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Recap: Optimization in Markov Random Fields
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Recap: Visualization & cut
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The minimum cut is defined by 
the saturated edges of the 
maximum flow. 

How much water can 
you push through?



Recap: Alpha-Expansion: visually
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[Boykov , Veksler and Zabih 2001]

Sky

House

Tree

Ground

Initialize with TreeStatus: Expand GroundExpand HouseExpand Sky

• Variables take label a  or retain current label



Recap: Examples: Order
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4-connected; 
pairwise MRF 

Higher-order RF 

𝐸(𝒙) = ∑ 𝜃𝑖𝑗 (𝑥𝑖, 𝑥𝑗)
𝑖, 𝑗 Є𝑁4

higher(8)-connected; 
pairwise MRF 

Order 2 Order 2 Order n

𝐸(𝒙) = ∑ 𝜃𝑖𝑗 (𝑥𝑖, 𝑥𝑗)

“Pairwise energy” “higher-order energy”

𝐸(𝒙) = ∑ 𝜃𝑖𝑗 (𝑥𝑖, 𝑥𝑗)
𝑖, 𝑗 Є𝑁8 𝑖, 𝑗 Є𝑁4

+𝜃(𝑥1, … , 𝑥𝑛)



Recap: Higher-Order Optimization

Usage:

• “Window-based”
• Image Restoration (de-noising, de-convolution)

(better local model for texture and images)
• Depth from Stereo, curvature model for surfaces and segmentation 
• Semantic Segmentation (𝑃𝑛 Potts, Curvature)

• “Image-wide”
• Connectivity of a segmentation or surface
• Image Restoration (de-noising, de-convolution)

(better global model texture and images)
• Semantic Segmentation (co-occurance statistic)

Optimization strategies: 
• Re-write higher-order energy as a pairwise energy 
• Higher-order Message Passing
• Problem de-composition 
• Etc.
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More likely a 
tennis ball 
than a lemon



Recap: “Window-based”: Depth from Stereo
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[Woodford, PAMI et al. 2009]

Depth map (color coded) 
using pairwise prior

Left stereo image Depth map (color coded) 
using 3-pixel prior

𝜃𝑖𝑗𝑟 𝑑𝑖 , 𝑑𝑗 , 𝑑𝑟 =

min( 𝑑𝑖 − 2𝑑𝑗 + 𝑑𝑟 , 𝜏)

𝑑𝑖 − 2𝑑𝑗 + 𝑑𝑟

Robust curvature measure



Recap: Optimization (binary case)

• In general we cannot re-write
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𝜃 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑟 as 𝜃 𝑥𝑖 , 𝑥𝑗 + 𝜃 𝑥𝑖 , 𝑥𝑟 + 𝜃 𝑥𝑗 , 𝑥𝑟
such that they are the same for all values of 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑟

• Let us write:
𝜃 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑟 = 𝜃111𝑥𝑖𝑥𝑗𝑥𝑟 + 𝜃110𝑥𝑖𝑥𝑗 1 − 𝑥𝑟 + 𝜃100𝑥𝑖 1 − 𝑥𝑗 1 − 𝑥𝑟 + …

= 𝑎𝑥𝑖𝑥𝑗𝑥𝑟 + 𝑏𝑥𝑖𝑥𝑗 + 𝑐𝑥𝑖𝑥𝑟 +⋯+ 𝑑

Quadratic polynomial are 
standard pairwise terms

• The idea is to transform the 3rd order into many pairwise terms
(there are many possible methods, we discuss one) 



Recap: Optimization (binary case)
Transformation by “substitution”
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[Rosenberg ’75, Boros and Hammer ’02, Ali et al. ECCV ‘08]

f(x1,x2,x3) =  ax1x2x3 + bx1x2 + cx2x3 + … 

D(x1,x2,z) =  x1x2 – 2x1z – 2x2z + 3z 

It is (check yourself)

D(x1,x2,z) = 0 if x1x2 = z
D(x1,x2,z) > 0 if x1x2 ≠ z

Define auxiliary function:

f(x1,x2,x3) = min g(x1,x2,x3,z) = azx3 + bz + cx2x3 +… + K D(x1,x2,z) 

when K is very large then x1x2 = z
z

Problems: 
• Does not work well in practice (see [Ishikawa CVPR ‘09])
• Function D is non-submodular and “K enforces this strongly”

Apply Substitution:

z ϵ {0,1}

Optimization problem:

min f(x1,x2,x3) = min g(x1,x2,x3,z)
x1,x2,x3,zx1,x2,x3

xi ϵ {0,1}
a,b,c are constant



Roadmap

• Recap

• Higher-Order Models in Computer Vision

• Image Segmentation with Markov Random Fields
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“Image-wide”: Connectivity of Segmentation
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Foreground object must be connected:

User input Standard MRF with connectivity

[Vicente et al. ’08]

Check if the 
segmentation 
is connected? 



Global-Image Prior

24/06/2016 13

[Woodford et. al. ICCV ‘09]

Introduce a global term, 
which controls the 

global statistic for |xi-xj|

Noisy input

co
st

|xi-xj|

Ground truth Results: increased pairwise strength 

P
ro

b
ab

ili
ty

|xi-xj|
From Ground truth images

Image has 
red curve statistics



𝑃𝑛 Potts Model
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Example: Image Segmentation

E(X) = ∑ ci xi + ∑ dij |xi-xj|
i i,j

E: {0,1}n → R

0→fg, 1→bg

n = number of pixels

[Boykov and Jolly ‘ 01]  [Blake et al. ‘04] [Rother et al.`04]

Image Unary Cost Segmentation



Patch Dictionary 
(Tree)

Cmax  0

{ 0      if xi = 0, i ϵ p 
Cmax otherwise

h(Xp) =

p

𝑃𝑛 Potts Model

[slide credits: Kohli]

24/06/2016



𝑃𝑛 Potts Model
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E(X) = ∑ ci xi + ∑ dij |xi-xj| + ∑ hp (Xp)
i i,j p

p

{ 0      if xi = 0, i ϵ p 
Cmax otherwise

h(Xp) =

E: {0,1}n → R

0→fg, 1→bg

n = number of pixels

[slide credits: Kohli]



𝑃𝑛 Potts Model
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Image Pairwise Segmentation Final Segmentation

E: {0,1}n → R

0→fg, 1→bg

n = number of pixels

[slide credits: Kohli]

E(X) = ∑ ci xi + ∑ dij |xi-xj| + ∑ hp (Xp)
i i,j p



𝑃𝑛 Potts Model - Application
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Image

Unaries only
from TextonBoost
[Shotton et al. ‘06]

Pairwise CRF only
[Shotton et al. ‘06]

Pn Potts

One super-
pixelization

another super-
pixelization

[slide credits: Kohli]



Robust 𝑃𝑛 Potts Model

24/06/2016 19

{ 0 if xi = 0, i ϵ p 
f(∑xi)  otherwise

h(xp) =
i

p

Robust Pn PottsPn Potts

[slide credits: Kohli]

∑xi∑xi
i i

f



Robust 𝑃𝑛 Potts Model - Application
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Image

Unaries only
TextonBoost

[Shotton et al. ‘06]

Pairwise CRF only
[Shotton et al. ‘06]

Pn Potts robust Pn Potts robust Pn Potts
(different f)

One super-
pixelization

another super-
pixelization

[slide credits: Kohli]



Robust 𝑃𝑛 Potts Model - Application
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One input 
image

Ground truth 
depth

Stereo without  
robust Pn Potts

Stereo with
robust Pn Potts

Very good result for e.g. Middlebury Teddy Image

[Bleyer at al. CVPR ‘10]



𝑃𝑛 Potts Model: Optimization
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hk

0 max

arbitrary 
concave 
function

Lets define: 𝑛 = ∑𝑖 𝑥𝑖

𝐸(𝑛)

∑𝑖 𝑥𝑖

Goal: convert this higher-order function into a pairwise function 

min 𝐸′ 𝒙 = ∑𝑖 𝜃𝑖 𝑥𝑖 + ∑𝑖,𝑗∈𝑁4 𝜃𝑖𝑗 𝑥𝑖 , 𝑥𝑗 + 𝐸(𝑛)
𝒙

Optimize:

For a binary segmentation we can 
enforce that in a window all pixels 
are more likely “all 0” or “all 1”, but 
less likely 50% 0 and 50% 1.



𝑃𝑛 Potts Model: Optimization
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min
𝒙
𝐸 𝑛 = min

𝒙
min(𝑐1, 𝑐2𝑛)

𝑛 = ∑𝑖 𝑥𝑖

𝑛 = ∑𝑖 𝑥𝑖

Higher-order Energy: 

1 2 3

𝑐1

𝑐2∑𝑖 𝑥𝑖



𝑃𝑛 Potts Model: Optimization
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min
𝒙
𝐸 𝑛 = min

𝒙
min(𝑐1, 𝑐2𝑛)

𝑛 = ∑𝑖 𝑥𝑖

𝑛 = ∑𝑖 𝑥𝑖

= min
𝒙,𝒂
𝑎𝑐1 + (1 − 𝑎)(𝑐2𝑛)

𝑎 ∈ 0,1 , 𝑐2 ≥ 0

Higher-order Energy: 

1

𝑐2∑𝑖 𝑥𝑖

a=1a=0

2 3

𝑐1

𝐸′(𝑛, 𝑎)



Question

1) Submodular

2) Not submodular

3) Sometimes submodular

4) All of the above

5) I don’t know

24/06/2016 25

𝑛 = ∑𝑖 𝑥𝑖
𝑎 ∈ 0,1 , 𝑐2 ≥ 0

What is the function 
𝐸′ 𝑛, 𝑎 = 𝑎𝑐1 + (1 − 𝑎)(𝑐2𝑛) ?



𝑃𝑛 Potts Model: Optimization
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min
𝒙
𝐸 𝑛 = min

𝒙
min(𝑐1, 𝑐2𝑛)

𝑛 = ∑𝑖 𝑥𝑖

𝑛 = ∑𝑖 𝑥𝑖

= min
𝒙,𝒂
𝑎𝑐1 + (1 − 𝑎)(𝑐2𝑛)

𝑎 ∈ 0,1 , 𝑐2 ≥ 0

Higher-order Energy: 

1

𝑐2∑𝑖 𝑥𝑖

a=1a=0

2 3

𝑐1

= min
𝒙,𝒂
𝑎𝑐1 + 𝑐2∑𝑖 𝑥𝑖 +∑𝑖−𝑐2𝑥𝑖𝑎

function is pairwise and submodular since −𝑐2𝑥𝑖𝑎 ≤ 0



𝑃𝑛 Potts Model: Optimization
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𝑛 = ∑𝑖 𝑥𝑖
1

𝑐2 + 𝑐3∑𝑖 𝑥𝑖

a=1a=0

2 3

𝑐1

min
𝒙
𝐸 𝑛 = min

𝒙
min(𝑐1, 𝑐2 + 𝑐3𝑛)

𝑛 = ∑𝑖 𝑥𝑖

= min
𝒙,𝒂
(1 − 𝑎)𝑐1 + 𝑎(𝑐2+𝑐3𝑛)

𝑎 ∈ 0,1 , 𝑐3 ≤ 0

Higher-order Energy: 

function is pairwise and submodular since 𝑐3𝑥𝑖𝑎 ≤ 0

= min
𝒙,𝒂
𝑐1 − 𝑎𝑐1 + 𝑎𝑐2 +∑𝑖 𝑐3𝑥𝑖𝑎



𝑃𝑛 Potts Model: Optimization
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+

=

0 max

Approximate with 
lower envelop of 
linear functions

0 max ∑𝑖 𝑥𝑖

𝐸(𝑛)

∑𝑖 𝑥𝑖

𝐸(𝑛)

Arbitrary concave 
function 
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Demo
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Demo
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What is Segmentation?

• Figure-Ground Segmentation (Binary Segmentation)

(often done with user interaction)
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Brush input Bounding Box input Tracing the boundary

In this lecture series:
- Graph-cut based segmentation
- Bounding Box segmentation
- Joint estimation of appearance and segmentation
- Gaussian MRF (Random Walk versus Graph Cut)
- (Variational methods)

[Lazy Snapping; 
Li et al. SIGGRAPH 2004)

[Mortensen & Barrett, 
Siggraph 1995, CVPR 1999]

GrabCut (Rother et al. Siggraph 2004)

scissors/toboggan_scissors.mov


What is Segmentation?

• Image Matting: Going from binary values to fractional values
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In this lecture series:
- Matting Laplacian (Gaussian MRF)

[Online Benchmark for matting; 
Rhemann, Rother et al. CVPR 2009]



What is Segmentation?

• Image Partitioning  
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Color-based 
segmentation

Object-level partitioning

In this lecture series:
- K-means clustering
- Mean-shift
- Normalized cuts

Superpixel
segmentation



What is Segmentation?

• All of the above exists also for Video
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Video Binary segmentation

Video Superpixels

(this topic is not covered in this lecture)



What is Segmentation?

• Semantic Image segmentation
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Label each pixel with one out of 21 classes 

[TextonBoost; Shotton et al, ‘06]

In this lecture series:
- Covered very briefly later



What is it useful for?

• Image/Video Editing (Adobe Photoshop, ect)

• Film Industry (The Foundry) 

• Semantic Segmentation is relevant for many areas:

• Autonomous Driving

• Augmented Reality 

• Robotics
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Binary Image Segmentation
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Goal

(user-specified pixels are not optimized for)
𝒛 = 𝑅, 𝐺, 𝐵 𝑛 𝒙 = 0,1 𝑛

Interactive Segmentation

Two-step approach:
1. Modelling: Write down the model in form of an energy function
2. Optimization: find the minimal configuration of the energy



Comment on Feature for segmentation

• Image (or Video) Segmentation (Partitioning) use different types of 
features:
• Position in the image (e.g. sky more likely art top of image)

• Color

• Texture

• Motion (e.g. moving car)

• Size and Orientation of super-pixels

• Etc.
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Goal



Image Segmentation

24/06/2016 40

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑥𝑗

𝜃𝑖(𝑥𝑖)𝑥𝑖

𝐸 𝒙 =  

𝑖∈𝑁

𝜃𝑖 𝑥𝑖 +  

𝑖,𝑗∈𝑁4

𝜃𝑖𝑗 𝑥𝑖 , 𝑥𝑗

Binary Label: 𝑥𝑖 ∈ {0,1}

Input Image
with user brush strokes 

(blue-background; red-foreground)

Desired binary output labeling

We will use the following energy:

Unary term Pairwise term

𝑁4 is the set of all neighboring pixels



Image Segmentation: Energy
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Goal: formulate 𝐸(𝒙) such that

Solution: 𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐸(𝒙)

𝐸 𝒙 = 0.01 𝐸 𝒙 = 0.05 𝐸 𝒙 = 0.05 𝐸 𝒙 = 0.1

(numbers may not represent true numbers) 



Unary term
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Red

G
re

e
n

Red

G
re

e
n

user labelled pixels
(cross foreground; dot background)

Gaussian Mixture Model fit

Foreground model is blue
Background model is red



Unary term
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Optimum with 
unary terms only

Dark means likely 
background

Dark means likely 
foreground

𝜃𝑖(𝑥𝑖 = 0) 𝜃𝑖(𝑥𝑖 = 1)

New query 
image 𝑧𝑖

𝐸 𝒙 =  

𝑖

𝜃𝑖 𝑥𝑖

𝜃𝑖 𝑥𝑖 = 0 =
− log𝑃𝑟𝑒𝑑(𝑧𝑖|𝑥𝑖 = 0)

𝜃𝑖 𝑥𝑖 = 1 =
− log𝑃𝑏𝑙𝑢𝑒(𝑧𝑖|𝑥𝑖 = 1)

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐸(𝒙)



Gaussian Mixture Model (GMM)

• Mixture Model: 𝑝 𝑧 = ∑𝑘=1
𝐾 𝑝 𝑘 𝑝 𝑧 𝑘

• “𝑘” is a latent variable we are not interested in

• 𝑘 ∈ 1,… , 𝐾 represents the 𝐾 mixtures.

• Each mixture 𝑘 is a 3D Gaussian distribution 𝑁𝑘(𝑧; 𝜇𝑘, Σ𝑘) where

𝜇𝑘 is a 3D vector and Σk a 3 × 3matrix (positive-semidefinite),      
called covariance matrices:

𝑁 𝑧, 𝜇, Σ =
1

2𝜋 𝑑/2 Σ
1
2

exp{−
1

2
𝑧 − 𝜇 𝑇Σ−1(𝑧 − 𝜇)}

• 𝑝 𝑧 = ∑𝑘=1
𝐾 𝜋𝑘 𝑁𝑘(𝑧; 𝜇𝑘, Σ𝑘)
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Mixture coefficient 

K = 8 for each fore-
and background



Gaussian Mixture Model (GMM)

• GMM probability 𝑝 𝑧 = ∑𝑘=1
𝐾 𝜋𝑘 𝑁𝑘(𝑧; 𝜇𝑘, Σ𝑘)

• Reminder  𝑝 𝑧 = 1

• Unknown parameters: Θ = (𝜋1, … , 𝜋𝐾, 𝜇1, … , 𝜇𝐾, Σ1, … , Σ𝐾)
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Example:

“RGB cube”

Note,  (
4

5
𝑁1 𝑥 +

1

5
𝑁2 𝑥 ) =

4

5
 𝑁1 𝑥 +

1

5
 𝑁2 𝑥 =

4

5
+
1

5
= 1



Fitting/Learning Gaussian Mixture Model (GMM)

• GMM probability 𝑝 𝑧 = ∑𝑘=1
𝐾 𝜋𝑘 𝑁𝑘(𝑧; 𝜇𝑘, Σ𝑘)

• Unknown parameters: Θ = (𝜋1, … , 𝜋𝐾, 𝜇1, … , 𝜇𝐾, Σ1, … , Σ𝐾)

• How to learn Θ given data {𝑧1, … , 𝑧𝑛} : 

• Maximum Likelihood Learning objective:

where 𝑧𝑖 are all pixels to which the GMM is fitted to 

• Full learning procedure: EM (see machine learning lecture ML 1)

• Next is a simplified version
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Θ∗ = argmax  

𝑖=1

𝑛

𝑝Θ (𝑧𝑖)
Θ



A simple procedure for GMM learning /fitting
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Let us introduce an assignment variable for each data point (pixel) to which 
Gaussian it belongs to: 𝑘1, … 𝑘𝑛 where 𝑘𝑖 ∈ {1,…𝐾}

𝑘𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑁𝑘(𝑧; 𝜇𝑘 , Σ𝑘)



Extensions

• Choose 𝐾 automatically

• Go to probabilistic version using Expectation Maximization (EM).
Now 𝑘𝑖 are “soft assignments” to all Gaussian

• Faster versions:

• Fit GMM to all data points (fore- and background) and then 
only change the mixture coefficients

• Use Histograms instead of GMMs
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So far: Unary term
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Optimum with 
unary terms only

Dark means likely 
background

Dark means likely 
foreground

𝜃𝑖(𝑥𝑖 = 0) 𝜃𝑖(𝑥𝑖 = 1)

New query 
image 𝑧𝑖

𝐸 𝒙 =  

𝑖

𝜃𝑖 𝑥𝑖

𝜃𝑖 𝑥𝑖 = 0 =
− log𝑃𝑟𝑒𝑑(𝑧𝑖|𝑥𝑖 = 0)

𝜃𝑖 𝑥𝑖 = 1 =
− log𝑃𝑏𝑙𝑢𝑒(𝑧𝑖|𝑥𝑖 = 1)

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝐸(𝒙)

𝐸 𝒙 =  

𝑖∈𝑁

𝜃𝑖 𝑥𝑖 +  

𝑖,𝑗∈𝑁4

𝜃𝑖𝑗 𝑥𝑖 , 𝑥𝑗

Unary term Pairwise term



Pairwise term
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• We choose a so-called Ising Prior: 

𝜃𝑖𝑗 𝑥𝑖 , 𝑥𝑗 = |𝑥𝑖 − 𝑥𝑗|

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑥𝑗

𝜃𝑖(𝑥𝑖)𝑥𝑖

𝜃𝑖 𝑥𝑖 = 0 =
− log𝑃𝑟𝑒𝑑(𝑧𝑖|𝑥𝑖 = 0)

𝜃𝑖 𝑥𝑖 = 1 =
− log𝑃𝑏𝑙𝑢𝑒(𝑧𝑖|𝑥𝑖 = 1)

𝐸 𝒙 =  

𝑖∈𝑁

𝜃𝑖 𝑥𝑖 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|

Unary term Pairwise term

• Full Energy



Question
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This models makes the assumption that the object is spatially coherent

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑥𝑗

𝑥𝑖

Question: Given the energy 𝐸 𝒙 = ∑𝑖,𝑗∈𝑁4 |𝑥𝑖 − 𝑥𝑗| with 𝑥 ∈ {0,1}

Which labelling has lowest energy?

1) Solution A
2) Solution B 
3) Solution A and B
4) Solution C
5) Solution D
6) I don’t know

Solution  A Solution  B Solution  C Solution  D

Possible Answers:



Question
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Question: Given the energy 𝐸 𝒙 = ∑𝑖 𝜃𝑖 𝑥𝑖 + 𝜔 ∑𝑖,𝑗∈𝑁4 |𝑥𝑖 − 𝑥𝑗| ; 𝑥 ∈ {0,1}

Please guess what 𝜔1, 𝜔2 could be?

𝜔1 = ?𝜔 = 0 𝜔 = 200 𝜔2 = ?

1) 𝜔1 = 10; 𝜔2 = 40
2) 𝜔1 = 𝜔2
3) 𝜔1 = 30; 𝜔2 = 20
4) I don’t know

Possible Answers:



Adding Unary and Pairwise term
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𝜔 = 10𝜔 = 0

𝜔 = 200𝜔 = 40

Energy: 𝐸 𝒙 = ∑𝑖 𝜃𝑖 𝑥𝑖 + 𝜔 ∑𝑖,𝑗∈𝑁4 |𝑥𝑖 − 𝑥𝑗|



Question
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Question: Given the energy 𝐸 𝒙 = ∑𝑖,𝑗∈𝑁4 |𝑥𝑖 − 𝑥𝑗| with 𝑥 ∈ 0,1 .

Given the 5x5 pixel image below, where several pixels have been assigned 
a labelling and others not. You have to fill in the remaining labels. 
How many corners has the labelling with minimal energy? 

1) 4 corners
2) 6 corners
3) 10 corners
4) There is no unique answer
5) I don’t know

Possible Answers:

0 0 0 0 0

1 0

1 0

1 0

1 1 1 1 0

0 0 0 0 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

0 0 0 0 0

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

4 corners, 8 edges cut 10 corners, 8 edges cut

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑥𝑗

𝑥𝑖

1 0

1 0

Example: segmentation 
with 4 corners



Is it the best we can do?
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4-connected 
segmentation

Zoom-in on image
zoom zoom

Energy: 𝐸 𝒙 = ∑𝑖 𝜃𝑖 𝑥𝑖 + ∑𝑖,𝑗∈𝑁4 |𝑥𝑖 − 𝑥𝑗|



Question 
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Question: Given the energy 𝐸 𝒙 = ∑𝑖,𝑗∈𝑁8 |𝑥𝑖 − 𝑥𝑗| with 𝑥 ∈ 0,1 .

Given the 5x5 pixel image below, where several pixels have been assigned 
a labelling and others not. You have to fill in the remaining labels. 
How many corners has the labelling with minimal energy? 

1) 4 corners
2) 6 corners
3) 10 corners
4) There is no unique answer
5) I don’t know

Possible Answers:

0 0 0 0 0

1 0

1 0

1 0

1 1 1 1 0

0 0 0 0 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

0 0 0 0 0

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

4 corners, 8+13 edges cut 10 corners, 8+7 edges cut

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑥𝑗

𝑥𝑖

1 0

1 0

Example: segmentation 
with 4 corners



From 4-connected to 8-connected Factor Graph
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Larger connectivity can model true Euclidean 
length  (also other metric possible)

Eucl.

Length of the paths:

4-con.

5.65

8

1

8-con.

6.28

6.28

5.08

6.75

[Boykov et al. ‘03; ‘05]

4-connected 8-connected



Going to 8-connectivty
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4-connected 
Euclidean

8-connected 
Euclidean (MRF)

Zoom-in image

Is it the best we can do? 



Adapt the pairwise term

24/06/2016 59

Standard 4-connected Edge-dependent
4-connected

𝐸 𝒙 = 

𝑖

𝜃𝑖 𝑥𝑖 +  

𝑖,𝑗∈𝑁4

𝜃𝑖𝑗 𝑥𝑖 , 𝑥𝑗

where 𝛽 ≥ 0 is a constant

𝜃𝑖𝑗 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 − 𝑥𝑗 (𝑒𝑥𝑝 −𝛽 𝑧𝑖 − 𝑧𝑗
2
)

𝑒𝑥
𝑝
−
𝛽
𝑧 𝑖
−
𝑧 𝑗
2

𝑧𝑖 − 𝑧𝑗
2



Optimization
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Energy: 𝐸 𝒙 = ∑𝑖 𝜃𝑖 𝑥𝑖 + ∑𝑖,𝑗∈𝑁4 𝜃𝑖𝑗 𝑥𝑖 , 𝑥𝑗

where 𝛽 ≥ 0 is a constant

𝜃𝑖𝑗 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 − 𝑥𝑗 (𝑒𝑥𝑝 −𝛽 𝑧𝑖 − 𝑧𝑗
2
)

• The defined Energy can be solved globally optimally with graph cut since 
submodularity condition is satisfied

• Submodularity condition:          
for all 𝑖, 𝑗 it is:  𝜃𝑖𝑗 1,0 + 𝜃𝑖𝑗 0,1 ≥ 𝜃𝑖𝑗 0,0 + 𝜃𝑖𝑗 1,1



A simple semantic segmentation system
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where 𝛽 ≥ 0 is a constant

𝐸 𝒙 = ∑𝑖 𝜃𝑖 𝑥𝑖 + ∑𝑖,𝑗∈𝑁4 𝑥𝑖 − 𝑥𝑗 𝑒𝑥𝑝 −𝛽 𝑧𝑖 − 𝑧𝑗
2

Unaries are from a fully convolutional Neural Network:

(from previous lecture)

Optimization is done with alpha expansion:

Image Dense CNN Dense CNN with MRF 



Extension: Fully connected CRFs
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[Krähenbühl, Koltun, NIPS 2011]

𝐸 𝒙 = 

𝑖

𝜃𝑖 𝑥𝑖 + 

𝑖<𝑗

𝑤𝑖𝑗 |𝑥𝑖 − 𝑥𝑗|

𝑤𝑖𝑗 = exp − 𝑝𝑖 − 𝑝𝑗
2
/𝜆1 + exp − 𝑝𝑖 − 𝑝𝑗

2
/𝜆2 − 𝐼𝑖 − 𝐼𝑗

2
/𝜆3

Spatial distance contrast-dependent

All pixels are connected:



• Optimization is only approximate
• The fully connected CRF can also be written as “unrolled inference” 

at the end of an fully convolutional neural network

Comment: Fully connected CRFs
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[Krähenbühl, Koltun, NIPS 2011]


