity:	polynomial		
Reduction to Max Cut			
Label-space:	$x_{i} \in\{0,1\}$		
Unary terms:	none ${ }^{1}$ or arbitrary ${ }^{2}$		
Pairwise terms:	$\varphi_{t_{i j}}\left(x_{i}, x_{j}\right)=\lambda_{i j} \mathbb{I}\left(x_{i} \neq x_{j}\right)$	$\lambda_{i j} \in \mathbb{R}$	
Problem structure:	planar ${ }^{1}$ or outer planar ${ }^{2}$		
Runtime complexity:	polynomial		

Reduction to Multicut/Multiway Cut Problem

Reduction to Multicut/Multiway Cut Problem

```
Reduction to Max Flow
```

Label-space:
Unary terms:
Pairwise terms:
Problem structure:
Runtime complexity:
$x_{i} \in\{0,1\}$
arbitrary
$\varphi_{t_{i j}}\left(x_{i}, x_{j}\right)=\lambda_{i j} \mathbb{I}\left(x_{i} \neq x_{j}\right) \quad \lambda_{i j} \in \mathbb{R}^{+} \quad$ (submodular) arbitrary
polynomial

```
Reduction to Max Cut
```

Label-space:
Unary terms:
Pairwise terms:
Problem structure:
Runtime complexity:
$x_{i} \in\{0,1\}$
none ${ }^{1}$ or arbitrary ${ }^{2}$
$\varphi_{t_{i j}}\left(x_{i}, x_{j}\right)=\lambda_{i j} \mathbb{I}\left(x_{i} \neq x_{j}\right) \quad \lambda_{i j} \in \mathbb{R}$
planar ${ }^{1}$ or outer planar ${ }^{2}$
polynomial

```
Reduction to Multicut / Multiway Cut
```

Label-space:
Unary terms:
Pairwise terms:
Problem structure:
Runtime complexity:
$x_{i} \in\{0, \ldots, L\}$
none or arbitrary

```
```

$\varphi_{f_{i j}}\left(x_{i}, x_{j}\right)=\lambda_{i j} \mathbb{I}\left(x_{i} \neq x_{j}\right) \quad \lambda_{i j} \in \mathbb{R}$

```
```

```
```

$\varphi_{f_{i j}}\left(x_{i}, x_{j}\right)=\lambda_{i j} \mathbb{I}\left(x_{i} \neq x_{j}\right) \quad \lambda_{i j} \in \mathbb{R}$

```
```

arbitrary
exponential in the worst case, but often tractable in practice

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\begin{aligned}
& \min _{y \in[0,1]^{E}} \sum_{e \in E} w_{e} \cdot y_{e} \\
& \text { s.t. } A y \leq b
\end{aligned}
$$

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\begin{aligned}
& \min _{y \in[0,1]^{E}} \sum_{e \in E} w_{e} \cdot y_{e} \\
& \text { s.t. } \quad A y \leq b
\end{aligned}
$$

This is no valid multicut! $\Rightarrow A y \leq b$

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\min _{y \in[0,1]^{E}} \sum_{e \in E} w_{e} \cdot y_{e}
$$

$$
\text { s.t. } A y \leq b
$$

This is no valid multicut! $\Rightarrow A y \leq b$

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\min _{y \in[0,1]^{E}} \sum_{e \in E} w_{e} \cdot y_{e}
$$

s.t. $A y \leq b$
exponential size
Idea of Cutting-Plane Methods

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\min _{y \in[0,1]^{E}} \sum_{e \in E} w_{e} \cdot y_{e}
$$

s.t. $A y \leq b$
exponential size
Idea of Cutting-Plane Methods

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\min _{y \in[0,1]^{E}} \sum_{e \in E} w_{e} \cdot y_{e}
$$

s.t. $A y \leq b$
exponential size
Idea of Cutting-Plane Methods

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\begin{array}{ll}
\min _{y \in[0,1]^{E}} & \sum_{e \in E} w_{e} \cdot y_{e} \\
\text { s.t. } & A y \leq b \\
\text { exponential size }
\end{array}
$$

Idea of Cutting-Plane Methods

- Separation Procedure:

Find violated constraints

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\min _{y \in[0,1]^{E}} \sum_{e \in E} w_{e} \cdot y_{e}
$$

$$
\text { s.t. } \quad A y \leq b
$$

exponential size
Idea of Cutting-Plane Methods

- Separation Procedure: Find violated constraints

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\begin{array}{ll}
\min _{y \in[0,1]^{E}} & \sum_{e \in E} w_{e} \cdot y_{e} \\
\text { s.t. } & A y \leq b \\
\text { exponential size }
\end{array}
$$

Idea of Cutting-Plane Methods

- Separation Procedure: Find violated constraints
- The separation procedure is as hard as the original problem or the original problem is as hard as the separation procedure
(8) Ellipsoid method for combinatorial optimization [Grötschel et al., 1981]

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\begin{array}{ll}
\min _{y \in[0,1]^{E}} & \sum_{e \in E} w_{e} \cdot y_{e} \\
\text { s.t. } & A y \leq b \\
\text { exponential size }
\end{array}
$$

Idea of Cutting-Plane Methods

- Separation Procedure: Find violated constraints
- The separation procedure is as hard as the original problem or the original problem is as hard as the separation procedure
(8) Ellipsoid method for combinatorial optimization [Grötschel et al., 1981]

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\min _{y \in[0,1]^{E}} \sum_{e \in E} w_{e} \cdot y_{e}
$$

$$
\text { s.t. } A y \leq b
$$

exponential size
Idea of Cutting-Plane Methods

ILP Formulation

$$
\begin{aligned}
\min _{y \in[0,1]^{E}} & \sum_{e \in E} w_{e} \cdot y_{e} \\
\text { s.t. } & \tilde{A} y \leq \tilde{b} \\
& y \in\{0,1\}^{E}
\end{aligned}
$$

- Separation Procedure: Find violated constraints
- The separation procedure is as hard as the original problem or the original problem is as hard as the separation procedure
(6) Ellipsoid method for combinatorial optimization [Grötschel et al., 1981]

Solving a Multicut/Multiway Cut Problem by an (I)LP

LP Formulation

$$
\begin{array}{ll}
\min _{y \in[0,1]^{E}} & \sum_{e \in E} w_{e} \cdot y_{e} \\
\text { s.t. } & A y \leq b \\
& { }_{\text {exponential size }}
\end{array}
$$

Idea of Cutting-Plane Methods

ILP Formulation

$$
\begin{array}{ll}
\min _{y \in[0,1]^{E}} & \sum_{e \in E} w_{e} \cdot y_{e} \\
\text { s.t. } & \tilde{A} y \leq \tilde{b} \\
& y \in\{0,1\}^{E}
\end{array}
$$

- Separation Procedure: Find violated constraints
- The separation procedure is as hard as the original problem or the original problem is as hard as the separation procedure
(6) Ellipsoid method for combinatorial optimization [Grötschel et al., 1981]

Reduction to Shortest Path Search

Reduction to Shortest Path Search

$\min _{x \in X} \sum_{f \in F} \varphi_{f}(x) \Leftrightarrow$ Finding shortest path from s to t

Reduction to Shortest Path Search

$\min _{x \in X} \sum_{f \in F} \varphi_{f}(x) \Leftrightarrow$ Finding shortest path from s to t

Reduction to Shortest Path Search

edge weights

Useful Ideas

Reduction to Shortest Path Search

edge weights

Useful Ideas

- Use an implicit representation of the graph.

Reduction to Shortest Path Search

Useful Ideas

- Use an implicit representation of the graph.
- Use Best First Search Methods, e.g. A^{*}
\rightarrow underestimate minimal future cost on the path to the node t by:

Reduction to Shortest Path Search

Useful Ideas

- Use an implicit representation of the graph.
- Use Best First Search Methods, e.g. A^{*}
\rightarrow underestimate minimal future cost on the path to the node t by:
- Tree-based heuristics [Bergtholdt t al., 2010]

Reduction to Shortest Path Search

Useful Ideas

- Use an implicit representation of the graph.
- Use Best First Search Methods, e.g. A^{*}
\rightarrow underestimate minimal future cost on the path to the node t by:
- Tree-based heuristics [Bergtholdt et al., 2010]
- LP-based heuristics [Schlesinger, 2009]

Reduction to Shortest Path Search

edge weights

Useful Ideas

- Use an implicit representation of the graph.
- Use Best First Search Methods, e.g. A^{*}
\rightarrow underestimate minimal future cost on the path to the node t by:
- Tree-based heuristics [Bergtholdt et al., 2010]
- LP-based heuristics [Schlesinger, 2009]

Reduction to Shortest Path Search

edge weights

Useful Ideas

- Use an implicit representation of the graph.
- Use Best First Search Methods, e.g. A^{*}
\rightarrow underestimate minimal future cost on the path to the node t by:
- Tree-based heuristics [Bergtholdt et al., 2010]
- LP-based heuristics [Schlesinger, 2009]

Reduction to Shortest Path Search

Useful Ideas

- Use an implicit representation of the graph.
- Use Best First Search Methods, e.g. A^{*}
\rightarrow underestimate minimal future cost on the path to the node t by:
- Tree-based heuristics [Bergtholdt t al., 2010]
- LP-based heuristics [Schlesinger, 2009]

Reduction to Shortest Path Search

edge weights

Useful Ideas

- Use an implicit representation of the graph.
- Use Best First Search Methods, e.g. A^{*}
\rightarrow underestimate minimal future cost on the path to the node t by:
- Tree-based heuristics [Bergtholdt et al., 2010]
- LP-based heuristics [Schlesinger, 2009]

Reduction to Shortest Path Search

Useful Ideas

- Use an implicit representation of the graph.
- Use Best First Search Methods, e.g. A^{*}
\rightarrow underestimate minimal future cost on the path to the node t by:
- Tree-based heuristics [Bergtholdt t al., 2010]
- LP-based heuristics [Schlesinger, 2009]

MAP Inference as Integer Linear Program

MAP inference as Integer Linear Program

$$
\begin{array}{ll}
& \min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } & A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{array}
$$

MAP inference as Integer Linear Program

$$
\begin{array}{ll}
\min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } & A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{array}
$$

MAP inference as Integer Linear Program

$$
\begin{array}{ll}
\min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } & A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{array}
$$

MAP inference as Integer Linear Program

$$
\begin{array}{ll}
\min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } & A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{array}
$$

MAP inference as Integer Linear Program

$$
\begin{array}{ll}
\min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } & A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{array}
$$

MAP inference as Integer Linear Program

$$
\begin{array}{ll}
\min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } & A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{array}
$$

MAP inference as Integer Linear Program

$$
\begin{array}{ll}
\min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } & A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{array}
$$

MAP inference as Integer Linear Program

$$
\begin{aligned}
& \min _{\mu}\langle\theta, \mu\rangle \\
& \text { s.t. } A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{aligned}
$$

MAP inference as Integer Linear Program

$$
\left.\begin{array}{c}
\min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } A \mu \leq b \\
\mu \in\{0,1\}^{N}
\end{array}\right]
$$

MAP inference as Integer Linear Program

$$
\begin{aligned}
& \min _{\mu}\langle\theta, \mu\rangle \\
& \text { s.t. } A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{aligned}
$$

MAP inference as Integer Linear Program

$$
\begin{aligned}
& \min _{\mu}\langle\theta, \mu\rangle \\
& \text { s.t. } A \mu \leq b \\
& \mu \in\{0,1\}^{N}
\end{aligned}
$$

MAP inference as Integer Linear Program

$$
\min _{\mu}\langle\theta, \mu\rangle
$$

s.t. $\quad A \mu \leq b$

$$
\mu \in\{0,1\}^{N}
$$

Fine, but in general ILPs cannot be solved in polynomial time!

$$
\forall v \in V:
$$

$$
\sum_{x_{v} \in X_{v}} \mu_{v ; x_{c}}=1
$$

$$
\stackrel{\mu \in\{0,1\}^{N}}{\Rightarrow} \sum_{x_{v} \in X_{v}} \mathbb{I}\left(\mu_{v ; x_{v}}=1\right)=1
$$

$$
\forall f \in F, v \in n e(f):
$$

$$
\sum_{x_{n e(f) \backslash v} \in X_{n e(f) \backslash v}} \mu_{f ; x_{n e(f)}}=\mu_{v ; x_{v}}
$$

$$
\mu \stackrel{\{0,1\}^{N}}{\Rightarrow} \mu_{f ; x_{n e(f)}}=\prod_{v \in n e(f)} \mu_{v, x_{v}}
$$

MAP inference as Integer Linear Program

Reasons why ILPs had been ignored

- Worst case complexity is exponential
- ILPs are often very memory consuming
- Good ILP-solvers are expensive

MAP inference as Integer Linear Program

Reasons why ILPs had been ignored

- Worst case complexity is exponential
- ILPs are often very memory consuming
- Good ILP-solvers are expensive

Reasons why ILPs are Relevant

- Worst case complexity does not always matter!
- Highly optimized commercial solvers (e.g. CPLEX, Gurobi) are freely available for academic use.
- ILPs can compute the global optimal solution.
- No limitations on the model . . if we ignore memory requirements.
- Always a good baseline for small problems.

MAP inference as Integer Linear Program

Reasons why ILPs had been ignored

- Worst case complexity is exponential
- ILPs are often very memory consuming
- Good ILP-solvers are expensive

Reasons why ILPs are Relevant

- Worst case complexity does not always matter!
- Highly optimized commercial solvers (e.g. CPLEX, Gurobi) are freely available for academic use.
- ILPs can compute the global optimal solution.
- No limitations on the model . . if we ignore memory requirements.
- Always a good baseline for small problems.

How ILP-solvers works

- Branch and Bound
- Searching for generic constraints
- The black magic is to combine all of this

Finally some Simple Tricks ...

Tricks to make Inference more Tractable

Ring

Tricks to make Inference more Tractable

Ring

- Solve the acyclic problem for each possible labeling of x_{8}.
- Select the best solution from all these problems.

Tricks to make Inference more Tractable

Partially Acyclic Graph

Tricks to make Inference more Tractable

Partially Acyclic Graph

- Presolve acyclic substructures by dynamic programming.
- Solve core problem, with acyclic part replaced by unary factor
- Calculate labeling for acyclic part as for dynamic programming given the solution of the core problem.
(Kappes et al., 2013]

Tricks to make Inference more Tractable

Permuted Submodular

Tricks to make Inference more Tractable

Permuted Submodular

not regular $\xrightarrow{?}$ not submodular

Tricks to make Inference more Tractable

Permuted Submodular

not regular $\xrightarrow{?}$ not submodular

regular \rightarrow submodular

- The reformulation is variant to label permutation \rightarrow the order of labels matters!
- Reorder labels
- Solve max-flow or submodular-minimization problem
- Undo reorder for solution
[Schlesinger, 2007, Swoboda et al., 2013]

Inference Methods based on Relaxations

MAP Inference as Integer Linear Program

$$
(\arg) \min _{x \in \mathcal{X}} \sum_{v \in V} \theta_{v}\left(x_{v}\right)+\sum_{u v \in E} \theta_{u v}\left(x_{u}, x_{v}\right)
$$

MAP Inference as Integer Linear Program

MAP Inference as Integer Linear Program

$$
\begin{array}{r}
(\arg) \min _{x \in \mathcal{X}} \sum_{v \in V} \theta_{v}\left(x_{v}\right)+\sum_{u v \in E} \theta_{u v}\left(x_{u}, x_{v}\right)=(\arg) \min _{x \in \mathcal{X}}\langle\theta, \delta(x)\rangle \\
\delta(x)=\underbrace{100}_{u} \underbrace{010000000}_{u v} \underbrace{010}_{v}
\end{array}
$$

(arg) $\min _{x \in \mathcal{X}}\langle\theta, \delta(x)\rangle$

MAP Inference as Integer Linear Program

$$
\begin{array}{r}
(\arg) \min _{x \in \mathcal{X}} \sum_{v \in V} \theta_{v}\left(x_{v}\right)+\sum_{u v \in E} \theta_{u v}\left(x_{u}, x_{v}\right)=(\arg) \min _{x \in \mathcal{X}}\langle\theta, \delta(x)\rangle \\
\delta(x)=\underbrace{100} \underbrace{010000000}_{u v} \underbrace{010}_{v}
\end{array}
$$

$(\arg) \min _{\mu \in \operatorname{conv}(\mathcal{X})}\langle\theta, \mu\rangle$

MAP Inference as Integer Linear Program

$$
(\arg) \min _{x \in \mathcal{X}} \sum_{v \in V} \theta_{v}\left(x_{v}\right)+\sum_{u v \in E} \theta_{u v}\left(x_{u}, x_{v}\right)=(\arg) \min _{x \in \mathcal{X}}\langle\theta, \delta(x)\rangle
$$

$$
\begin{gathered}
(\arg) \min _{\mu \in \operatorname{conv}(\delta(\mathcal{X}))}\langle\theta, \mu\rangle \\
\operatorname{conv}(\delta(\mathcal{X})) \Rightarrow A \mu \geq b
\end{gathered}
$$

Relaxed MAP Inference

$$
\begin{aligned}
& \min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } \mu= & \sum_{x \in \mathcal{X}} \alpha_{x} \delta(x) \\
& \sum_{x \in \mathcal{X}} \alpha_{x}=1 \\
& \alpha_{x} \geq 0, x \in \mathcal{X}
\end{aligned}
$$

Relaxed MAP Inference

$$
\begin{aligned}
& \min _{\mu}\langle\theta, \mu\rangle \\
\text { s.t. } \mu= & \sum_{x \in \mathcal{X}} \alpha_{x} \delta(x) \\
& \sum_{x \in \mathcal{X}} \alpha_{x}=1 \\
& \alpha_{x} \geq 0, x \in \mathcal{X}
\end{aligned}
$$

Exponentially many constraints!

Relaxed MAP Inference

$\min _{\mu}\langle\theta, \mu\rangle$
s.t. $\mu=\sum_{x \in \mathcal{X}} \alpha_{x} \delta(x)$
$\sum_{x \in \mathcal{X}} \alpha_{x}=1$

$$
\alpha_{x} \geq 0, x \in \mathcal{X}
$$

Exponentially many constraints!

$\min _{\mu}\langle\theta, \mu\rangle$
s.t. $A \mu \geq b, A$ is small!

Relaxed MAP Inference

$\min _{\mu}\langle\theta, \mu\rangle$
s.t. $\mu=\sum_{x \in \mathcal{X}} \alpha_{x} \delta(x)$
$\sum_{x \in \mathcal{X}} \alpha_{x}=1$

$$
\alpha_{x} \geq 0, x \in \mathcal{X}
$$

Exponentially many constraints!

$\min _{\mu}\langle\theta, \mu\rangle$
s.t. $A \mu \geq b, A$ is small!

$$
\begin{aligned}
& \forall v \in V: \quad \sum_{x_{v} \in X_{v}} \mu_{v ; x_{c}}=1 \\
& \forall f \in F, v \in n e(f): \\
& \quad \sum_{x_{n e(f) \backslash v} \in X_{\text {ne(f) }}} \mu_{f ; x_{n e(f)}}=\mu_{v ; x_{v}} \\
& \quad \mu \in\{0,1\}^{N} \mu \in[0,1]^{N}
\end{aligned}
$$

Relaxed MAP Inference

$\min _{\mu}\langle\theta, \mu\rangle$

$$
\begin{aligned}
& \text { s.t. } \mu= \sum_{x \in \mathcal{X}} \alpha_{x} \delta(x) \\
& \sum_{x \in \mathcal{X}} \alpha_{x}=1 \\
& \alpha_{x} \geq 0, x \in \mathcal{X}
\end{aligned}
$$

Exponentially many constraints!
μ - non-relaxed solution

\Rightarrow
$\min _{\mu}\langle\theta, \mu\rangle$
s.t. $A \mu \geq b, A$ is small!

$$
\begin{aligned}
& \forall v \in V: \quad \sum_{x_{v} \in X_{v}} \mu_{v ; x_{c}}=1 \\
& \forall f \in F, v \in n e(f): \\
& \quad \sum_{x_{\text {ne(f) }} \in X_{\text {ne(f)\v}}} \mu_{f ; x_{n e(f)}}=\mu_{v ; x_{v}} \\
& \quad \mu \in\{0,1\}^{N} \mu \in[0,1]^{N}
\end{aligned}
$$

$\Leftarrow \quad \mu$ - relaxed solution

Relaxed MAP Inference

Local Polytope Complexity

\mid ㄴ\|	$\|X\|$	vertices in $\mathbb{L}(M)$
2	8	12
3	27	207
4	64	8.992
5	125	853.725

Why dedicated solvers needed for the relaxed inference?

Pascal VOC 2012 semantic segmentation model $\approx 500 \times 300 \times 21$ labels

$2 \cdot 10^{6}$ variables
$>10^{9}$ variables

Why dedicated solvers needed for the relaxed inference?

Pascal VOC 2012 semantic segmentation model $\approx 500 \times 300 \times 21$ labels

$2 \cdot 10^{6}$ variables
$>10^{9}$ variables

Standard LP solvers (simplex, interior point) do not scale well!

Lagrangean (Dual) Decomposition

Certain problems are easily solvable (e.g. acyclic with dynamic programming):

Optimization by Dynamic Programming

$$
\min _{x_{1}} \varphi_{f_{1}}\left(x_{1}\right)+\min _{x_{2}} \varphi_{f_{12}}\left(x_{1}, x_{2}\right)+\varphi_{t_{2}}\left(x_{2}\right)+\varphi_{F_{2}}\left(x_{2}\right)
$$

Lagrangean (Dual) Decomposition

Certain problems are easily solvable (e.g. acyclic with dynamic programming):

Optimization by Dynamic Programming

$$
\min _{x_{1}} \varphi_{t_{1}}\left(x_{1}\right)+\min _{x_{2}} \varphi_{t_{12}}\left(x_{1}, x_{2}\right)+\varphi_{t_{2}}\left(x_{2}\right)+\varphi_{F_{2}}\left(x_{2}\right)
$$

What about decomposing the problem into solvable subproblems?

Lagrangean (Dual) Decomposition

Lagrangean (Dual) Decomposition

$$
\theta_{v}\left(x_{v}\right) \quad=\quad \frac{\theta_{v}\left(x_{v}\right)}{2}+\lambda_{v}\left(x_{v}\right)
$$

$+$
$E\left(\theta^{r}, x\right)$

Lagrangean (Dual) Decomposition

$$
\theta_{v}\left(x_{v}\right)
$$

$\min _{x \in \mathcal{X}} E(\theta, x)$
$+$
$+$

$$
=
$$

$$
\begin{aligned}
& = \\
& =
\end{aligned}
$$

$=\quad \frac{\theta_{v}\left(x_{v}\right)}{2}+\lambda_{v}\left(x_{v}\right)$
$+$
$\frac{\theta_{v}\left(x_{v}\right)}{2}-\lambda_{v}\left(x_{v}\right)$

$$
E\left(\theta^{r}, x\right)
$$

$\stackrel{H \lambda}{2}$
$+$

Lagrangean (Dual) Decomposition

Lower Bound Optimization

$$
\begin{gathered}
\theta^{c}=\frac{\theta_{v}}{2}+\lambda_{v} ; \quad \theta^{r}=\frac{\theta_{v}}{2}-\lambda_{v} \\
\max _{\lambda}\left[\min _{x^{c} \in \mathcal{X}} E\left(\theta^{c}(\lambda), x^{c}\right)+\min _{x^{r} \in \mathcal{X}} E\left(\theta^{r}(\lambda), x^{r}\right)\right]
\end{gathered}
$$

Lower Bound Optimization

$$
\theta^{c}=\frac{\theta_{v}}{2}+\lambda_{v} ; \quad \theta^{r}=\frac{\theta_{v}}{2}-\lambda_{v}
$$

Lower Bound Optimization

Lower Bound Optimization

Lower Bound Optimization

Optimization:

- convex
- non-smooth
- large-scale

First-Order Convex Optimization

update rule	subproblem	rate	note
sub-gradient	MAP-inference	$O\left(\frac{1}{\epsilon^{2}}\right)$	step-size selection
mirror-descent	MAP-inference	$O\left(\frac{1}{\epsilon^{2}}\right)$	
bundle	MAP-inference	$O\left(\frac{1}{\epsilon^{2}}\right)$	additional QP
coord. ascent	min-marginals	unknown	no optimum guarantee
smooth coord. ascent	probab.-marginals	unknown	exp. operation
smooth acc. ascent	marginalization	$O\left(\frac{1}{\epsilon}\right)$	exp. operation
proximal (e.g. ADMM)	proximal inference	$O\left(\frac{1}{\epsilon}\right)$	

First-Order Convex Optimization: Subgradient Method

First-Order Convex Optimization: Subgradient Method

First-Order Convex Optimization: Subgradient Method

First-Order Convex Optimization: Subgradient Method

$$
\begin{aligned}
D(\lambda)=\min _{x^{c}}\left\langle\frac{\theta}{2}+\lambda, \delta\left(x^{c}\right)\right\rangle+\min _{x^{r}}\left\langle\frac{\theta}{2}-\lambda,\right. & \left.\delta\left(x^{r}\right)\right\rangle \\
& \Rightarrow \partial D(\lambda)=\delta\left(x^{* c}\right)-\delta\left(x^{* r}\right)
\end{aligned}
$$

First-Order Convex Optimization: Subgradient Method

gradient ∇D
Gradient ascent:

$$
\begin{gathered}
\lambda^{t+1}=\lambda^{t}+\tau \nabla D \\
L \geq \tau>0
\end{gathered}
$$

$$
D(\lambda)=\min _{x^{c}}\left\langle\frac{\theta}{2}+\lambda, \delta\left(x^{c}\right)\right\rangle+\min _{x^{r}}\left\langle\frac{\theta}{2}-\lambda, \delta\left(x^{r}\right)\right\rangle
$$

$$
\Rightarrow \partial D(\lambda)=\delta\left(x^{* c}\right)-\delta\left(x^{* r}\right)
$$

+ based on MAP inference

First-Order Convex Optimization: Subgradient Method

gradient ∇D
Gradient ascent:

$$
\begin{gathered}
\lambda^{t+1}=\lambda^{t}+\tau \nabla D \\
L \geq \tau>0
\end{gathered}
$$

$$
D(\lambda)=\min _{x^{c}}\left\langle\frac{\theta}{2}+\lambda, \delta\left(x^{c}\right)\right\rangle+\min _{x^{r}}\left\langle\frac{\theta}{2}-\lambda, \delta\left(x^{r}\right)\right\rangle
$$

+ based on MAP inference
- sensible to τ^{t}

Subgradient method:

$\lambda^{t+1}=\lambda^{t}+\tau^{t} \partial D$
$\tau^{t}>0, \tau^{t} \rightarrow 0, \sum_{t=1}^{\infty} \tau^{t}=\infty$

$$
\Rightarrow \partial D(\lambda)=\delta\left(x^{* c}\right)-\delta\left(x^{* r}\right)
$$

First-Order Convex Optimization: Subgradient Method

gradient ∇D
Gradient ascent:

$$
\begin{gathered}
\lambda^{t+1}=\lambda^{t}+\tau \nabla D \\
L \geq \tau>0
\end{gathered}
$$

$$
D(\lambda)=\min _{x^{c}}\left\langle\frac{\theta}{2}+\lambda, \delta\left(x^{c}\right)\right\rangle+\min _{x^{r}}\left\langle\frac{\theta}{2}-\lambda, \delta\left(x^{r}\right)\right\rangle
$$

$$
\Rightarrow \partial D(\lambda)=\delta\left(x^{* c}\right)-\delta\left(x^{* r}\right)
$$

+ based on MAP inference
- sensible to τ^{t}
- slow: converges as $O\left(\frac{1}{\epsilon^{2}}\right)$

$$
\epsilon=0.1 \Rightarrow t=100
$$

$$
\epsilon=0.01 \Rightarrow t=10000
$$

First-Order Convex Optimization: Bundle Method

First-Order Convex Optimization: Bundle Method

Bundle:

$\lambda^{t+1}=\arg \min _{\lambda} \widehat{D}(\lambda)+\gamma^{t}\left\|\lambda-\lambda^{t}\right\|^{2}$

$$
\gamma^{t} \rightarrow 0
$$

Subgradient:

$$
\begin{gathered}
\lambda^{t+1}=\lambda^{t}+\tau^{t} \partial D \\
\tau^{t} \rightarrow 0
\end{gathered}
$$

First-Order Convex Optimization: Bundle Method

Bundle:
$\lambda^{t+1}=\arg \min _{\lambda} \widehat{D}(\lambda)+\gamma^{t}\left\|\lambda-\lambda^{t}\right\|^{2}$
$\gamma^{t} \rightarrow 0$
(30appes et al., 2012]

$$
\begin{gathered}
\lambda^{t+1}=\lambda^{t}+\tau^{t} \partial D \\
\tau^{t} \rightarrow 0
\end{gathered}
$$

(30) [Storvik and Dahl, 2000,

Schlesinger and Giginyak, 2007,
Komodakis et al., 2011]

+ based on MAP inference
+ less sensible to γ^{t}
+ much faster convergence in practice
- can be slow: worst-case complexity $O\left(\frac{1}{\epsilon^{2}}\right)$

First-Order Convex Optimization: Coordinate Ascent

$$
\begin{array}{r}
\lambda_{i}^{t+1}=\arg \min _{\lambda_{i}} D\left(\lambda_{1}^{t}, \ldots, \lambda_{i}, \ldots, \lambda_{N}^{t}\right) \\
i=1, \ldots, N
\end{array}
$$

First-Order Convex Optimization: Coordinate Ascent

$$
\begin{array}{r}
\lambda_{i}^{t+1}=\arg \min _{\lambda_{i}} D\left(\lambda_{1}^{t}, \ldots, \lambda_{i}, \ldots, \lambda_{N}^{t}\right) \\
i=1, \ldots, N
\end{array}
$$

First-Order Convex Optimization: Coordinate Ascent

$\lambda_{i}^{t+1}=\arg \min _{\lambda_{i}} D\left(\lambda_{1}^{t}, \ldots, \lambda_{i}, \ldots, \lambda_{N}^{t}\right)$

$$
i=1, \ldots, N
$$

+ requires MAP - inference (min-marginals)
+ can be very efficiently implemented
- can get stuck
- convergence rate is unknown

Inference algorithms:
TRW-S: [Kolmogorov, 2006]
SRMP: [Kolmogorov, 2015]
Max-Sum-Diffusion (MSD): [Schlesinger and Antoniuk, 2011, Werner, 2007]
MPLP: [Globerson and Jaakkola, 2007]
Norm-Product BP (NPBP): [Hazan and Shashua, 2010]

First-Order Convex Optimization: Smoothing

First-Order Convex Optimization: Smoothing

$$
\begin{aligned}
& \min \quad \rightarrow \text { "soft" min } \\
& \min _{x^{c}} E^{c}\left(x^{c}\right) \rightarrow-T \log \sum_{x^{c}} \exp \left(-E^{c}\left(x^{c}\right) / T\right) \\
& \text { MAP-inf. } \rightarrow \text { Probabilistic inf. }
\end{aligned}
$$

First-Order Convex Optimization: Smoothing

First-Order Convex Optimization: Smoothing

$$
\begin{array}{ll}
\min & \rightarrow \text { "soft" min } \\
\min _{x^{c}} E^{c}\left(x^{c}\right) & \rightarrow-T \log \sum_{x^{c}} \exp \left(-E^{c}\left(x^{c}\right) / T\right) \\
\text { MAP-inf. } & \rightarrow \text { Probabilistic inf. }
\end{array}
$$

+ accelerated gradient ascent converges as $O\left(\frac{1}{\epsilon}\right)$

$$
\begin{aligned}
& \epsilon=0.1 \Rightarrow t=10 \\
& \epsilon=0.01 \Rightarrow t=100
\end{aligned}
$$

+ coordinate ascent does not gut stuck!

First-Order Convex Optimization: Smoothing

$$
\begin{aligned}
& \min \quad \rightarrow \text { "soft" min } \\
& \min _{x^{c}} E^{c}\left(x^{c}\right) \rightarrow-T \log \sum_{x^{c}} \exp \left(-E^{c}\left(x^{c}\right) / T\right) \\
& \text { MAP-inf. } \rightarrow \text { Probabilistic inf. }
\end{aligned}
$$

+ accelerated gradient ascent converges as $O\left(\frac{1}{\epsilon}\right)$

$$
\begin{aligned}
& \epsilon=0.1 \Rightarrow t=10 \\
& \epsilon=0.01 \Rightarrow t=100
\end{aligned}
$$

+ coordinate ascent does not gut stuck!
+/- Requires probabilistic inference: tractable for acyclic subproblems

First-Order Convex Optimization: Smoothing

$$
\begin{array}{ll}
\min & \rightarrow \text { "soft" min } \\
\min _{x^{c}} E^{c}\left(x^{c}\right) & \rightarrow-T \log \sum_{x^{c}} \exp \left(-E^{c}\left(x^{c}\right) / T\right) \\
\text { MAP-inf. } & \rightarrow \text { Probabilistic inf. }
\end{array}
$$

+ accelerated gradient ascent converges as $O\left(\frac{1}{\epsilon}\right)$

$$
\epsilon=0.1 \Rightarrow t=10
$$

$$
\epsilon=0.01 \Rightarrow t=100
$$

+ coordinate ascent does not gut stuck!
+/- Requires probabilistic inference: tractable for acyclic subproblems
- Expensive 'exp' and 'log' operations

First-Order Convex Optimization: Smoothing

$$
\begin{aligned}
& \min \quad \rightarrow \text { "soft" min } \\
& \min _{x^{c}} E^{c}\left(x^{c}\right) \rightarrow-T \log \sum_{x^{c}} \exp \left(-E^{c}\left(x^{c}\right) / T\right) \\
& \text { MAP-inf. } \rightarrow \text { Probabilistic inf. }
\end{aligned}
$$

+ accelerated gradient ascent converges as $O\left(\frac{1}{\epsilon}\right)$

$$
\begin{aligned}
& \epsilon=0.1 \Rightarrow t=10 \\
& \epsilon=0.01 \Rightarrow t=100
\end{aligned}
$$

+ coordinate ascent does not gut stuck!
+/- Requires probabilistic inference: tractable for acyclic subproblems
- Expensive 'exp' and 'log' operations

Used to approximate probabilistic inference on the master graph.

Smoothing theory: [Nesterov, 2005] Inference algorithms:
Nesterov: [Savchynskyy et al., 2011]
ADSal: [Savchynskyy et al., 2012]
See also: [Johnson et al., 2007, Werner, 2009, Meshi et al., 2012]

Rounding, Obtaining a Labeling

Rounding, Obtaining a Labeling

Column- or row-wise labeling as a solution

Rounding, Obtaining a Labeling

Column- or row-wise labeling as a solution

Rounding, Obtaining a Labeling

Column- or row-wise labeling as a solution

Rounding: Alternatives

How to round?

- Best of integer solutions, collected over iterations

- Local rounding: deterministic/probabilistic: $\mu \geq 0.5$?
[Ravikumar et al., 2010, Kleinberg and Tardos, 2002]
- Sequential conditional rounding (TRW-S) [Kolmogorov, 2006]

Rounding: Alternatives

How to round?

- Best of integer solutions, collected over iterations

- Local rounding: deterministic/probabilistic: $\mu \geq 0.5$?
[Ravikumar et al., 2010, Kleinberg and Tardos, 2002]
- Sequential conditional rounding (TRW-S)
[Kolmogorov, 2006]

There is no single best method. Most of methods - heuristics.

Tree Agreement

Tree Agreement

Strong tree agreement in each node $=$ solution of the non-relaxed problem

Tree Agreement

In general: only weak tree agreement holds in the limit

- How to obtain the primal relaxed solution:[Savchynskyy and Schmidt, 2014]

Acyclic Subgraphs \Rightarrow Local Polytope Relaxation

Acyclic subgraphs for decomposition:

	subgraph	problematic solvers
	1-edge graph	no
	chain	proximal inference

Acyclic Subgraphs \Rightarrow Local Polytope Relaxation

Acyclic subgraphs for decomposition:

	subgraph	problematic solvers
	1-edge graph	no
	chain	proximal inference

Theorem ([Komodakis et al., 2011])
Arbitrary covering acyclic subgraphs \Rightarrow the same local polytope relaxation.

Which decomposition is better? Smooth. coord. ascent, grid models

Synthetic uniformly generated 200×100 grid, 5 labels

Which decomposition is better? Smooth. coord. ascent, grid models

Color segmentation, Potts model, 360×240 grid, 12 labels

Which decomposition is better? Smooth. coord. ascent, grid models

Stereo reconstruction (tsukuba), 384×288 grid, 16 labels

Which decomposition is better? Smooth. coord. ascent, grid models

Bigger subproblems \Rightarrow less iterations!

Which update rule is better? Stereo, Columns+Rows decomposition

Which update rule is better? Stereo, Columns+Rows decomposition

Local Polytope: Algorithm's Overview

Local Polytope: Algorithm's Overview

Beyond Acyclic Subproblems

(3trandmark and Kahl, 2010]

Beyond Acyclic Subproblems

(306) [Kappes et al., 2010]

Beyond Acyclic Subproblems

Beyond Acyclic Subproblems

(a) 1-fan

(b) 4-fan

(c) 5-fan

Hint: Subgraphs, where LP relaxation is loose, are preferable as subproblems.

Partial Optimality

Partial Optimality: Definition

Partial Optimality: Definition

LP relaxation

- Is the integer part of the relaxed solution optimal?
- Can we eliminate labels with zero weight?

In general - no, but sometimes - yes.

2-Label Local Polytope, QPBO

Recall:

Min-st-Cut
(30) [Boros and Hammer, 2002, Rother et al., 2007a]

2-Label Local Polytope, QPBO

Min-st-Cut
[Boros and Hammer, 2002, Rother et al., 2007a]

2-Label Local Polytope, QPBO

- Is the integer part of the relaxed solution optimal? - YES

2-Label Local Polytope, QPBO

- Is the integer part of the relaxed solution optimal? - YES
- Can we eliminate labels with zero weight? - YES

What about ≥ 3 labels?

a) MQPBO

MQPBO-method (submodular relaxation) [Kohli et al., 2008]:

- Convert n-label to 2-label problem. ("Battleship" encoding, [Schlesinger and Flach, 2006])
- Apply QPBO.

What about ≥ 3 labels?

a) MQPBO

MQPBO-method (submodular relaxation) [Kohli et al., 2008]:

- Convert n-label to 2-label problem. ("Battleship" encoding, [Schlesinger and Flach, 2006])
- Apply QPBO.

Polytope of the submodular relaxation \supseteq local polytope Depends on the selected order of variables [Swoboda et al., 2013] In practice works up to 3-4 variables only

What about ≥ 3 labels?

b) Arbitrary relaxation

What about ≥ 3 labels?

b) Arbitrary relaxation

LP relaxation

- Is the integer part of the relaxed solution optimal?

Criterion:

Check whether for all y the labeling x remains optimal: $\forall y: x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y\right)$
integer x and fractional y labelings

What about ≥ 3 labels?

b) Arbitrary relaxation

LP relaxation

- Is the integer part of the relaxed solution optimal?

Criterion:

Check whether for all y the labeling x remains optimal: $\forall y: x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y\right)$
integer x and fractional y labelings

- relaxed inference $\arg \min _{x^{\prime}} E\left(x^{\prime}, y\right)$ is sufficient;

What about ≥ 3 labels?

b) Arbitrary relaxation

- Is the integer part of the relaxed solution optimal?
- Can we eliminate labels with zero weight?

Criterion:

Check whether for all y the labeling x remains optimal: $\forall y: x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y\right)$
integer x and fractional y labelings

- relaxed inference $\arg \min _{x^{\prime}} E\left(x^{\prime}, y\right)$ is sufficient;
- efficient procedure exists, for local polytope and a more general question.

Partial Optimality:Potts Models

Figure : [Shekhovtsov et al., 2015], Color segmentation, Potts model (> 20 instances)

Progress in Partial Optimality

Alternative to Partial Optimality: CombiLP

Partial optimality:

Criterion:

Check whether for all y the labeling x remains optimal: $\forall y: x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y\right)$
integer x and fractional y labelings

Alternative to Partial Optimality: CombiLP

Partial optimality:

Criterion:
Check whether for all y the labeling x remains optimal: $\forall y: x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y\right)$
integer x and fractional y labelings

CombiLP: [Savchynskyy et al., 2013]

Criterion:
Check whether for optimal y^{*} the labeling x remains optimal: $x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y^{*}\right)$
integer x and fractional y labelings

Alternative to Partial Optimality: CombiLP
 Partial optimality:

Criterion:

Check whether for all y the labeling x remains optimal: $\forall y: x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y\right)$
integer x and fractional y labelings

CombiLP: [Savchynskyy et al., 2013]

Criterion:
Check whether for optimal y^{*} the labeling x remains optimal: $x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y^{*}\right)$
integer x and fractional y labelings

+ Weaker requirement \Rightarrow stronger result.

Alternative to Partial Optimality: CombiLP

Partial optimality:

Criterion:
Check whether for all y the labeling x remains optimal: $\forall y: x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y\right)$
integer x and fractional y labelings

CombiLP: [Savchynskyy et al., 2013]
Criterion:
Check whether for optimal y^{*} the labeling x remains optimal: $x=\arg \min _{x^{\prime}} E\left(x^{\prime}, y^{*}\right)$
integer x and fractional y labelings

+ Weaker requirement \Rightarrow stronger result.
- CombiLP has exponential complexity (Partial optimality - polynomial).

CombiLP vs. Partial Optimality

Partial optimality: [Shekhovtsov et al., 2015]

CombiLP: [Savchynskyy et al., 2013]

Approximative and Move Making Methods

Move Making Methods

Move Making Methods:

- Start from any solution X
- Maintain current best feasible solution \hat{X}
- Try to improve \hat{X} with a set of Moves
- Stop when no more improvement is possible with the set of Moves
- Work in the primal domain

Advantages:

- trivial warm start
- can improve solutions from arbitrary solvers
- fast and scalable

Downsides:

- (often) no lower bound / guarantees
- can get stuck in local minim
- "hope" for a good local minimum

Subgraph Methods

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)
- Change only a single variable at once

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)
- Change only a single variable at once

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)
- Change only a single variable at once
- Change label to local optimal label

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)
- Change only a single variable at once
- Change label to local optimal label
- Repeat this for all variables ...

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)
- Change only a single variable at once
- Change label to local optimal label
- Repeat this for all variables ...

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)
- Change only a single variable at once
- Change label to local optimal label
- Repeat this for all variables ...

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)
- Change only a single variable at once
- Change label to local optimal label
- Repeat this for all variables ...

Iterated Conditional Modes [Besag, 1986]

- Start from arbitrary starting point (e.g. $X=0$)
- Change only a single variable at once
- Change label to local optimal label
- Repeat this for all variables ...
- ... until no more improvement is possible
- ICM moves a single variable at

- ICM moves a single variable at once conditioned on the rest
- ICM moves a single variable at once conditioned on the rest
- ICM moves a single variable at once conditioned on the rest
- ICM moves a single variable at
 once conditioned on the rest
- ICM moves a single variable at

- ICM moves a single variable at once conditioned on the rest
- Obvious extension: Move / optimize multiple variables simultaneously

- ICM moves a single variable at once conditioned on the rest
- Obvious extension: Move / optimize multiple variables simultaneously
- Optimize ${ }^{\sqrt{1} 1}$ and $\sqrt{\sqrt{6}}$ simultaneously

- ICM moves a single variable at once conditioned on the rest
- Obvious extension: Move / optimize multiple variables simultaneously
- Optimize ${ }^{\sqrt{1} 1}$ and $\sqrt{\sqrt{6}}$ simultaneously
- ICM moves a single variable at

(11) and (16) are not connected!
They can be optimized independent!

SITIUILameousty

- Optimize 다 and simultaneously

- ICM moves a single variable at once conditioned on the rest
- Obvious extension: Move / optimize multiple variables simultaneously
- Optimize ${ }^{\sqrt{1} 1}$ and $\sqrt{\sqrt{6}}$ simultaneously

- ICM moves a single variable at once conditioned on the rest
- Obvious extension: Move / optimize multiple variables simultaneously
- Optimize ${ }^{\sqrt{17}}$ and $\sqrt{\sqrt{6}}$ simultancously
- Optimize ${ }^{\sqrt{1} 1}$ and ${ }^{\sqrt{12}}$ simultaneously

- ICM moves a single variable at once conditioned on the rest
- Obvious extension: Move / optimize multiple variables simultaneously
- Optimize ${ }^{\sqrt{17}}$ and $\sqrt{\sqrt{6}}$ simultaneously
- Optimize ${ }^{(11)}$ and $\sqrt{(\sqrt{2})}$ simultaneously
- Optimize ${ }^{\sqrt{11}}$, $\sqrt{1 / 2}$ and $\sqrt{\sqrt{5}}$ simultaneously
- ICM moves a single variable at

Subgraph Construction

Subgraph Construction

Subgraph Construction

Lazy Flipper [Andres et al., 2010]

- systematically optimize all connected subgraphs of size k
- for $k=|V|$ global optimal
- for $k=1$ equal to ICM [Besag, 1986]

Connected Subgraph Tree:
Maximum Subgraph size $k=6$

Lazy Flipper [Andres et al., 2010]

- systematically optimize all connected subgraphs of size k
- for $k=|V|$ global optimal
- for $k=1$ equal to ICM [Besag, 1986]

Connected Subgraph Tree:
Maximum Subgraph size $k=5$

Lazy Flipper [Andres et al., 2010]

- systematically optimize all connected subgraphs of size k
- for $k=|V|$ global optimal
- for $k=1$ equal to ICM [Besag, 1986]

Connected Subgraph Tree:
Maximum Subgraph size $k=4$

Lazy Flipper [Andres et al., 2010]

- systematically optimize all connected subgraphs of size k
- for $k=|V|$ global optimal
- for $k=1$ equal to ICM [Besag, 1986]

Connected Subgraph Tree:
Maximum Subgraph size $k=3$

Lazy Flipper [Andres et al., 2010]

- systematically optimize all connected subgraphs of size k
- for $k=|V|$ global optimal
- for $k=1$ equal to ICM [Besag, 1986]

Connected Subgraph Tree:
Maximum Subgraph size $k=2$

Lazy Flipper [Andres et al., 2010]

- systematically optimize all connected subgraphs of size k
- for $k=|V|$ global optimal
- for $k=1$ equal to ICM [Besag, 1986]

Connected Subgraph Tree:
Maximum Subgraph size $k=1$

Local Rules for Global MAP: When Do They Work ? [Jung et al., 2009]

Local, iterative randomized PTAS for MAP:

- Optimize "ball"-shaped subgraphs around random nodes
- radius of "ball" drawn from truncated geometric distribution Q

Image Credit:[Jung et al., 2009]

Local Rules for Global MAP: When Do They Work? [Jung et al., 2009]

Local, iterative randomized PTAS for MAP:
Graph G

- Optimize "ball"-shaped subgraphs around random nodes
- radius of "ball" drawn from truncated geometric distribution Q
Image Credit: [Jung et al., 2009]
Provable ϵ - approximation:
- for certain geometric distribution Q
- on graphs with polynomial growth rate
- with $n \log ^{2} n$ iterations
- pairwise MRFS

Fusion Move Methods

Fusion Moves[Lempitsky et al., 2010]

- Energy function $J(X)$ with large label space $|X|$

$$
J(X)=\sum \phi_{f}\left(x_{n e(f)}\right)
$$

Fusion Moves[Lempitsky et al., 2010]

- Energy function $J(X)$ with large label space $|X|$

$$
J(X)=\sum \phi_{f}\left(x_{n e(f)}\right)
$$

- Minimize aux. problems :

$$
|\hat{X}| \ll|X|
$$

Fusion Moves[Lempitsky et al., 2010]

- Energy function $J(X)$ with large label space $|X|$

$$
J(X)=\sum \phi_{f}\left(x_{n e(f)}\right)
$$

- Minimize aux. problems :

$$
|\hat{X}| \ll|X|
$$

Fusion Moves[Lempitsky et al., 2010]

- Energy function $J(X)$ with large label space $|X|$

$$
J(X)=\sum \phi_{f}\left(x_{n e(f)}\right)
$$

- Minimize aux. problems :

$$
|\hat{X}| \ll|X|
$$

Fusion Moves[Lempitsky et al., 2010]

- Energy function $J(X)$ with large label space $|X|$

$$
J(X)=\sum \phi_{f}\left(x_{\text {ne }(f)}\right)
$$

- Minimize aux. problems :

$$
|\hat{X}| \ll|X|
$$

Fusion Moves[Lempitsky et al., 2010]

- Energy function $J(X)$ with large label space $|X|$

$$
J(X)=\sum \phi_{f}\left(x_{n e(f)}\right)
$$

- Minimize aux. problems :

$$
|\hat{X}| \ll|X|
$$

- Fusion Move:
- Binary Label Space:

$$
\hat{X}=\left\{x \in X \mid \forall i: x_{i} \in\left\{x^{1}, x^{2}\right\}\right\}
$$

- Allowed Moves:
$X^{\text {Move }}=\left\{x \in X \mid J(x) \leq \min \left(J\left(x^{1}\right), J\left(x^{2}\right)\right)\right\}$

Fusion Moves[Lempitsky et al., 2010]

- Energy function $J(X)$ with large label space $|X|$

$$
J(X)=\sum \phi_{f}\left(x_{n e(f)}\right)
$$

- Minimize aux. problems :

$$
|\hat{X}| \ll|X|
$$

- Fusion Move:
- Binary Label Space:

$$
\hat{X}=\left\{x \in X \mid \forall i: x_{i} \in\left\{x^{1}, x^{2}\right\}\right\}
$$

- Allowed Moves:
$X^{\text {Move }}=\left\{x \in X \mid J(x) \leq \min \left(J\left(x^{1}\right), J\left(x^{2}\right)\right)\right\}$
- Optimized with graphcut/qpbo[Lempitsky et al., 2010], ilp solvers and movemaking methods[Kappes et al., 2014]

Fusion Moves[Lempitsky et al., 2010]

- Energy function $J(X)$ with large label space $|X|$

$$
J(X)=\sum \phi_{f}\left(x_{n e(f)}\right)
$$

- Minimize aux. problems :

$$
|\hat{X}| \ll|X|
$$

- Fusion Move:
- Binary Label Space:

$$
\hat{X}=\left\{x \in X \mid \forall i: x_{i} \in\left\{x^{1}, x^{2}\right\}\right\}
$$

- Allowed Moves:
$X^{\text {Move }}=\left\{x \in X \mid J(x) \leq \min \left(J\left(x^{1}\right), J\left(x^{2}\right)\right)\right\}$
- Optimized with graphcut/qpbo[Lempitsky et al., 2010], ilp solvers and movemaking methods[Kappes et al., 2014]

Fusion Moves[Lempitsky et al., 2010]

- Energy function $J(X)$ with large label space $|X|$

$$
J(X)=\sum \phi_{f}\left(x_{n e(f)}\right)
$$

- Minimize aux. problems :

$$
|\hat{X}| \ll|X|
$$

- Fusion Move:
- Binary Label Space:

$$
\hat{X}=\left\{x \in X \mid \forall i: x_{i} \in\left\{x^{1}, x^{2}\right\}\right\}
$$

- Allowed Moves:
$X^{\text {Move }}=\left\{x \in X \mid J(x) \leq \min \left(J\left(x^{1}\right), J\left(x^{2}\right)\right)\right\}$
- Optimized with graphcut/qpbo[Lempitsky et al., 2010], ilp solvers and movemaking methods[Kappes et al., 2014]

Subproblem Construction

Multi-Label Energy Function:

Binary Energy Function:

Subproblem Construction

Multi-Label Energy Function:
Binary Energy Function:

- Binary subproblems are "ordinary" binary graphical models

Subproblem Construction

Multi-Label Energy Function:
Binary Energy Function:

- Binary subproblems are "ordinary" binary graphical models
- Any solver can be used to optimize them

Fusion Move Based Algorithms

Fusion Move Based Algorithms

- α-Expansion:
[Kolmogorov and Zabih, 2002]

$$
x_{i}^{\text {proposal }}=\alpha
$$

Fusion Move Based Algorithms

- α-Expansion:
[Kolmogorov and Zabih, 2002]

$$
x_{i}^{\text {proposal }}=\alpha
$$

- $\alpha \beta$ -

Swap:[Kolmogorov and Zabih, 2002]

$$
x_{i}^{\text {proposal }}= \begin{cases}\alpha & \text { if } x_{i}^{\text {current }}=\beta \text { and } \alpha \in X_{i} \\ \beta & \text { if } x_{i}^{\text {current }}=\alpha \text { and } \beta \in X_{i} \\ x_{i}^{\text {current }} & \text { else }\end{cases}
$$

Fusion Move Based Algorithms

- α-Expansion:
[Kolmogorov and Zabih, 2002]

$$
x_{i}^{\text {proposal }}=\alpha
$$

- $\alpha \beta$ -

Swap:[Kolmogorov and Zabih, 2002]

$$
x_{i}^{\text {proposal }}= \begin{cases}\alpha & \text { if } x_{i}^{\text {current }}=\beta \text { and } \alpha \in X_{i} \\ \beta & \text { if } x_{i}^{\text {current }}=\alpha \text { and } \beta \in X_{i} \\ x_{i}^{\text {current }} & \text { else }\end{cases}
$$

- Jump-Move: [Lempitsky et al., 2010]

$$
x_{i}^{\text {proposal }}= \begin{cases}x_{i}^{\text {current }}+k & \text { if } x_{i}^{\text {current }}+k \in X_{i} \\ x_{i}^{\text {current }} & \text { else }\end{cases}
$$

Fusion Move Based Algorithms

- α-Expansion:
[Kolmogorov and Zabih, 2002]

$$
x_{i}^{\text {proposal }}=\alpha
$$

- $\alpha \beta$ -

Swap:[Kolmogorov and Zabih, 2002]

$$
x_{i}^{\text {proposal }}= \begin{cases}\alpha & \text { if } x_{i}^{\text {current }}=\beta \text { and } \alpha \in X_{i} \\ \beta & \text { if } x_{i}^{\text {current }}=\alpha \text { and } \beta \in X_{i} \\ x_{i}^{\text {current }} & \text { else }\end{cases}
$$

- Jump-Move: [Lempitsky et al., 2010]

$$
x_{i}^{\text {proposal }}= \begin{cases}x_{i}^{\text {current }}+k & \text { if } x_{i}^{\text {current }}+k \in X_{i} \\ x_{i}^{\text {current }} & \text { else }\end{cases}
$$

- Randomized Proposals
[Kappes et al., 2014]

Fusion Move Based Algorithms

- α-Expansion:
[Kolmogorov and Zabih, 2002]

$$
x_{i}^{\text {proposal }}=\alpha
$$

- $\alpha \beta$ -

Swap:[Kolmogorov and Zabih, 2002]

$$
x_{i}^{\text {proposal }}= \begin{cases}\alpha & \text { if } x_{i}^{\text {current }}=\beta \text { and } \alpha \in X_{i} \\ \beta & \text { if } x_{i}^{\text {current }}=\alpha \text { and } \beta \in X_{i} \\ x_{i}^{\text {current }} & \text { else }\end{cases}
$$

- Jump-Move: [Lempitsky et al., 2010]

$$
x_{i}^{\text {proposal }}= \begin{cases}x_{i}^{\text {current }}+k & \text { if } x_{i}^{\text {current }}+k \in X_{i} \\ x_{i}^{\text {current }} & \text { else }\end{cases}
$$

- Randomized Proposals [Kappes et al., 2014]
- Inference Based Proposals

Fusion Moves for Correlation Clustering [Beier et al., 2015]

$$
J(X)=\sum_{u v \in E} \quad \omega_{u v} \cdot x_{u} \neq x_{v} \quad\left|X_{i}\right|=|V|
$$

(a) current best y^{\prime}

(c) $\hat{y}=y^{\prime} \cup y^{\prime \prime}$
(d) contracted graph $G_{\hat{y}}$
(e) CC on $G_{\hat{y}}$
(b) proposal $y^{\prime \prime}$

Fusion Moves for Correlation Clustering [Beier et al., 2015]

$$
J(X)=\sum_{u v \in E} \quad \omega_{u v} \cdot \underbrace{x_{u} \neq x_{v}}_{:=y_{e}} \quad\left|X_{i}\right|=|V|
$$

(a) current best y^{\prime}

(c) $\hat{y}=y^{\prime} \cup y^{\prime \prime}$
(d) contracted graph $G_{\hat{y}}$
(e) CC on $G_{\hat{y}}$
(f) result on G

Local Submodular Approximations

Local Submodular Approximations

Non Submodular Energy $J(X)$:

$$
\begin{gathered}
J(X)=\sum \varphi_{i}\left(x_{i}\right)+\sum \varphi_{i j}\left(x_{i}, x_{j}\right) \quad x_{i} \in\{0,1\} \\
\tilde{J}^{x^{0}}(x) \approx J(X) ; \quad \tilde{J}^{x^{0}}(x) \geq J(x) ; \quad \tilde{J}^{x^{0}}\left(x_{0}\right)=J\left(x_{0}\right)
\end{gathered}
$$

- Compute submodular approximation $\tilde{J}^{x^{0}}(x)$ arround current labeling
- LSA-TR and LSA-AUX [Gorelick et al., 2014a]

Local Submodular Approximations

Non Submodular Energy $J(X)$:

$$
\begin{gathered}
J(X)=\sum \varphi_{i}\left(x_{i}\right)+\sum \varphi_{i j}\left(x_{i}, x_{j}\right) \quad x_{i} \in\{0,1\} \\
\tilde{J}^{x^{0}}(x) \approx J(X) ; \quad \tilde{J}^{x^{0}}(x) \geq J(x) ; \quad \tilde{J}^{x^{0}}\left(x_{0}\right)=J\left(x_{0}\right)
\end{gathered}
$$

- Compute submodular approximation $\tilde{J}^{0}(x)$ arround current labeling x^{0}
- Approximation $\tilde{J}^{0}(x)$ is only valid close to current labeling
- LSA-TR and LSA-AUX [Gorelick et al., 2014a]

Local Submodular Approximations

Non Submodular Energy $J(X)$:

$$
\begin{gathered}
J(X)=\sum \varphi_{i}\left(x_{i}\right)+\sum \varphi_{i j}\left(x_{i}, x_{j}\right) \quad x_{i} \in\{0,1\} \\
\tilde{J}^{x^{0}}(x) \approx J(X) ; \quad \tilde{J}^{x^{0}}(x) \geq J(x) ; \quad \tilde{J}^{x^{0}}\left(x_{0}\right)=J\left(x_{0}\right)
\end{gathered}
$$

- Compute submodular approximation $\tilde{J}^{x^{0}}(x)$ arround current labeling x^{0}
- Approximation $\tilde{J} x^{0}(x)$ is only valid close to current labeling
- By optimizing \tilde{J} the next solution is generated
- LSA-TR and LSA-AUX [Gorelick et al., 2014a]

Local Submodular Approximations

Non Submodular Energy $J(X)$:

$$
\begin{gathered}
J(X)=\sum \varphi_{i}\left(x_{i}\right)+\sum \varphi_{i j}\left(x_{i}, x_{j}\right) \quad x_{i} \in\{0,1\} \\
\tilde{J}^{x^{0}}(x) \approx J(X) ; \quad \tilde{J}^{x^{0}}(x) \geq J(x) ; \quad \tilde{J}^{x^{0}}\left(x_{0}\right)=J\left(x_{0}\right)
\end{gathered}
$$

- Compute submodular approximation $\tilde{J}^{x^{0}}(x)$ arround current labeling x^{0}
- Approximation $\tilde{J} x^{0}(x)$ is only valid close to current labeling
- By optimizing \tilde{J} the next solution is generated
- LSA-TR and LSA-AUX [Gorelick et al., 2014a]

Local Submodular Approximations

Non Submodular Energy $J(X)$:

$$
\begin{gathered}
J(X)=\sum \varphi_{i}\left(x_{i}\right)+\sum \varphi_{i j}\left(x_{i}, x_{j}\right) \quad x_{i} \in\{0,1\} \\
\tilde{J}^{x^{0}}(x) \approx J(X) ; \quad \tilde{J}^{x^{0}}(x) \geq J(x) ; \quad \tilde{J}^{x^{0}}\left(x_{0}\right)=J\left(x_{0}\right)
\end{gathered}
$$

- Compute submodular approximation $\tilde{J}^{x^{1}}(x)$ arround current labeling
- Approximation $\tilde{J} x^{1}(x)$ is only valid close to current labeling
- By optimizing \tilde{J} the next solution is generated
- LSA-TR and LSA-AUX [Gorelick et al., 2014a]

Local Submodular Approximations

Non Submodular Energy $J(X)$:

$$
\begin{gathered}
J(X)=\sum \varphi_{i}\left(x_{i}\right)+\sum \varphi_{i j}\left(x_{i}, x_{j}\right) \quad x_{i} \in\{0,1\} \\
\tilde{J}^{x^{0}}(x) \approx J(X) ; \quad \tilde{J}^{x^{0}}(x) \geq J(x) ; \quad \tilde{J}^{x^{0}}\left(x_{0}\right)=J\left(x_{0}\right)
\end{gathered}
$$

- Compute submodular approximation $\tilde{J}^{x^{1}}(x)$ arround current labeling
- Approximation $\tilde{J} x^{1}(x)$ is only valid close to current labeling
- By optimizing \tilde{J} the next solution is generated
- LSA-TR and LSA-AUX [Gorelick et al., 2014a]

Local Submodular Approximations

Non Submodular Energy $J(X)$:

$$
\begin{gathered}
J(X)=\sum \varphi_{i}\left(x_{i}\right)+\sum \varphi_{i j}\left(x_{i}, x_{j}\right) \quad x_{i} \in\{0,1\} \\
\tilde{\jmath}^{x^{0}}(x) \approx J(X) ; \quad \tilde{J}^{x^{0}}(x) \geq J(x) ; \quad \tilde{J}^{x^{0}}\left(x_{0}\right)=J\left(x_{0}\right)
\end{gathered}
$$

- Compute submodular approximation $\tilde{J}^{x^{2}}(x)$ arround current labeling
- Approximation $\tilde{J^{2}}(x)$ is only valid close to current labeling
- By optimizing \tilde{J} the next solution is generated
- LSA-TR and LSA-AUX [Gorelick et al., 2014a]

Local Submodular Approximations

Non Submodular Energy $J(X)$:

$$
\begin{gathered}
J(X)=\sum \varphi_{i}\left(x_{i}\right)+\sum \varphi_{i j}\left(x_{i}, x_{j}\right) \quad x_{i} \in\{0,1\} \\
\tilde{\jmath}^{x^{0}}(x) \approx J(X) ; \quad \tilde{J}^{x^{0}}(x) \geq J(x) ; \quad \tilde{J}^{x^{0}}\left(x_{0}\right)=J\left(x_{0}\right)
\end{gathered}
$$

- Compute submodular approximation $\tilde{J}^{x^{2}}(x)$ arround current labeling
- Approximation $\tilde{J^{2}}(x)$ is only valid close to current labeling
- By optimizing \tilde{J} the next solution is generated
- LSA-TR and LSA-AUX [Gorelick et al., 2014a]

Polyhedral Interpretation

Polyhedral Interpretation

- Each move can be interpreted as an optimization of an inner polytope

Polyhedral Interpretation

- Each move can be interpreted as an optimization of an inner polytope
- Each inner polytope includes the vertex of the current best solution

Polyhedral Interpretation

- Each move can be interpreted as an optimization of an inner polytope
- Each inner polytope includes the vertex of the current best solution

Polyhedral Interpretation

- Each move can be interpreted as an optimization of an inner polytope
- Each inner polytope includes the vertex of the current best solution

Polyhedral Interpretation

- Each move can be interpreted as an optimization of an inner polytope
- Each inner polytope includes the vertex of the current best solution

Polyhedral Interpretation

- Each move can be interpreted as an optimization of an inner polytope
- Each inner polytope includes the vertex of the current best solution

Polyhedral Interpretation

- Each move can be interpreted as an optimization of an inner polytope
- Each inner polytope includes the vertex of the current best solution

Polyhedral Interpretation

- Each move can be interpreted as an optimization of an inner polytope
- Each inner polytope includes the vertex of the current best solution

Polyhedral Interpretation

- Each move can be interpreted as an optimization of an inner polytope
- Each inner polytope includes the vertex of the current best solution

Meta-Methods: Combining Methods to get better overall Performance

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution
- Used generated labels more efficient

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution
- Used generated labels more efficient
- Compute Fusion move between y^{0} and y^{1}

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution
- Used generated labels more efficient
- Compute Fusion move between y^{0} and y^{1}

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution
- Used generated labels more efficient
- Compute Fusion move between y^{0} and y^{1}

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution
- Used generated labels more efficient
- Compute Fusion move between y^{0} and y^{1}

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution
- Used generated labels more efficient
- Compute Fusion move between y^{0} and y^{1}

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution
- Used generated labels more efficient
- Compute Fusion move between y^{0} and y^{1}

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution
- Used generated labels more efficient
- Compute Fusion move between y^{0} and y^{1}
- Proposed by Lempitsky[Lempitsky et al., 2010] with Loopy BP
- Investigated in detail by Kappes and Beier[Kappes et al., 2014] with TRWS Dual Decomposition.

Fusion Moves With Inference Based Proposals

- Some algorithms do not decrease the energy monotonously
- Make monotone by remembering current best solution
- Used generated labels more efficient
- Compute Fusion move between >0 and y^{1}
- Proposed by Lempitsky[Lempitsky et al., 2010] with Loopy BP
- Investigated in detail by Kappes and Beier[Kappes et al., 2014] with TRWS Dual Decomposition.
- OpenGM allows this trick for all inference algorithms

Fusion Moves For Parallelization

Alg1

Alg2

Alg3

Alg 4

- Run many different algorithms / proposal generators in parallel

Fusion Moves For Parallelization

- Run many different algorithms / proposal generators in parallel
- Hierarchically fuse them

Fusion Moves For Parallelization

- Run many different algorithms / proposal generators in parallel
- Hierarchically fuse them
- [Lempitsky et al., 2010]

Fusion Moves For Parallelization

- Run many different algorithms / proposal generators in parallel
- Hierarchically fuse them
- [Lempitsky et al., 2010]

Multi Scale Methods

Multi Scale Methods[Bagon and Galun, 2012]

Multi Scale Methods

- build energy pyramid

- [Bagon and Galun, 2012]

Multi Scale Methods

- build energy pyramid

- [Bagon and Galun, 2012]

Multi Scale Methods

- build energy pyramid

- [Bagon and Galun, 2012]

Multi Scale Methods

- build energy pyramid

- [Bagon and Galun, 2012]

Multi Scale Methods

- build energy pyramid
- Optimize top down

- [Bagon and Galun, 2012]

Multi Scale Methods

- build energy pyramid
- Optimize top down
- Warm start with solution from layer above
- [Bagon and Galun, 2012]

Multi Scale Methods

- build energy pyramid
- Optimize top down
- Warm start with solution from layer above
- [Bagon and Galun, 2012]

Multi Scale Methods

- build energy pyramid
- Optimize top down
- Warm start with solution from layer above
- [Bagon and Galun, 2012]

Multi Scale Methods

- build energy pyramid
- Optimize top down
- Warm start with solution from layer above
- [Bagon and Galun, 2012]

Multi Scale Methods

Multi Scale Methods

- build energy pyramid
- Optimize top down

- Warm start with solution from layer above
- [Bagon and Galun, 2012]
- [Meir et al., 2015]

Insights from Benchmark Studies

Benchmarks for Graphical Models

- Middlebury MRF [Szeliskiet al., 2008]
- Probabilistic Inference Challenge 2011 http://www.cs.huji.ac.il/project/PASCAL/
- OpenGM Benchmark [Kappes et al., 2015]

Benchmarks for Graphical Models

- Middlebury MRF [Szeliski et al., 2008]
- Probabilistic Inference Challenge 2011

```
http://www.cs.huji.ac.il/project/PASCAL/
```

- OpenGM Benchmark [Kappes et al., 2015]

Evaluations from other communities:

- MAX-CSP 2008 Competition
- Max-SAT Evaluation(s)

```
http://maxsat.ia.udl.cat/introduction/
```


OpenGM Datasets: Overview

(a) Pixel-based Models

(c) Unsupervised Partitioning

(b) Superpixel-based Models

(d) Higher-order Models

(f) Small but hard models

(e) Large-scale Models

... 32 datasets, over 2000 problem instances

Typical Result Table

algorithm	runtime	value	bound	mem			accuracy
α-Exp-QPBO	0.01 sec	-866.85	- $-\infty$	0.01	587	0	0.7694
ogm-LBP-LF2	0.06 sec	-866.76	- $-\infty$	0.01	576	0	0.7699
ogm-LF-3	0.45 sec	-866.27	$-\infty$	0.01	420	0	0.7699
ogm-TRWS-LF2	0.01 sec	-866.93	-866.93	0.01	714	712	0.7693
BPS-TAB	0.10 sec	-866.73	$-\infty$	0.01	566	0	0.7701
ogm-BPS	0.02 sec	-866.77	$-\infty$	0.01	585	0	0.7694
ogm-LBP-0.95	0.02 sec	-866.76	- $-\infty$	0.01	580	0	0.7696
ogm-TRBP-0.95	0.11 sec	-866.84	- $-\infty$	0.01	644	0	0.7708
ogm-TRBPS	0.13 sec	-866.79	- $-\infty$	0.01	644	0	0.7705
ADDD	0.06 sec	-866.92	-866.93	0.01	701	697	0.7693
MPLP	0.04 sec	-866.91	-866.93	0.01	700	561	0.7693
MPLP-C	0.04 sec	-866.92	-866.93	0.01	710	567	0.7693
ogm-ADSAL	0.04 sec	-866.93	-866.93	0.01	714	712	0.7693
ogm-BUNDLE-H	0.26 sec	-866.93	-866.93	0.01	715	673	0.7693
ogm-BUNDLE-A+	0.07 sec	-866.93	-866.93	0.01	715	712	0.7693
ogm-LP-LP	0.23 sec	-866.92	-866.93	0.05	712	712	0.7693
TRWS-TAB	0.01 sec	-866.93	-866.93	0.01	714	712	0.7693
BRAOBB-1	17.61 sec	-866.90	$-\infty$	0.27	670	0	0.7688
ADDD-BB	0.11 sec	-866.93	-866.93	0.01	715	715	0.7693
ogm-CombiLP	0.02 sec	-866.93	-866.93	0.03	715	715	0.7693
ogm-ILP	0.17 sec	-866.93	-866.93	0.09	715	715	0.7693

Typical Result Table

algorithm	runtime	value	bound	mem	best		ccuracy
α-Exp-QPBO	0.01 sec	-866.85	$-\infty$	0.01	587	0	0.7694
ogm-LBP-LF2	0.06 sec	-866.76	$-\infty$	0.01	576	0	0.7699
ogm-LF-3	0.45 sec	-866.27	∞	0.01	420	0	0.7699
ogm-TRWS-LF2	0.01 sec	-866.93	-866.93	0.01	714	712	0.7693
BPS-TAB	0.10 sec	-866.73	$-\infty$	0.01	566	0	0.7701
ogm-BPS	0.02 sec	-866.77	$-\infty$	0.01	585	0	0.7694
ogm-LBP-0.95	0.02 sec	-866.76	$-\infty$	0.01	580	0	0.7696
ogm-TRBP-0.95	0.11 sec	-866.84	$-\infty$	0.01	644	0	0.7708
ogm-TRBPS	0.13 sec	-866.79	$-\infty$	0.01	644	0	0.7705
ADDD	0.06 sec	-866.92	-866.93	0.01	701	697	0.7693
MPLP	0.04 sec	-866.91	-866.93	0.01	700	561	0.7693
MPLP-C	0.04 sec	-866.92	-866.93	0.01	710	567	0.7693
ogm-ADSAL	0.04 sec	-866.93	-866.93	0.01	714	712	0.7693
ogm-BUNDLE-H	0.26 sec	-866.93	-866.93	0.01	715	673	0.7693
ogm-BUNDLE-A+	0.07 sec	-866.93	-866.93	0.01	715	712	0.7693
ogm-LP-LP	0.23 sec	-866.92	-866.93	0.05	712	712	0.7693
TRWS-TAB	0.01 sec	-866.93	-866.93	0.01	714	712	0.7693
BRAOBB-1	17.61 sec	-866.90	$-\infty$	0.27	670	0	0.7688
ADDD-BB	0.11 sec	-866.93	-866.93	0.01	715	715	0.7693
ogm-CombiLP	0.02 sec	-866.93	-866.93	0.03	715	715	0.7693
ogm-ILP	0.17 sec	-866.93	-866.93	0.09	715	715	0.7693

How to select the best method for my problem (without checking all methods)?

Inference Requirements

Model Characterization

Model Characterization:

Size:

- \# variables
- \# factors
- \# labels
- model order

Model Characterization

Model Characterization:

Size:

- \# variables
- \# factors
- \# labels
- model order

Reduction possibility (partial optimality):

- pairwise Potts
- binary pairwise - QPBO
- binary higher order
- pairwise with tight LP relaxation
- low tree-width sub-graphs
 (junction-tree algorithm)

Model Characterization

Model Characterization:

Size:

- \# variables
- \# factors
- \# labels
- model order

Reduction possibility (partial optimality):

- pairwise Potts
- binary pairwise - QPBO
- binary higher order
- pairwise with tight LP relaxation
- low tree-width sub-graphs
 (junction-tree algorithm)
- Tightness of LP relaxation.

Inference Method Selection

LP-Relaxation Based Methods: tight?

Combinatorial Methods:

Move Making Methods: | $\begin{array}{c}\text { Move making } \\ \text { works fine? }\end{array}$ |
| :---: |

O FastPD is typically much faster than α-exp

Inference Method Selection

OpenGM2
Library＊Contacts • Algorithms－References • Benchmarks：cvPR 2013 Arxiv 2014 iJcV 2015 more＊

OpenGM Benchmark（IJCV 2015）

Benchmark database of discrete energy minimization problems．For further details see
Jörg H．Kappes，Bjoem Andres，Fred A．Hamprecht，Christoph Schnörr，Sebastian Nowozin，Dhruv Batra，Sungwoong Kim，Thorben Kroeger，Bernhard X． Kausler，Jan Lellmann，Bogdan Savchynskyy，Nikos Komodakis，Carsten Rother：
＂A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems＂
International Journal of Computer Vision 2015.
［publisher］，［preprint］，［sublementary material 1］［sublementary material 2］，［bib］

Download Code and Data

－Optimization methods provided within OpenGM 2．3．3
－Links to download the models are given below．
Models

	In－Painting（N4） J．Lellmann et．al． comerted by I．Leifmann and／H．Kappes	目国图	Variables	Labels	Order	Stru	Func	Ins	Reference Comment
			14400	4	2	grid4	potts	2	［57］
	In－Painting（N8） J．Lellmann et．al． converted by／Lellmann and JH．Kappes	目国	14400	4	2	grid8	potts	2	［57］
	ColorSegmentation（N4） J．Lellmann et．al． converted by I．Lellmann and／H．Kappes	目国圆	76800	3.12	2	grid4	potts	2	［57］
1	ColorSegmentation（N8） J．Lellmann et．al． corverted by／．Lellmann and／H．Kapoes	目閶	76800	3.12	2	grids	potts	2	［57］

We are looking for your data and code！

Huge Models and Higher-Order Potentials?

What make problems hard?

What make problems hard?

1. Inherent Combinatorial Complexity

- LP-relaxations are not tight
- Local optimal decisions do not lead to global optimal decisions.

What make problems hard?

1. Inherent Combinatorial Complexity

- LP-relaxations are not tight
- Local optimal decisions do not lead to global optimal decisions.

2. Higher-Order Factors

- A factor of order N has L^{N} entries, which all have to be explored when no additional information is given.

What make problems hard?

1. Inherent Combinatorial Complexity

- LP-relaxations are not tight
- Local optimal decisions do not lead to global optimal decisions.

2. Higher-Order Factors

- A factor of order N has L^{N} entries, which all have to be explored when no additional information is given.

3. Huge Number of Variables

- Memory requirements can quickly become very huge

What make problems hard?

1. Inherent Combinatorial Complexity

- LP-relaxations are not tight
- Local optimal decisions do not lead to global optimal decisions.

2. Higher-Order Factors

- A factor of order N has L^{N} entries, which all have to be explored when no additional information is given.

3. Huge Number of Variables

- Memory requirements can quickly become very huge

4. Huge Label-Spaces

- A second-order factor with 10.000 states per variable has 10^{8} entries, which all has to be explored when no additional information is given.

Inherent Combinatorial Complexity

Inherent Combinatorial Complexity

When does (real) combinatorial problem show up?

Inherent Combinatorial Complexity

When does (real) combinatorial problem show up?

- When factors/functions encode constraints
- When we learn a model with many parameters \rightarrow over-fitting
\rightarrow When a set of factors/functions conflicting (frustrated cycles)

Inherent Combinatorial Complexity

When does (real) combinatorial problem show up?

- When factors/functions encode constraints
- When we learn a model with many parameters \rightarrow over-fitting
\rightarrow When a set of factors/functions conflicting (frustrated cycles)

Examples

- Clustering (consistency constraint) [Andres et al., 2011]
- Graph Matching with weak local assignments (1-to-1 constraint) [Torresani et al., 2008, Komodakis and Paragios, 2008]
- Decision Tree Fields [Nowozin et al., 2011]
- Vector Compression [Babenko and Lempitsky, 2014]

Inherent Combinatorial Complexity

Inherent Combinatorial Complexity

Problem

1. LP-relaxations are not tight
2. Local optimal decisions do not lead to global optimal decisions.

Inherent Combinatorial Complexity

Problem

1. LP-relaxations are not tight
2. Local optimal decisions do not lead to global optimal decisions.

Consequence

1. The rounding problem for methods based on LP-relaxation is very hard. ILP-methods have to deal with weak bounds
2. Move-making methods will walk into wrong directions

Inherent Combinatorial Complexity

Problem

1. LP-relaxations are not tight
2. Local optimal decisions do not lead to global optimal decisions.

Consequence

1. The rounding problem for methods based on LP-relaxation is very hard. ILP-methods have to deal with weak bounds
2. Move-making methods will walk into wrong directions

Ways Out

1. Problem specific Constraints/Separation [Nowozin and Lampert, 2009, Kappes et al., 2015b]
2. Make moves over "meaningful" subsets [Gorelick et al., 2014b, Kappes et al., 2014]
3. Stronger local terms can make the problems easier
4. Try to separate the hard combinatorial parts of the problem [Kappes et al., 2013, Kappes et al., 2015b]

Higher-Order Factors

Higher-Order Factors

Complexity of Inference in a Factor Graph Model

$$
\Theta\left(\max _{f \in F} \prod_{u \in \operatorname{ne}(f)}\left|X_{u}\right|\right) \approx \Theta\left(L^{o(G)}\right)
$$

where L is the number of labels and $o(G)$ the order of the model

Higher-Order Factors

Complexity of Inference in a Factor Graph Model

$$
\Theta\left(\max _{f \in F} \prod_{u \in \operatorname{ne}(f)}\left|X_{u}\right|\right) \approx \Theta\left(L^{o(G)}\right)
$$

where L is the number of labels and $o(G)$ the order of the model
Can we do better?

Higher-Order Factors

Complexity of Inference in a Factor Graph Model

$$
\Theta\left(\max _{f \in F} \prod_{u \in \operatorname{ne}(f)}\left|X_{u}\right|\right) \approx \Theta\left(L^{o(G)}\right)
$$

where L is the number of labels and $o(G)$ the order of the model
Can we do better?
Yes, by using structure of functions.

Higher-Order Factors

Complexity of Inference in a Factor Graph Model

$$
\Theta\left(\max _{f \in F} \prod_{u \in \operatorname{ne}(f)}\left|X_{u}\right|\right) \approx \Theta\left(L^{o(G)}\right)
$$

where L is the number of labels and $o(G)$ the order of the model
Can we do better?
Yes, by using structure of functions.

$$
O\left(L^{2}\right)
$$

Higher-Order Factors

Complexity of Inference in a Factor Graph Model

$$
\Theta\left(\max _{f \in F} \prod_{u \in \operatorname{ne}(f)}\left|X_{u}\right|\right) \approx \Theta\left(L^{o(G)}\right)
$$

where L is the number of labels and $o(G)$ the order of the model
Can we do better?
Yes, by using structure of functions.

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne(} f \text {) }}\left|X_{v}\right|$ slack variables ($\sim L^{0}$)
- $\sum_{v \in \text { ne(}(f)}\left|X_{v}\right|$ constraints of size $\left|X_{\text {ne(f) }(f) \backslash v}\right|\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne }(f)}\left|X_{v}\right|$ slack variables ($\sim L^{\circ}$)
- $\sum_{v \in \text { ne(f) }}\left|X_{v}\right|$ constraints of size $\left|X_{\text {ne(f) }}\right| v \mid\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor

Idea
Replace a higher-order term by some slack variables + additional constraints.

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne(f) }}\left|X_{v}\right|$ slack variables ($\sim L^{\circ}$)
- $\sum_{v \in \text { ne(f) }}\left|X_{v}\right|$ constraints of size $\left|X_{\text {ne(f) }}\right| v \mid\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor

Idea
Replace a higher-order term by some slack variables + additional constraints.
Example: Sparse Function [Rother et al., 2009, Kappes et al., 2015a]

$$
\varphi\left(x_{1,2,3,4}\right)= \begin{cases}\gamma & \text { if } x_{1,2,3,4}=(2,6,2,4) \\ 0 & \text { else }\end{cases}
$$

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne }(f)}\left|X_{v}\right|$ slack variables ($\sim L^{\circ}$)
- $\sum_{v \in \text { ne(f) }}\left|X_{v}\right|$ constraints of size $\left|X_{\text {ne(f) }}\right| v \mid\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor
Idea
Replace a higher-order term by some slack variables + additional constraints.

Example: Sparse Function [Rother et al., 2009, Kappes et al., 2015a]

$$
\begin{aligned}
& \varphi\left(x_{1,2,3,4}\right)=\left\{\begin{array}{lll}
\gamma & \text { if } x_{1,2,3,4} & =(2,6,2,4) \\
0 & \text { else } & \\
& s \leq \mathbb{I}\left(x_{1}=2\right) \\
& & s \leq \mathbb{I}\left(x_{2}=6\right)
\end{array}\right. \\
& \min _{s} \gamma \cdot s \quad \text { s.t. } \quad s \leq \mathbb{I}\left(x_{3}=2\right) \\
& \\
& s \leq \mathbb{I}\left(x_{4}=4\right) \\
& s \geq \mathbb{I}\left(x_{1}=2\right)+\mathbb{I}\left(x_{2}=6\right)+\mathbb{I}\left(x_{3}=2\right)+\mathbb{I}\left(x_{4}=4\right)-3
\end{aligned}
$$

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne }(f)}\left|X_{v}\right|$ slack variables ($\sim L^{\circ}$)
- $\sum_{v \in \text { ne(f) }}\left|X_{v}\right|$ constraints of size $\left|X_{\text {ne(f) }}\right| v \mid\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor
Idea
Replace a higher-order term by some slack variables + additional constraints.

Example: Sparse Function [Rother et al., 2009, Kappes et al., 2015a]

$$
\begin{aligned}
\varphi\left(x_{1,2,3,4}\right) & =\left\{\begin{array}{lll}
\gamma & \text { if } x_{1,2,3,4} & =(2,6,2,4) \\
0 & \text { else }
\end{array}\right. \\
& s \leq \mathbb{I}\left(x_{1}=2\right) \\
& \\
=\min _{s} \gamma \cdot s & \text { s.t. } \\
& s \leq \mathbb{I}\left(x_{2}=6\right) \\
& s \leq \mathbb{I}\left(x_{3}=2\right) \\
& s \geq \mathbb{I}\left(x_{4}=4\right) \\
& \\
& \\
&
\end{aligned}
$$

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne(f) }}\left|X_{v}\right|$ slack variables ($\sim L^{\circ}$)
- $\sum_{v \in \operatorname{ne}(f)}\left|X_{v}\right|$ constraints of size $\left|X_{\mathrm{ne}(f) \backslash v \mid}\right|\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor

Idea
Replace a higher-order term by some slack variables + additional constraints.
Examples: Label Cost [Delong et al., 2012]

$$
\begin{aligned}
\varphi^{\prime}\left(x_{V}\right) & = \begin{cases}\gamma_{1} & \text { if } \exists v \in V: x_{V}=1 \\
0 & \text { otherwise }\end{cases} \\
\varphi\left(x_{V}\right) & =\sum_{l \in L} \varphi^{\prime}\left(x_{V}\right)
\end{aligned}
$$

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne }(f)}\left|X_{v}\right|$ slack variables ($\sim L^{\circ}$)
- $\sum_{v \in \text { ne(f) }}\left|X_{v}\right|$ constraints of size $\left|X_{\text {ne(f) }(f)}\right|\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor

Idea
Replace a higher-order term by some slack variables + additional constraints.
Examples: Label Cost [Delong et al., 2012]

$$
\begin{aligned}
\varphi^{\prime}\left(x_{V}\right) & = \begin{cases}\gamma_{1} & \text { if } \exists v \in V: x_{V}=1 \\
0 & \text { otherwise }\end{cases} \\
\varphi\left(x_{V}\right) & =\sum_{l \in L} \varphi^{\prime}\left(x_{V}\right)
\end{aligned}
$$

requires that $\gamma_{l} \geq 0$

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne }(f)}\left|X_{v}\right|$ slack variables ($\sim L^{\circ}$)
- $\sum_{v \in \text { ne(f) }}\left|X_{v}\right|$ constraints of size $\left|X_{\text {ne(f) }}\right| v \mid\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor

Idea
Replace a higher-order term by some slack variables + additional constraints.
Examples: Label Cost [Delong et al., 2012]

$$
\begin{aligned}
\varphi^{\prime}\left(x_{V}\right) & = \begin{cases}\gamma_{l} & \text { if } \exists v \in V: x_{V}=1 \\
0 & \text { otherwise }\end{cases} \\
\varphi\left(x_{V}\right) & =\sum_{I \in L} \varphi^{\prime}\left(x_{V}\right)
\end{aligned}
$$

requires that $\gamma_{l} \geq 0$

For $|L|=2$ the label costs c_{l} can be also negative

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne }(f)}\left|X_{v}\right|$ slack variables ($\sim L^{\circ}$)
- $\sum_{v \in \text { ne(f) }}\left|X_{v}\right|$ constraints of size $\left|X_{\text {ne(f) }}\right| v \mid\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor

Idea
Replace a higher-order term by some slack variables + additional constraints.
P^{N} Potts [Kohli et al., 2009]

$$
\varphi_{f}\left(x_{n e(f)}\right)= \begin{cases}\gamma_{k} & \text { if } x_{v}=k, \forall v \in \operatorname{ne}(f) \\ 0 & \text { otherwise }\end{cases}
$$

Reformulation of Higher order Factors

General Way to Reformation in LPs

- $\prod_{v \in \text { ne }(f)}\left|X_{v}\right|$ slack variables ($\sim L^{\circ}$)
- $\sum_{v \in \text { ne(f) }}\left|X_{v}\right|$ constraints of size $\left|X_{\text {ne(f) }}\right| v \mid\left(\sim L \cdot o \times L^{0-1}\right)$
$L=$ number of labels, $o=$ order of factor
Idea
Replace a higher-order term by some slack variables + additional constraints.
P^{N} Potts [Kohli et al., 2009]

$$
\varphi_{f}\left(x_{n e(f)}\right)= \begin{cases}\gamma_{k} & \text { if } x_{v}=k, \forall v \in \operatorname{ne}(f) \\ 0 & \text { otherwise }\end{cases}
$$

requires that $\gamma_{k} \leq 0, \forall k$

Order Reduction Higher-Order Boolean Functions

$$
\varphi:\{0,1\}^{N} \rightarrow \mathbb{R}
$$

Order Reduction Higher-Order Boolean Functions

$$
\varphi:\{0,1\}^{N} \rightarrow \mathbb{R}
$$

Reducing Negative-Coefficient Monomials [Freedman and Drineas, 2005]

$$
\varphi(x)=-x_{1} \cdots x_{N}=\min _{y \in\{0,1\}} y\left((N-1)-\sum_{i=1}^{N} x_{i}\right)
$$

Order Reduction Higher-Order Boolean Functions

$$
\varphi:\{0,1\}^{N} \rightarrow \mathbb{R}
$$

Reducing Negative-Coefficient Monomials [Freedman and Drineas, 2005]

$$
\varphi(x)=-x_{1} \cdots x_{N}=\min _{y \in\{0,1\}} y\left((N-1)-\sum_{i=1}^{N} x_{i}\right)
$$

Reducing Positive-Coefficient Monomials [Ishikawa, 2009]

$$
\begin{aligned}
\varphi(x) & =x_{1} \cdots x_{N} \\
& = \begin{cases}\min _{y \in\{0,1\}^{N}} \sum_{i=1}^{\lfloor N-1 / 2\rfloor} y_{i}\left(1\left(-\sum_{j=1}^{N} x_{j}+2 i\right)\right)+\sum_{i<j} x_{i} x_{j} & \text { if } \bmod (N, 2)=1 \\
\min _{y \in\{0,1\}^{N}} \sum_{i=1}^{\lfloor N-1 / 2\rfloor} y_{i}\left(2\left(-\sum_{j=1}^{N} x_{j}+2 i\right)\right)+\sum_{i<j} x_{i} x_{j} & \text { if } \bmod (N, 2)=0\end{cases}
\end{aligned}
$$

Order Reduction Higher-Order Boolean Functions

$$
\varphi:\{0,1\}^{N} \rightarrow \mathbb{R}
$$

Reducing Negative-Coefficient Monomials [Freedman and Drineas, 2005]

$$
\varphi(x)=-x_{1} \cdots x_{N}=\min _{y \in\{0,1\}} y\left((N-1)-\sum_{i=1}^{N} x_{i}\right)
$$

Reducing Positive-Coefficient Monomials [Ishikawa, 2009]

$$
\begin{aligned}
\varphi(x) & =x_{1} \cdots x_{N} \\
& = \begin{cases}\min _{y \in\{0,1\}^{N}} \sum_{i=1}^{\lfloor N-1 / 2\rfloor} y_{i}\left(1\left(-\sum_{j=1}^{N} x_{j}+2 i\right)\right)+\sum_{i<j} x_{i} x_{j} & \text { if } \bmod (N, 2)=1 \\
\min _{y \in\{0,1\}^{N}} \sum_{i=1}^{\lfloor N-1 / 2\rfloor} y_{i}\left(2\left(-\sum_{j=1}^{N} x_{j}+2 i\right)\right)+\sum_{i<j} x_{i} x_{j} & \text { if } \bmod (N, 2)=0\end{cases}
\end{aligned}
$$

(Ishikawa, 2009, Fix et al., 2011, Gallagher et al., 2011]

Huge Number of Variables

Huge Number of Variables

Problems

- Model does not fit in the memory
- Existing solvers does not scale to this problem-size

Huge Number of Variables

Problems

- Model does not fit in the memory
- Existing solvers does not scale to this problem-size

Possible Ways Out

- Superpixels/Supervariables [Kim et al., 2011]
- Domain-Decomposition (Dual Decomposition) [Schwing et al., 2011, Strandmark and Kahl, 2010]

- Block-ICM

Huge Label-Spaces

Huge Label-Spaces

How to deal with huge label-spaces?

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]

$$
m\left(x_{1}\right)=\min _{x_{2}}\left|x_{1}-x_{2}\right|+g\left(x_{2}\right)
$$

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]

$$
x_{i} \in\{1, \ldots, 10\}^{3}
$$

$$
f_{12}\left(x_{1}, x_{2}\right)=\sum_{i=1}^{3} f_{12}^{i}\left(x_{1}, x_{2^{i}}\right)
$$

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]

$$
x_{i} \in\{1, \ldots, 10\}^{3}
$$

$$
f_{12}\left(x_{1}, x_{2}\right)=\sum_{i=1}^{3} f_{12}^{f}\left(x_{1}, x_{2^{i}}\right)
$$

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]

$$
x_{i} \in\{1, \ldots, 10\}^{3} \quad f_{12}\left(x_{1}, x_{2}\right)=\sum_{i=1}^{3} f_{12}^{i}\left(x_{1}, x_{2^{i}}\right)
$$

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]
- Iteratively work on tractable subspaces [Kappes et al., 2014]

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]
- Iteratively work on tractable subspaces [Kappes et al., 2014]
- Particle Inference [Ihler and McAllester, 2009]

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]
- Iteratively work on tractable subspaces [Kappes et al., 2014]
- Particle Inference [lhler and McAllester, 2009]

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]
- Iteratively work on tractable subspaces [Kappes et al., 2014]
- Particle Inference [lhler and McAllester, 2009]

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]
- Iteratively work on tractable subspaces [Kappes et al., 2014]
- Particle Inference [lhler and McAllester, 2009]

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]
- Iteratively work on tractable subspaces [Kappes et al., 2014]
- Particle Inference [lhler and McAllester, 2009]

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]
- Iteratively work on tractable subspaces [Kappes et al., 2014]
- Particle Inference [lhler and McAllester, 2009]

Huge Label-Spaces

How to deal with huge label-spaces?

- Buy new hardware
- Prune the label-space
- Efficient updates [Felzenszwalb and Huttenlocher, 2006]
- Use structure of label spaces [Goldluecke and Cremers, 2010]
- Iteratively work on tractable subspaces [Kappes et al., 2014]
- Particle Inference [lhler and McAllester, 2009]

Mixed Models with Continuous Variables

Possible Solvers

- Block ICM (most popular)
- Particle-based Methods
- Others: Discrete-Continuous Fusion Move; Gradient Descent with relaxed discrete Variables; Variable elimination ...

Examples in Computer Vision

Many Discrete, Few Continuous Variables

Input
Segmentation and Human Pose fitting [Kohli, Rihan, Bray, Torr, IJCV 2008]

Segmentation and Color Model fitting GrabCut [Rother, Kolmogorov, Blake 2004]

Illustration Block-ICM

Examples in Computer Vision

Many Discrete, Many Continuous Variables

Joint Models [Vineet, Rother, Torr, NIPS 2013]

Examples in Computer Vision

Many Continuous Variables

time $=1$

time $=2$

Motion

Stereo Matching

Local stereo matching: check photo-consistency

Stereo Matching

Local stereo matching: check photo-consistency

None Front-to-Parallel Surface

None Front-to-Parallel Surface

3 continuous parameters (depth + normal) for each pixel

Motivation

We now show a comparison of our slanted window algorithm with the competitors described in the paper.

PatchMatch Stereo

1. Random initialization
2. Go through pixels in sequential order:
3. Consider solution from left/top neighbour
4. Sample around current solution

1D example:

Left image

Left and right disparity maps (intermediate step of iteration 1)

PatchMatch Stereo

The Reindeer Pair

Why does it work?

- Random Initialization is in your favour

Left image

Ground truth disparities
 ~ 80.000 guesses for yellow plane

What's Missing

PatchMatch Stereo result

Continuous Variable MRF

Add pairwise terms:

Pairwise term

$$
\begin{gathered}
\psi_{s t}\left(\boldsymbol{u}_{s}, \boldsymbol{u}_{t}\right)=\omega\left[\boldsymbol{u}_{s} \neq \boldsymbol{u}_{t}\right] \\
\beta w_{s t}\left(\left|\mathbf{n}_{s} \cdot\left(\mathbf{x}_{t}-\mathbf{x}_{s}\right)\right|+\left|\mathbf{n}_{t} \cdot\left(\mathbf{x}_{s}-\mathbf{x}_{t}\right)\right|\right)
\end{gathered}
$$

Cost $=0$
both planes are aligned in 3D

Cost $\neq 0$:
local curvature or discontinuity

Solvers

- w/o Pairwise Terms: PatchMatch
- w/ Pairwise Terms (super high-dimensional u):
- Gradient descent + Fusion move
- Simulated Annealing
- Continuous Belief Propagation, e.g. Particle BP

Discrete State BP [Pearl ‘88]

Sequential schedule

Algorithm

1. Initialize Messages
2. Go over all Messages
3. Update Message $M_{t \rightarrow s}\left(\boldsymbol{u}_{s}\right)$
4. Compute final Output $\boldsymbol{u}_{s}{ }^{*}=\operatorname{argmin} \mathrm{B}_{s}\left(\boldsymbol{u}_{s}\right)$

Step 3: Update Message

Step 4: Compute neg-log Belief

Toy Example - Shift 4.0

Target

Toy Example - Shift 4.0

Toy Example - Shift 4.0

Error: 0.618; Unary only

Ground Truth

12×12 discrete labels

Toy Example - Shift 4.2

Toy Example - Shift 4.2

Ground Truth

Toy Example - Shift 4.2

12×12 discrete labels

Error: 0.66

Toy Example - Shift 4.5

Ground Truth

12×12 discrete labels

Max-Product Particle BP

Each pixel has different set of particles:

Step 3: Move Particles $\left\{\boldsymbol{u}_{s}\right\}$

Noise

Toy Example - Shift 4.5

Ground Truth

PatchMatch BP

[Besse, Rother, Fitzgibbon, Kautz, BMVC '12]
Each pixel has different set of particles:

Sequential schedule

$\mathrm{B}_{\mathrm{t}}\left(\boldsymbol{u}_{t}\right)$, i.e. neg. log Belief
s)

Algorithm

1. Initialize Particles and Messages
2. Go over all Messages
3. Move and add Particles $\left\{\boldsymbol{u}_{s}\right\}$
4. Update Message $M_{t \rightarrow s}\left(\boldsymbol{u}_{s}\right)$
5. Take K best Particles wrt Belief $B_{S}\left(\boldsymbol{u}_{s}\right)$
6. Compute final Output
$\boldsymbol{u}_{s}{ }^{*}=\operatorname{argmin} \mathrm{B}_{s}\left(\boldsymbol{u}_{s}\right)$

Step 3: Move and add Particles $\left\{\boldsymbol{u}_{s}\right\}$

Particles from \boldsymbol{u}_{t}

Step 5: Take K best Particles $\left\{\boldsymbol{u}_{s}\right\}$

Good since

$\psi_{s t}\left(\boldsymbol{u}_{s}, \boldsymbol{u}_{t}\right)=$ $\omega\left[\boldsymbol{u}_{s} \neq \boldsymbol{u}_{t}\right]$

Toy Example - Shift 4.5

50 particles
Energy: 21959
Error: 0.4159
Random init

1 particle
Energy: 22593

Error: 0.3864
Random init

Ground Truth

Error: 0.8259

Animation

50 particles
Energy: 21959
Error: 0.4159

1 particle
Energy: 22593
Error: 0.3864

Number of Particles

Results

Extension: 6D Scene Flow

[M. Hornacek, A. Fitzgibbon, C. Rother, CVPR 2014]

Left RGBD image

Our result

Right RGBD image

Closest competitor
[Herbst, Ren, Fox, ICRA 2013]

Extension: Reflections on Stereo

[R. Nair, A. Fitzgibbon, D. Kondermann, C. Rother, ICCV 2015]

depth

normal

depth

normal

reflection

reflectivity roughness

Related Work

- Different Variant of [Kothapa et al.]. Run full BP and then re-sample particles (no augmentation) [Peng et al. ICML '11]
- Maintain diverse particle set [Pacheco, Zuffi, Black, Sudderth, ICML '14]
- None Particle-based Methods (rarely applied to Computer Vision due to runtime limitations):
- Nonparametric belief propagation [Sudderth et al. IEEE Intl. Conf. Acoustics, Speech, Signal 2010]
- Sparse forward-backward [Pal et al. ICASSP 2006]
- Kernel BP [Song et al. AlStats 2011]
- Stochastic belief propagate [N. Noorshams and M. J. Wainwright arxiv 2011]

See separate slides in learning.pdf

References I

(2015).

GraphFlow - 6D Large Displacement Scene Flow via Graph Matching.
In GCPR, (Gall, J., Gehler, P. V. and Leibe, B., eds), vol. 9358, of Lecture Notes in Computer Science pp. 285-296, Springer.
Andres, B., Kappes, J. H., Beier, T., Köthe, U. and Hamprecht, F. A. (2011).
Probabilistic Image Segmentation with Closedness Constraints.
In ICCV.
Andres, B., Kappes, J. H., Köthe, U. and Hamprecht, F. A. (2010).
The Lazy Flipper: MAP Inference in Higher-Order Graphical Models by Depth-limited Exhaustive Search.
CoRR abs/1009.4102.
Babenko, A. and Lempitsky, V. (2014).
Additive Quantization for Extreme Vector Compression.
Bagon, S. and Galun, M. (2012).
A Unified Multiscale Framework for Discrete Energy Minimization.
CoRR abs/1204.4867.
Beier, T., Hamprecht, F. A. and Kappes, J. H. (2015).
Fusion Moves for Correlation Clustering.
In CVPR. Proceedings, in press.
Bergtholdt, M., Kappes, J. H., Schmidt, S. and Schnörr, C. (2010).
A Study of Parts-Based Object Class Detection Using Complete Graphs.
IJCV 87, 93-117.
Besag, J. (1986).
On the statistical analysis of dirty pictures.
Journal of the Royal Statistical Society. Series B 48, 259-302.

References II

Bleyer, M., Rhemann, C. and Rother, C. (2011).

PatchMatch Stereo - Stereo Matching with Slanted Support Windows.

In British Machine Vision Conference, BMVC 2011, Dundee, UK, August 29 - September 2, 2011. Proceedings pp. 1-11,.

Boros, E. and Hammer, P. L. (2002).

Pseudo-boolean optimization.

Discrete applied mathematics 123, 155-225.

Boykov, Y. and Jolly, M. (2001).
Demonstration of Segmentation with Interactive Graph Cuts.
In ICCV p. 741,
Boykov, Y. and Kolmogorov, V. (2004).
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision.
IEEE PAMI 26, 1124-1137.
Chopra, S. and Rao, M. (1993).
The partition problem.
Mathematical Programming 59, 87-115.
Delong, A., Osokin, A., Isack, H. and Boykov, Y. (2012).
Fast Approximate Energy Minimization with Label Costs.
International Journal of Computer Vision 96, 1-27.
Elidan, G., McGraw, I. and Koller, D. (2006).
Residual belief propagation: informed scheduling for asynchronous message passing.
In Proceedings of the Twenty-second Conference on Uncertainty in AI (UAI).
Felzenszwalb, P. F. and Huttenlocher, D. P. (2006).
Efficient Belief Propagation for Early Vision.
Int. J. Comput. Vision 70, 41-54.

References III

Fisher, M. E. (1961).
Statistical Mechanics of Dimers on a Plane Lattice.
Phys. Rev. 124, 1664-1672.
Fix, A., Gruber, A., Boros, E. and Zabih, R. (2011).
A graph cut algorithm for higher-order Markov Random Fields.
In ICCV.
Freedman, D. and Drineas, P. (2005).
Energy minimization via graph cuts: settling what is possible.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on vol. 2, pp. 939-946 vol. 2,.
Gallagher, A. C., Batra, D. and Parikh, D. (2011).
Inference for order reduction in Markov random fields.
In CVPR.
Geman, S. and Geman, D. (1984).
Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.
IEEE Trans. Pattern Anal. Mach. Intell. 6, 721-741.
Globerson, A. and Jaakkola, T. (2007).
Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations.
In NIPS.
Globerson, A. and Jaakkola, T. S. (2006).

Approximate inference using planar graph decomposition.

In Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006 pp. 473-480,.

Goldluecke, B. and Cremers, D. (2010).
Convex Relaxation for Multilabel Problems with Product Label Spaces.
In European Conference on Computer Vision.

References IV

Gorelick, L., Boykov, Y., Veksler, O., Ayed, I. B. and Delong, A. (2014a). Submodularization for Binary Pairwise Energies.
In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014 pp. 1154-1161,.
Gorelick, L., Veksler, O., Boykov, Y., Ben Ayed, I. and Delong, A. (2014b).
Local Submodular Approximations for Binary Pairwise Energies.
In Computer Vision and Pattern Recognition.
Greig, D. M., Porteous, B. T. and Seheult, A. H. (1989).
Exact maximum a posteriori estimation for binary images.
Journal of the Royal Statistical Society. Series B (Methodological) 51, 271-279.
Grötschel, M., Lovasz, L. and Schrijver, A. (1981).
The ellipsoid method and its consequences in combinatorial optimization.
Combinatorica 1, 169-197.
Hammersley, J. M. and Clifford, P. E. (1971).
Markov random fields on finite graphs and lattices.
Unpublished manuscript .
Hazan, T., Maji, S. and Jaakkola, T. S. (2013).
On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations.
In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States. pp. 1268-1276,.
Hazan, T. and Shashua, A. (2010).
Norm-Product Belief Propagation: Primal-Dual Message-Passing for Approximate Inference.
IEEE Trans. on Inf. Theory, 56, 6294 -6316.
Ihler, A. and McAllester, D. (2009).

Particle Belief Propagation.

International Conference on Artificial Intelligence and Statistics 5, 256-263.

References V

Ishikawa, H. (2003).
Exact optimization for Markov random fields with convex priors.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 25, 1333-1336.
Ishikawa, H. (2009).
Higher-order clique reduction in binary graph cut.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on pp. 2993-3000,.
lyer, R. K., Jegelka, S. and Bilmes, J. A. (2013).

Fast Semidifferential-based Submodular Function Optimization.

In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013 pp. 855-863,.
Johnson, J. K., Malioutov, D. and Willsky, A. S. (2007).
Lagrangian relaxation for MAP estimation in graphical models.
In 45 th Ann. Allerton Conf. on Comm., Control and Comp.
Jug, F., Pietzsch, T., Kainmüller, D., Funke, J., Kaiser, M., van Nimwegen, E., Rother, C. and Myers, G. (2014).
Optimal Joint Segmentation and Tracking of Escherichia Coli in the Mother Machine.
In Bayesian and grAphical Models for Biomedical Imaging - First International Workshop, BAMBI 2014, Cambridge, MA, USA, September 18 ,
2014, Revised Selected Papers pp. 25-36,.
Jung, K., Kohli, P. and Shah, D. (2009).
Local Rules for Global MAP: When Do They Work ?
In NIPS, (Bengio, Y., Schuurmans, D., Lafferty, J. D., Williams, C. K. I. and Culotta, A., eds), pp. 871-879, Curran Associates, Inc.
Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B. and Rother, C. (2015).
A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems.
International Journal of Computer Vision 1, 1-30.
Kappes, J. H., Beier, T. and Schnörr, C. (2014).
MAP-Inference on Large Scale Higher-Order Discrete Graphical Models by Fusion Moves.
In Computer Vision - ECCV 2014 Workshops - Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II.

References VI

Kappes, J. H., Savchynskyy, B. and Schnörr, C. (2012).
A Bundle Approach To Efficient MAP-Inference by Lagrangian Relaxation.
In CVPR.
Kappes, J. H., Schmidt, S. and Schnörr, C. (2010).
MRF inference by k -fan decomposition and tight Lagrangian relaxation.
In Computer Vision-ECCV 2010 pp. 735-747. Springer.
Kappes, J. H., Speth, M., Andres, B., Reinelt, G. and Schnörr, C. (2011).
Globally Optimal Image Partitioning by Multicuts.
In EMMCVPR.
Kappes, J. H., Speth, M., Reinelt, G. and Schnörr, C. (2013).
Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization.
In CVPR.
Kappes, J. H., Speth, M., Reinelt, G. and Schnörr, C. (2015a).
Higher-order Segmentation via Multicuts.
CoRR abs/1305.6387.
Kappes, J. H., Speth, M., Reinelt, G. and Schnörr, C. (2015b).
Higher-order segmentation via multicuts.
Computer Vision and Image Understanding -, -.
Kasteleyn, P. (1961).
The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice.
Physica 27, 1209-1225.
Kim, T., Nowozin, S., Kohli, P. and Yoo, C. (2011).
Variable grouping for energy minimization.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on pp. 1913-1920,.

References VII

Kleinberg, J. and Tardos, E. (2002).
Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields. Journal of the ACM (JACM) 49, 616-639.

Kohli, P., Kumar, M. P. and Torr, P. H. S. (2007).
P3 \& Beyond: Solving Energies with Higher Order Cliques.
In 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Minnesota, USA.

Kohli, P., Ladický, L. and Torr, P. H. (2009).
Robust Higher Order Potentials for Enforcing Label Consistency.
Int. J. Comput. Vision 82, 302-324.
Kohli, P., Shekhovtsov, A., Rother, C., Kolmogorov, V. and Torr, P. (2008).
On partial optimality in multi-label MRFs.
In ICML.
Koller, D. and Friedman, N. (2009).
Probabilistic Graphical Models: Principles and Techniques.
MIT Press.
Kolmogorov, V. (2006).
Convergent Tree-Reweighted Message Passing for Energy Minimization.
PAMI 28, 1568-1583.
Kolmogorov, V. (2009).
Blossom V: a new implementation of a minimum cost perfect matching algorithm.
Math. Program. Comput. 1, 43-67.
Kolmogorov, V. (2015).
A new look at reweighted message passing.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 37, 919-930.

References VIII

```
#
    Kolmogorov, V. and Rother, C. (2007).
    Minimizing Nonsubmodular Functions with Graph Cuts-A Review.
    IEEE Trans. Pattern Anal. Mach. Intell. 29, 1274-1279.
Kolmogorov, V. and Zabih, R. (2002).
What Energy Functions Can Be Minimized via Graph Cuts?
In ECCV.
Komodakis, N. and Paragios, N. (2008).
Beyond Loose LP-Relaxations: Optimizing MRFs by Repairing Cycles.
In ECCV.
Komodakis, N., Paragios, N. and Tziritas, G. (2011).
MRF Energy Minimization and Beyond via Dual Decomposition.
PAMI }33
Kovtun, I. (2003).
Partial Optimal Labeling Search for a NP-Hard Subclass of (max,+) Problems.
In DAGM.
Kschischang, F., Frey, B. and Loeliger, H.-A. (2001).
Factor graphs and the sum-product algorithm.
Information Theory, IEEE Transactions on 47, 498-519.
Lauritzen, S. L. (1996).
Graphical Models.
Oxford University Press, Oxford, UK.
Lempitsky, V. S., Rother, C., Roth, S. and Blake, A. (2010).
Fusion Moves for Markov Random Field Optimization.
IEEE Trans. Pattern Anal. Mach. Intell. 32, 1392-1405.
```


References IX

Lin, G., Shen, C., Reid, I. D. and van den Hengel, A. (2015).
Efficient piecewise training of deep structured models for semantic segmentation.
CoRR abs/1504.01013.
Meir, O., Galun, M., Yagev, S., Basri, R. and Irad, Y. (2015).
Multiscale Variable-grouping Framework for MRF Energy Minimization.
In Proceedings of the International Conference on Computer Vision (ICCV).
Meshi, O., Globerson, A. and Jaakkola, T. S. (2012).

Convergence Rate Analysis of MAP Coordinate Minimization Algorithms.

In Advances in Neural Information Processing Systems 25, (Pereira, F., Burges, C., Bottou, L. and Weinberger, K., eds), pp. 3014-3022.

Nesterov, Y. (2005).
Smooth minimization of non-smooth functions.
Math. Program. 103, 127-152.
Nowozin, S. and Lampert, C. (2009).
Global connectivity potentials for random field models.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on pp. 818-825,.
Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B. and Kohli, P. (2011).
Decision tree fields.
In ICCV pp. 1668-1675, IEEE.
Papandreou, G. and Yuille, A. (2011).
Perturb-and-MAP random fields: Using discrete optimization to learn and sample from energy models.
In Computer Vision (ICCV), 2011 IEEE International Conference on pp. 193-200,.
Pearl, J. (1988).
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

References X

R. Krishnan, S. Lacoste-Julien, D. S. (2015).

Barrier Frank-Wolfe for Marginal Inference.
In NIPS.
Rav-Acha, A., Kohli, P., Rother, C. and Fitzgibbon, A. (2008).
Unwrap mosaics: a new representation for video editing.
ACM Trans. Graph. 27.
Ravikumar, P., Agarwal, A. and Wainwright, M. J. (2010).
Message-passing for graph-structured linear programs: Proximal methods and rounding schemes.
The Journal of Machine Learning Research 11, 1043-1080.
Rother, C., Kohli, P., Feng, W. and Jia, J. (2009).
Minimizing sparse higher order energy functions of discrete variables.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on pp. 1382-1389,.

Rother, C., Kolmogorov, V., Lempitsky, V. S. and Szummer, M. (2007a).
Optimizing Binary MRFs via Extended Roof Duality.
In CVPR.
Rother, C., Kolmogorov, V., Lempitsky, V. S. and Szummer, M. (2007b).
Optimizing Binary MRFs via Extended Roof Duality.
In CVPR.
Savchynskyy, B., Kappes, J., Schmidt, S. and Schnörr, C. (2011).
A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling.
In CVPR 2011 pp. 1817-1823,.
Savchynskyy, B., Kappes, J. H., Swoboda, P. and Schnörr, C. (2013).
Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation.
In NIPS.

References XI

```
Savchynskyy, B. and Schmidt, S. (2014).
Getting Feasible Variable Estimates From Infeasible Ones: MRF Local Polytope Study.
In Advanced Structured Prediction MIT Press.
Savchynskyy, B., Schmidt, S., Kappes, J. H. and Schnörr, C. (2012).
Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing.
In UAI pp. 746-755,.
Schlesinger, D. (2007).
```


Exact Solution of Permuted Submodular MinSum Problems.

```
In Energy Minimization Methods in Computer Vision and Pattern Recognition, (Yuille, A., Zhu, S.-C., Cremers, D. and Wang, Y., eds), vol. 4679, of Lecture Notes in Computer Science pp. 28-38. Springer Berlin Heidelberg.
Schlesinger, D. (2009).
General Search Algorithms for Energy Minimization Problems.
In Energy Minimization Methods in Computer Vision and Pattern Recognition, (Cremers, D., Boykov, Y., Blake, A. and Schmidt, F. R., eds), vol. 5681, of Lecture Notes in Computer Science pp. 84-97, Springer.
Schlesinger, D. and Flach, B. (2006).
Transforming an arbitrary minsum problem into a binary one.
TU Dresden, Fak. Informatik.
Schlesinger, M. and Giginyak, V. (2007).
Solution to Structural Recognition (MAX,+)-problems by their Equivalent Transformations. in 2 Parts.
Control Systems and Computers 1-2.
Schlesinger, M. I. and Antoniuk, K. V. (2011).
Diffusion algorithms and structural recognition optimization problems.
Cybernetics and Systems Analysis 47, 175-192.
Schmidt, U., Rother, C., Nowozin, S., Jancsary, J. and Roth, S. (2013).
```


Discriminative Non-blind Deblurring.

```
In 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013 pp. 604-611,.
```


References XII

Schraudolph, N. N. and Kamenetsky, D. (2008).

Efficient Exact Inference in Planar Ising Models.

In Advances in Neural Information Processing Systems 21, (Koller, D., Schuurmans, D., Bengio, Y. and Bottou, L., eds), pp. 1417-1424. Curran Associates, Inc.

Schrijver, A. (2000).
A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time.
J. Comb. Theory Ser. B 80, 346-355.

Schwing, A. G., Hazan, T., Pollefeys, M. and Urtasun, R. (2011).
Distributed Message Passing for Large Scale Graphical Models.
In Proc. CVPR.
Shekhovtsov, A. (2014).
Maximum Persistency in Energy Minimization.
In CVPR.
Shekhovtsov, A., Kohli, P. and Rother, C. (2012).
Curvature Prior for MRF-Based Segmentation and Shape Inpainting.
In Pattern Recognition, (Pinz, A., Pock, T., Bischof, H. and Leberl, F., eds), vol. 7476, of Lecture Notes in Computer Science pp. 41-51.
Springer Berlin Heidelberg.
Shekhovtsov, A., Swoboda, P. and Savchynskyy, B. (2015).
Maximum Persistency via Iterative Relaxed Inference with Graphical Models.
In CVPR.
Sontag, D., Meltzer, T., Globerson, A., Weiss, Y. and Jaakkola, T. (2008).
Tightening LP Relaxations for MAP using Message-Passing.
In UAI pp. 503-510,.
Storvik, G. and Dahl, G. (2000).
Lagrangian-based methods for finding MAP solutions for MRF models.
IEEE Transactions on Image Processing 9, 469-479.

References XIII

Strandmark, P. and Kahl, F. (2010).
Parallel and distributed graph cuts by dual decomposition.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on pp. 2085-2092,.
Swoboda, P., Savchynskyy, B., Kappes, J. H. and Schnörr, C. (2013).
Partial Optimality via Iterative Pruning for the Potts Model.
In SSVM.
Swoboda, P., Savchynskyy, B., Kappes, J. H. and Schnörr, C. (2014).
Partial Optimality by Pruning for MAP-inference with General Graphical Models.
In CVPR.
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M. and Rother, C. (2008). A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors.
IEEE PAMI 30, 1068-1080.
Torresani, L., Kolmogorov, V. and Rother, C. (2008).
Feature Correspondence Via Graph Matching: Models and Global Optimization.
In Proceedings of the 10th European Conference on Computer Vision: Part II ECCV '08 pp. 596-609, Springer-Verlag, Berlin, Heidelberg.
Tsochantaridis, I., Joachims, T., Hofmann, T. and Altun, Y. (2005).
Large Margin Methods for Structured and Interdependent Output Variables.
Journal of Machine Learning Research 6, 1453-1484.

Werner, T. (2007).
A Linear Programming Approach to Max-Sum Problem: A Review.
PAMI 29.
Werner, T. (2009).
Revisiting the Decomposition Approach to Inference in Exponential Families and Graphical Models.
Technical report CMP, Czech TU.

References XIV

Zhu, S. C., Wu, Y. N. and Mumford, D. (1998).Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling. International Journal of Computer Vision 27, 107-126.

[^0]: * Loopy Belief Propagation is not exact method, but explained here due to its relation to dynamic programming!

