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Recap: Optimization in Markov Random Fields
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Recap: Visualization & cut

How much water can
#=JN  lyou push through?

The minimum cut is defined by
the saturated edges of the
maximum flow.
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Recap: Alpha-Expansion: visually

e Variables take label & or retain current label

—p [ Tree

—p [ Ground

m—> House
Status:  MipiatideSambeattee —p [ Sky

[Boykov , Veksler and Zabih 2001]

(&) Ren A5 24/06/2016 5



Recap: Examples:

Order

4-connected;
pairwise MRF

E(x) = Z 0, (x; x;)

i,jEN,
Order 2

“Pairwise energy”

higher(8)-connected;
pairwise MRF

E(x) = ), 0, (x,x))

i,j € Ng

Order 2

Higher-order RF

E(x) = ), 0, (x,x)
i,jEN,
+0(xy, ..., X,,)
Order n

“higher-order energy”
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Recap: Higher-Order Optimization

Usage:
e “Window-based”

* Image Restoration (de-noising, de-convolution)
(better local model for texture and images)

e Depth from Stereo, curvature model for surfaces and segmentation
* Semantic Segmentation (P™ Potts, Curvature)

° ”|mage_wide” More likely a
. . . tennis ball
* Connectivity of a segmentation or surface

than a lemon
* Image Restoration (de-noising, de-convolution)
(better global model texture and images)

* Semantic Segmentation (co-occurance statistic)

Optimization strategies:
* Re-write higher-order energy as a pairwise energy
* Higher-order Message Passing
* Problem de-composition
* Etc.
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Recap: “Window-based”: Depth from Stereo

Left stereo image Depth map (color coded)
using pairwise prior

Depth map (color coded)
using 3-pixel prior

0;ir(d;,d;,d) =
0(d;. d;) = min(|d; — d;|,7) min(ﬁli-(—l J T)T A

cost—»

COSt =——b

>
ld; — d;]
|d; — 2d; + d, |
OO Robust curvature measure
E(x) = Zﬁ(x)+ Z 6:;(xix;) + Z B (10 %5, X1
i,jEN, i,jreN
x; €{1,..,D}
[Woodford, PAMI et al. 2009]
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Recap: Optimization (binary case)

* In general we cannot re-write

H(xl-, xj,xr) as H(xl-,xj) +6(x;, x,) + H(xj,xr)
such that they are the same for all values of (xi,xj, xr)

e Let us write:

H(xi,xj,xr) = 0111% X% + 0110%;%;(1 — x,.) + Qlooxi(l — xj)(l — X)) + ..
= ax;XjX, + bx;x; + cxix, + -+ d

Quadratic polynomial are
standard pairwise terms

 Theideais to transform the 3rd order into many pairwise terms
(there are many possible methods, we discuss one)

] ()

NN

OO0 OO0
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Recap: Optimization (binary case)

Transformation by “substitution”

f(X1,X5,X3) = aX;X,X3 + bX1X, + CXoX3 + ... x; € {0,1}

. . . a,b,c are constant
Define auxiliary function:

D(x1,%X5,2) = XX, - 2%,z - 2x,z+3z ze€{0,1}
It is (check yourself)

D(x1,%,,2) = 0 if x;x, = z

D(x,X5,2z) > 0 if xyx, % z

Apply Substitution:

f(X1,X5,X3) = mzin g8(X1,X5,X3,Z) = azx3 + bz + cx,X5 +... + K D(X4,X5,2)
when K is very large then x;X, = z

Optimization problem:

)gp)jznx3f(x1,x2,x3) = min g(X4,X,,X3,2)

Xl,XZ,X3,Z
Problems:

Does not work well in practice (see [Ishikawa CVPR ‘09])
Function D is non-submodular and “K enforces this strongly”

[Rosenberg '75, Boros and Hammer ‘02, Ali et al. ECCV ‘08]
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Roadmap

* Recap

e Higher-Order Models in Computer Vision

* Image Segmentation with Markov Random Fields
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“Image-wide”: Connectivity of Segmentation

Foreground object must be connected:

User input Standard MRF with connectivity

Check if the
segmentation
is connected?

[Vicente et al. '08]
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Global-Image Prior

Results: increased pairwise strength Image has
red curve statistics

10') 107, 10,
10 169 ]
10 10 10
o,
0 4 . — R
10 10’ 107 0 e
o] — Originai
107} 107] 10°]
| g 10
10 107 10 | .‘
, | , | -
10 10 L X
H : + H i \
0|
o

w0 40 20 @0 @ 40 &0 ‘s =0 200 =0 a0 Veg @1 @0 0 @ a1 B

Introduce a global term,
which controls the
global statistic for Ixi-xJ-I

Probability

-200 -100 0 100 200
| Xi=X; |
From Ground truth images

cost
#

|x;-%;|  —>
[Woodford et. al. ICCV ‘09]
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P™ Potts Model

Example: Image Segmentation n = number of pixels
E: {0,1}» >R
E(X) = Z Ci X+ Z d;; Ix;-x;l 0 —»fg, 1—bg
i Lj _ .

Segmentation

[Boykov and Jolly “ 01] [Blake et al. ‘04] [Rother et al. 04]
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P™ Potts Model

Patch Dictionary
(Tree)

_J 0O ifx=0,iep
{h(xp) C..x Otherwise

Criax=> 0

max =

[slide credits: Kohli]
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P™ Potts Model

( )
n = number of pixels

E: {0,1}» - R
0 —»fg, 1-bg

E(X) = Z Ci X+ Z dij |xi"xj| + ) h, (X,)
i i p

{h(xp): {g ifx=0,iep

nax OTherwise

P

[slide credits: Kohli]
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P™ Potts Model

Vs

n = number of pixels\
E: {0,1}» - R
0 —»fg, 1-bg

E(X) = ) ¢, %+ ) di; |x;-x;| +
i ij

Pairwise Segmentation Final Segmentation

(&) Ren A5 24/06/2016 17



P™ Potts Model - Application

\
o
€S

| s

image One super-  another super-

pixelization  pixelization

Unaries only Pairwise CRF only P" Potts
from TextonBoost [Shotton et al. ‘06]

[Shotton et al. ‘06]

[slide credits

: Kohli]
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Robust P™ Potts Model

_J O ifx=0,iep
h(xp) - f(O x.) otherwise

P" Potts Robust P" Potts
Ymax T e ’Ymax — R f
0 - 0
| . | | .
0 1 Zx' 0 1 T ,ZX'
Inconsistent Pixels — Inconsistent Pixels —

[slide credits: Kohli]
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Robust P™ Potts Model - Application

cS
4 —

M) -::‘-___,,._
Image One super-  another super-
pixelization  pixelization

- - Road

Unaries only Pairwise CRF only P" Potts robust P" Potts robust P" Potts
TextonBoost [Shotton et al. ‘06] (different f)
[Shotton et al. ‘06]

[slide credits: Kohli]
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Robust P™ Potts Model - Application

J—— - R—— .
N Ly (s SRCALF.
§ P o~ 4 A e 8 |
- o S . - ! Feedi
- S i 1
A . : |
N ot - 3 W,
" » 3 P LA
! : ST Ly
. d b
’.
30" A
> ¥ e LN
ol o e
ZideX <
= - R . -
o i W
i 2l s P e )

OneAinput Ground truth  Stereo without Stereo with
image depth robust P" Potts robust P" Potts

Very good result for e.g. Middlebury Teddy Image

[Bleyer at al. CVPR ‘10]
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P™ Potts Model: Optimization

Lets define: n = );; x;

Optimize: min E'(x) = Zi Hi(xi) + Zi,jEN4 HU(XL,X]) + E(Tl)
X

E(n) arbitrary
concave
function
For a binary segmentation we can
enforce that in a window all pixels
are more likely “all 0” or “all 1”7, but
0 max: »i X less likely 50% 0 and 50% 1.

Goal: convert this higher-order function into a pairwise function

<

VRGN LAB  24/06/2016
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P™ Potts Model: Optimization

Higher-order Energy:

min E'(n) = min min(cq, c,n)
X X

Cy Zi Xi

n=;x;

| |
1 2 3
n=2ixi >

(&) Ren A5 24/06/2016
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P™ Potts Model: Optimization

Higher-order Energy:

min E'(n) = min min(cq, c,n)
X X

= min ac; + (1 — a)(cyn)
xa | Y )
E'(n,a)
Cy Zixi
a=0 a=1

n =X
a €{0,1},c, =0

| |
1 2 3
n=2ixi >

(&) Ren A5 24/06/2016
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Question

What is the function

E'(n,a) = aC1+(1—a)(czn) ? n:zixi

a € {0,1}, Co >0

1) Submodular

2) Not submodular

3) Sometimes submodular
4) All of the above

5) Idon’t know

(&) Ren A5 24/06/2016



P™ Potts Model: Optimization

Higher-order Energy: n=7y.x
— LM

min E'(n) = min min(cq, c,n) a €{0,1},¢c, =0
X X

= min ac; + (1 — a)(cyn)
X,a

= min ac; + ¢c; X; X; + X —Cxx;a
X,a

function is pairwise and submodular since —c,x;a < 0

Cy Zi Xi

a=0 a=1

| |
1 2 3
n=2ixi >

(&) Ren A5 24/06/2016
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P™ Potts Model: Optimization

Higher-order Energy:

n =X
min E'(n) = min min(cq, ¢, + c3n) a€{01},c3<0
X X
= min (1 —a)c; + a(cy+c3n)
xX,a
= min ¢; —ac; +acy, + ),; c3x;a
X,a

function is pairwise and submodular since c3x;a < 0

Co + C3 Zixl:

a=0 a=1

NN

| | |
1 2 3
n=2ixi >

(&) Ren A5 24/06/2016
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P™ Potts Model: Optimization

Emn) |

>
0 max Yy x,

Arbitrary concave
function

E(n)

max Zi X;
Approximate with
lower envelop of
linear functions

(&) Ren A5 24/06/2016



Roadmap

* Recap

e Higher-Order Models in Computer Vision

* Image Segmentation with Markov Random Fields
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Demo

COMPUTER
&) ) VISION LAB

24/06/2016
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Demo
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What is Segmentation?

* Figure-Ground Segmentation (Binary Segmentation)

(often done with user interaction)

Figure 2: Image demonstrating how the live-wire segment adapts and
snaps to an object boundary as the free point moves (via cursor move-
ment). The path of the free point is shown in white. Live-wire segments
Jfrom previous free point positions (1, t|, and ty) are shown in green.

Brush input Bounding Box input Tracing the boundary

[Lazy Snapping; GrabCut (Rother et al. Siggraph 2004) [Mortensen & Barrett,
Li et al. SIGGRAPH 2004) Siggraph 1995, CVPR 1999]

In this lecture series:

- Graph-cut based segmentation

- Bounding Box segmentation

- Joint estimation of appearance and segmentation
- Gaussian MRF (Random Walk versus Graph Cut)

- (Variational methods)

(&) BN S 24/06/2016 32


scissors/toboggan_scissors.mov

What is Segmentation?

* Image Matting: Going from binary values to fractional values

[Online Benchmark for matting;
Rhemann, Rother et al. CVPR 2009]

In this lecture series:
- Matting Laplacian (Gaussian MRF)

(&) Ren A5 24/06/2016
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What is Segmentation?

* I[mage Partitioning

Original Image

b%ﬁg; C o :

S ] Color Quantization with KMeans Clustering

Superplxel' Color-based Object-level partitioning
segmentation segmentation

In this lecture series:
- K-means clustering
- Mean-shift

- Normalized cuts

Cé VRION LAE  24/06/2016 34



What is Segmentation?

e All of the above exists also for Video

[Fast object segmentation
in unconstrained video

Anestis Papazoglou and Vittorio Ferrari Video Superpixels

Video Binary segmentation

(this topic is not covered in this lecture)

(&) Ren A5 24/06/2016 35



What is Segmentation?

* Semantic Image segmentation [fextonBoost; Shotton et al, ‘06]

tree

building -
body—> road aeroplane building

grass grass road

building sky

tree

bike building
car
road road

Object Building Grass @ Tree Cow Sheep Sky Aeroplane | Water Face
classes

Bike Flower Sign Bird Book Chair Road Cat Body

Label each pixel with one out of 21 classes

In this lecture series:
- Covered very briefly later

COMPUTER

COZ \vision LAE  24/06/2016



What is it useful for?

* Image/Video Editing (Adobe Photoshop, ect)
* Film Industry (The Foundry)

* Semantic Segmentation is relevant for many areas:
* Autonomous Driving
* Augmented Reality
* Robotics

(&) Ren A5 24/06/2016
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Binary Image Segmentation

Interactive Segmentation

Goal

x ={0,1}"

(user-specified pixels are not optimized for)

Two-step approach:
1. Modelling: Write down the model in form of an energy function
2. Optimization: find the minimal configuration of the energy

(&) Ren A5 24/06/2016



Comment on Feature for segmentation

* Image (or Video) Segmentation (Partitioning) use different types of
features:
e Position in the image (e.g. sky more likely art top of image)
e Color
* Texture
* Motion (e.g. moving car)
* Size and Orientation of super-pixels
* Etc.

Goal

(&) Ren A5 24/06/2016



Image Segmentation

It'Img | Desired binary output labeling
with user brush strokes
(blue-background; red-foreground)

We will use the following energy:

E@ =) 0:d+ Y 6y(xx)
ieNK_Y_) i,jEN, ;H
Unary term Pairwise term

Binary Label: x; € {0,1}

N, is the set of all neighboring pixels

(&) Ren A5 24/06/2016
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Image Segmentation: Energy

E(x) = 0.01 E(x) = 0.05 ECO) = 0.05

(numbers may not represent true numbers)

Solution: x* = argmin, E(x)

E(x) =0.1

(&) Ren A5 24/06/2016
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Unary term

Green

Red

user labelled pixels
(cross foreground; dot background)

Gaussian Mixture Model fit

Gaussian Mixture Model - blue() foreground; red(*) background

Foreground model is blue
Background model is red

<

COMPUTER
VISION LAB

24/06/2016
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Unary term

S0k
100+
% =
150 f S0 g
‘,_r’-“p:_“.‘

200 -

250

i . L L L h ;
50 100 150 200 250 300 350

0;(x; =0)

Dark means likely
background

-20

40

-60

-50

-100

-120

-140

-160

50+

100+

150

200

250+

Gaussian Mixtur Mdlhl()fg und; 1 d(")b kg und

6;(x; =0) =
—log P"¢4(z;|x; = 0)

0;(x; =1) =
—longlue(zi|x,; =1)

01 02 03 04 05 EIE 07 08 08 1

e
@
..‘v
i -
L] 5 i,
-
L *(
%
i ]
; ; 3 . ; : ;
50 100 120 200 250 300 30

Optimum with
unary terms only
x* = argmin, E(x)

ﬂw=2am>

0;(x; =1)

Dark means likely
foreground

COMPUTER
VISION LAB

<

24/06/2016
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Gaussian Mixture Model (GMM)

* Mixture Model: p(2) = YX_,p(k) p(z|k)

,,,,,, Zo5:Y

e “k” is a latent variable we are not interested in AN - ARER
K = 8 for each fore-
and background

 k €{1,...,K} represents the K mixtures.

* Each mixture k is a 3D Gaussian distribution Ny (z; ug, £ ) where

Uy is a 3D vector and Xy a 3 X 3 matrix (positive-semidefinite),
called covariance matrices:

1 1
N(zp5) = r exp{—5 (2 - W7z - W)
(2m)¥/2 |zf2

» p(2) = Yi=17x Ni(Z; Uy, L)

Mixture coefficient

COMPUTER

COJ vision LAB 24/06/2016 44



Gaussian Mixture Model (GMM)

* GMM probability p(z) = Yi-; me Ni(Z; g, Zk)
* Reminder [p(z) =1

“RGB cube”
* Unknown parameters: © = (7T, ..., g, U1, o) Uity 21y ooy ZK)

Example:

‘ . ) S
G/L")M : @("‘St Lg_t NA(X,‘)\]MZ/D » >: NZ (')(J /UZ(ZCB

Note, (2 Ny () + 2N, () = [ Ny (x) +3 [ Np(x) == +

ul | >
ul | r
Il
—

(&) Ren A5 24/06/2016
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Fitting/Learning Gaussian Mixture Model (GMM)

* GMM probability p(z) = Y=y mx Ni(Z; g, Zx)
* Unknown parameters: © = (114, ..., Tg, U, o) Ug) 21y woe) BK)

* How to learn O given data {z, ..., z,, } :
 Maximum Likelihood Learning objective:

0" = argmax Hp@ (z;)
where z; are all plxels to which the GMM is fitted to

* Full learning procedure: EM (see machine learning lecture ML 1)
* Next is a simplified version

(&) Ren A5 24/06/2016 46



A simple procedure for GMM learning /fitting

Let us introduce an assignment variable for each data point (pixel) to which
Gaussian it belongs to: kq, ...k, where k; € {1, ... K}

@ A vard ovn Gomn anons
Vet 1D

@ VP (,LSVL @p,@\{\s &‘O Gcbvvymdm @ 7 Q) quml/(, o Céx 6%{,407&/1/1

ki = argmax; Ny (z; p, )

—

@@o*@@k\o@i&ﬂ & 5. — S |

- L(/)ﬁho’h W\,z/m% 5 gl

Counmicnn  Granlns

— vhax Lkeakion et

(&) Ren A5 24/06/2016
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Extensions

* Choose K automatically

* Go to probabilistic version using Expectation Maximization (EM).
Now k; are “soft assignments” to all Gaussian

e Faster versions:

* Fit GMM to all data points (fore- and background) and then
only change the mixture coefficients

e Use Histograms instead of GMMs

(&) Ren A5 24/06/2016
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So far: Unary term

E(x) = E&QJ“ z

iEN
Unary term

0;(x; =1) =
—log PP™e(z;|x; = 1)

s0f
100}
1Bk ""
200f

250 F

: il
i : ; ; . ; 2
50 100 150 200 250 300 350

0;(x; =0)

Dark means likely

ileN4-

0ij (xi, x;)

Pairwise term

0;(x; =0) =
—log P™*%(z;|x; = 0)

e
s0f
100} &7
o .‘ - .
J £ e
150}
L] E’ -
B o
200+ g
¥
e P )
250} - g\‘)
50 100 150 200 250 300 350

0;(x; =1)

Dark means likely

Gaussian Mixtur Mdlbl()fg ddmkg

Optimum with
unary terms only
x* = argmin, E(x)

background
g foreground E(x) = z 8. (x.)
(&) Ren A5 24/06/2016 49



Pairwise term

* We choose a so-called Ising Prior:
0 (%, ;) = |xi — x]

* Full Energy
E(x) = zHi(xi)‘l' z |x; — x;
iEN k—H i,jeva—Y—)
Unary term Pairwise term
0i(x; =1) =

—log PP™e (z:|x; = 1)

0;(x; =0) =
—log P™*%(z;|x; = 0)

GO REE  24/06/2016
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Question

Question: Given the energy E(x) = X ien, |%: — x;| with x € {0,1}
Which labelling has lowest energy?

ODOD@

] ] 91] (xux])

ODOD@

Solution A Solution B Solutlon C Solutlon D O 0 Q B O

Possible Answers:

[ERY

Solution A
Solution B
Solution A and B
Solution C
Solution D

| don’t know

U B W N

)
)
)
)
)
6)

This models makes the assumption that the object is spatially coherent

(&) Ren A5 24/06/2016 51



Question

Question: Given the energy E(x) = X; 0;(x;) + w X; jen, 1% — xj1;x € {0,1}

Please guess what w,, w, could be?

Possible Answers:

1) wqy =10; w, =40
2) w1 = w,

3) wy = 30; wy, =20
4) |don’t know

(&) Ren A5 24/06/2016 52



Adding Unary and Pairwise term

Energy: E(x) = %, 0;(x;) + w X; jen, |%i — x;

(&) Ren A5 24/06/2016
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Question

Question: Given the energy E(x) = 2; jen, | — x;| with x € {0,1}.
Given the 5x5 pixel image below, where several pixels have been assigned

a labelling and others not. You have to fill in the remaining labels.
How many corners has the labelling with minimal energy?

O|0|0]|O0|O

1 0 110

1 0 110

1 0 Example: segmentation

1111111 lo with 4 corners

Possible Answers: 0O(0|0|O|O 0O|0|0]|O|O
1) 4 corners 1 (11111110 1 (0|0 |0 |O
2) 6 corners 11111 |0 1|10 |0 |0
3) 10 corners
4) There is no unique answer 1117111109 11111100
5) Idon’t know 1 (1111 1{0 1 (1 1(1 (1 {0

4 corners, 8 edges cut 10 corners, 8 edges cut

(&) Ren A5 24/06/2016




Is it the best we can do?

4-connected
segmentation

zoom : :
Zoom-in on image

Energy: E(x) = );0;(x;) + Zi,jeN4 |xi — le

(&) Ren A5 24/06/2016
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Question

Question: Given the energy E(x) = i jeng 1% — xj| with x € {0,1}.
Given the 5x5 pixel image below, where several pixels have been assigned
a labelling and others not. You have to fill in the remaining labels.

How many corners has the labelling with minimal energy?

O|0|0 |0 |O
1 0 110
1 0 1|0
1 0 Example: segmentation
11111 11 o with 4 corners

Possible Answers: 0O(0]|0 |0 |O 0O|0]|0|O|O
1) 4 corners 1 (111110 1 (0|0 |0 |O
2) 6 corners 111]1 (10 1/1]o0]o0 o
3) 10 corners
4) There is no unique answer 11711111710 1111100
5) ldon’t know 111 (1 (110 1|11 (10

4 corners, 8+13 edges cut 10 corners, 8+7 edges cut
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From 4-connected to 8-connected Factor Graph

4-connected

8-connected

Length of the paths:

Eucl. 4-con. 8-con.
5.65 6.28 5.08
8 6.28 6.75

Larger connectivity can model true Euclidean
length (also other metric possible)

[Boykov et al. ‘03; ‘05]

<

COMPUTER
VISION LAB
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Going to 8-connectivty

4-connected 8-connected
Euclidean Euclidean (MRF)

Is it the best we can do?

Zoom-in image

(&) Ren A5 24/06/2016
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Adapt the pairwise term

E(x) —ZH(xl)+ Z 8, (xix;)

r]EN4-

0:(x1,%;) = |x; — x| (exp {—ﬁ(Zi - Zj)z})

where f = 0 is a constant

Standard 4-connected Edge-dependent
4-connected

(&) Ren A5 24/06/2016 59



Optimization

 The defined Energy can be solved globally optimally with graph cut since
submodularity condition is satisfied

Energy: E(x) = 2; 0;(x;) + 2; jen, 9ij(xi’ xj)

01 (x1,%7) = |xi = 7| (exp {~B(z = )P

where f = 0 is a constant

* Submodularity condition:
for all l,] itis: 61](1’0) + 81](0’1) = HU(O,O) + 911(1,1)

(&) Ren A5 24/06/2016
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A simple semantic segmentation system

E(x) =3;0;(x) + X; jen, % — %l (exp{-8(z - 2)°})

where 8 = 0 is a constant

Unaries are from a fully convolutional Neural Network:

Semantic Segmentation: Upsampling

forw ference W 105
& B A8
- < g
< o S &N
, backward/learning &
P
e
’ | o 6 21
U o6 ab 2
Zobh .ob b 857 2O
SAP 9P
s
|
9%
5

Learnable upsampiing!

(from previous lecture)

Long, Sheihamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”. CVPR 2015

Optlmlzatlon is done with alpha expansion:

Dense CNN Dense CNN with MRF

(&) Ren A5 24/06/2016

61



Extension: Fully connected CRFs

[Krahenbihl, Koltun, NIPS 2011]

E(x) = Z 0;(x;) + ZWU |x; — xj

i<j

Wij = exp {—|Pi - Pj|2//11} + exp {—|Pi - Pj|2//12 —|I; - 1j|2//13}

Spatial distance contrast-dependent

All pixels are connected:
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Comment: Fully connected CRFs

[Krahenbihl, Koltun, NIPS 2011]
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Image Grid CRF Robust P" CRF Our approach Accurate ground truth

e Optimization is only approximate
* The fully connected CRF can also be written as “unrolled inference”
at the end of an fully convolutional neural network
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