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Roadmap this lecture

• GrabCut: Interactive Image Segmentation from a Bounding Box

• Joint optimization of segmentation and appearance models
[Vicente, Kolmogorov, Rother, ICCV 2009]

• A state-of-the-art approach 
[GrabCut in OneCut, Tang, Gorelick, Veksler, Boykov; ICCV 2013]

• Gaussian Markov Random Fields
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So far: Brush-Interface Image Segmentation
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𝜃𝑖 𝑥𝑖 = 0 = − log𝑃
𝑟𝑒𝑑(𝑧𝑖|𝑥𝑖 = 0)

𝜃𝑖 𝑥𝑖 = 1 = − log𝑃
𝑏𝑙𝑢𝑒(𝑧𝑖|𝑥𝑖 = 1)

𝐸 𝒙 = 

𝑖

𝜃𝑖 𝑥𝑖 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|

Energy:

Background

Foreground G

R

θF/B Gaussian 
Mixture models

Image 𝐼 Output 𝒙



Bounding Box Image Segmentation: GrabCut
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Background

Foreground G

R

Search for θF/B Gaussian 
Mixture models that explains the 
fore- and background segment

Image 𝐼

F&B B

[Rother et al. Siggraph ‘04]

Search for a Segmentation

Optimization Task:

Fore-
ground

Back-
ground Note, all pixels in the 

image now define 
the foreground and 
background color
models



Bounding Box Image Segmentation: GrabCut
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𝜃𝑖 𝑥𝑖 = 0, Θ
𝐵 = − log𝑃𝑟𝑒𝑑(𝑧𝑖|𝑥𝑖 = 0, Θ

𝐵)

𝜃𝑖 𝑥𝑖 = 1, Θ
𝐹 = − log𝑃𝑏𝑙𝑢𝑒(𝑧𝑖|𝑥𝑖 = 1, Θ

𝐹)

𝐸 𝒙, Θ𝐹 , Θ𝐵 = 

𝑖

𝜃𝑖 𝑥𝑖 , Θ
𝐹 , Θ𝐵 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|

Energy:

Background

Foreground G

R

θF/B Gaussian Mixture modelsImage 𝐼

F&B B ?

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸(𝒙, Θ𝐵 , Θ𝐹)
𝒙, Θ𝐵, Θ𝐹

Optimization Problem:

[Rother et al. Siggraph ‘04]

Note all pixels in the 
image now define 
the foreground and 
background color
models



Joint Model: Motivation 

• The joint optimization over appearance (Θ’𝑠 ) and segmentation has a long 
history, e.g. Chan-Vese functional, TextonBoost for Semantic segmentation, etc

• The implicit assumption is that the foreground segment has similar colors and 
also the background segment has similar colors (see next slides)
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Question
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Input Image

Option 1 Option 2 Option 3

Which Segmentation do you prefer:
1) Option 1
2) Option 2
3) Option 3

Foreground
segmentation

Background
segmentation

Foreground
segmentation

Background
segmentation

Foreground
segmentation

Background
segmentation



Joint Model: Motivation 
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Input Image
Option 1 Option 2 Option 3

Eunary = 460000 Eunary = 482000 Eunary = 483000

foreground background foreground background foreground background

θF θB θF θB θF θB

𝜃𝑖 𝑥𝑖 = 0, Θ
𝐵 = − log𝑃𝑟𝑒𝑑(𝑧𝑖|𝑥𝑖 = 0, Θ

𝐵)

𝜃𝑖 𝑥𝑖 = 1, Θ
𝐹 = − log𝑃𝑏𝑙𝑢𝑒(𝑧𝑖|𝑥𝑖 = 1, Θ

𝐹)

𝐸 𝒙, Θ𝐹 , Θ𝐵 = 

𝑖

𝜃𝑖 𝑥𝑖 , Θ
𝐹 , Θ𝐵 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|

Eunary

(optimal color model, proof later) (optimal color model, proof later) (optimal color model, proof later)



Joint Model: Optimization 

• Block Coordinate Descent (iterative optimization) (see next slides)

• Globally Optimal segmentation (see next section)
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Block-Coordinate Descent
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Image 𝐼

F&B B

[Rother et al. Siggraph ‘04]

Estimating the colour 
distributions using pixels 

from fore- and background 
segment respectively. Keep 

segmentation fixed.

Graph cut to infer 
segmentation using fixed 

colour models

min
Θ𝐵,Θ𝐹
𝐸 𝑥, Θ𝐹 , Θ𝐵 min

𝒙
𝐸 𝑥, Θ𝐹 , Θ𝐵

(done as before using GMMs)

Initial Segmentation

F&B



Block-Coordinate Descent
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Result

Background

Foreground & 

Background G

R

Background

Foreground G

R

Initial Color Models

Final Color Models



Optimization over Θ’𝑠 helps in other cases too
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Color models 
from all image pixels

[GrabCut ‘04]

Color models 
from brushes only 
[Boykov&Jolly ‘01]

Input

Input

Color models 
from all image pixels

[GrabCut ‘04]



How to initialize?
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Idea 1:

Image 𝐼

F&B B

Idea 2:

− log𝑃𝑟𝑒𝑑(𝑧𝑖|𝑥𝑖 = 0) Take as foreground 33% of pixels 
where − log𝑃𝑟𝑒𝑑(𝑧𝑖|𝑥𝑖 = 0) is high
(result sketched)



How to initialize?
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Input image parametric maxflow gives you a sequence of 
solutions (faked here) 
[Kolmogorov et al. ICCV 2007]

Initialize with a 
result that is close 
to the bounding box 

Idea 3: Use Parametric Maxflow [Kolmogorov, Boykov, Rother ICCV 07]



Paramteric Maxflow
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𝐸 𝒙, 𝜆 = 

𝑖

𝜃𝑖 𝑥𝑖 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗| + 

𝑖

𝜆𝑥𝑖Energy:

Optimization: find all possible segmentations (for any 𝜆)    

F&B B
𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑎𝑠𝑒: 𝜆 = −∞

𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑎𝑠𝑒: 𝜆 = ∞



Paramteric Maxflow - Example
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9389 solutions (superimposed) 
(𝜔 = 0.01) 

6058 solutions (superimposed) 
(𝜔 = 0.1) 

𝐸 𝒙, 𝜆 = 

𝑖

𝜃𝑖 𝑥𝑖 + 𝜔  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗| + 

𝑖

𝜆𝑥𝑖

2027 solutions (superimposed) 
(𝜔 = 1) 

214 solutions (superimposed) 
(𝜔 = 10) 

Input Image

𝜃𝑖 0 = 𝑧𝑖 𝜃𝑖 1 = 255 − 𝑧𝑖



Roadmap this lecture

• GrabCut: Interactive Image Segmentation from a Bounding Box

• Joint optimization of segmentation and appearance models
[Vicente, Kolmogorov, Rother, ICCV 2009]

• A state-of-the-art approach 
[GrabCut in OneCut, Tang, Gorelick, Veksler, Boykov; ICCV 2013]

• Gaussian Markov Random Fields
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Recap: Block-Coordinate Descent
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Image 𝐼

F&B B

[Rother et al. Siggraph ‘04]

Estimating the colour 
distributions using pixels 

from fore- and background 
segment respectively

Graph cut to infer 
segmentation using fixed 

colour models

min
Θ𝐵,Θ𝐹
𝐸 𝑥, Θ𝐹 , Θ𝐵 min

𝒙
𝐸 𝑥, Θ𝐹 , Θ𝐵

(done as before using GMMs)

Initial Segmentation

F&B

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸(𝒙, Θ𝐵 , Θ𝐹)
𝒙, Θ𝐵, Θ𝐹

Optimization Problem:



Our goal

30/06/2016 19

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸 𝒙, Θ𝐹 , Θ𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 [  𝑖 𝜃𝑖 𝑥𝑖 , Θ
𝐹 , Θ𝐵 +  𝑖,𝑗∈𝑁4 𝑥𝑖 − 𝑥𝑗 ]

𝒙, Θ𝐹 , Θ𝐵

𝒙

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑥𝑗 𝜃𝑗(𝑥𝑗)

𝑥𝑖

Θ𝐹 Θ𝐵

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸′ 𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛 [ ℎ 𝑛 𝒙 +  𝑘 ℎ𝑘(𝑛𝑘(𝒙)) +  𝑖,𝑗∈𝑁4 |𝑥𝑖 − 𝑥𝑗| ]
𝒙

𝜃𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑥𝑗

𝑥𝑖

ℎ1 ℎ𝐾 ℎ

𝒙, Θ𝐹 , Θ𝐵

Reformulate to:



Our goal: Visualization of the final energy
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𝑛𝐹0 n/2 n

g

Prefers “equal area” segmentation Each color either fore- or background

hk

0 max 𝑛𝑘
𝐹

convex concave

𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸′ 𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛 [ ℎ 𝑛𝐹 + 

𝑘

ℎ𝑘 𝑛𝑘
𝐹 +  

𝑖,𝑗∈𝑁4

𝑥𝑖 − 𝑥𝑗 ]
𝒙

ℎ 𝑛𝐹 = 𝑔 𝑛 + 𝑔(𝑛 − 𝑛𝐹) 𝑛𝐹 =  𝑖 𝑥𝑖 number of foreground pixel

𝑛𝑘
𝐹 =  𝑖 𝑥𝑖 number of foreground pixel in bin  𝑘

ℎ𝑘 𝑛𝑘
𝐹 = −𝑔 𝑛𝑘

𝐹 − 𝑔(𝑛𝑘 − 𝑛𝑘
𝐹)

with 𝑔 𝑧 = 𝑧 log 𝑧
𝑛𝑘 = number of pixels in bin 𝑘 (independent of 𝒙)

𝑛 = number of pixels in image (independent of 𝒙)

ℎ ℎ𝑘



Reminder: Gaussian Mixture Model
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Image 𝒛

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸 𝒙, Θ𝐹 , Θ𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝜃𝑖 𝑥𝑖 , Θ
𝐹 , Θ𝐵 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|
𝒙, Θ𝐹 , Θ𝐵

𝜃𝑖 𝑥𝑖 = 0, Θ
𝐵 = − log𝑃𝑟𝑒𝑑(𝑧𝑖|𝑥𝑖 = 0, Θ

𝐵)

𝜃𝑖 𝑥𝑖 = 1, Θ
𝐹 = − log𝑃𝑏𝑙𝑢𝑒(𝑧𝑖|𝑥𝑖 = 1, Θ

𝐹)

Background

Foreground G

R

θF/B Gaussian Mixture models
given 𝒙

𝒙, Θ𝐹 , Θ𝐵



Histogram Model

22

Image histogram K

K = 163

Image discretized in bins

KK background 
distribution

foreground 
distribution

Θ𝐹 Θ𝐵

𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸 𝒙, Θ𝐹 , Θ𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝜃𝑖 𝑥𝑖 , Θ
𝐹 , Θ𝐵 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|
𝒙, Θ𝐹 , Θ𝐵

𝜃𝑖 𝑥𝑖 = 0, Θ
𝐵 = − logΘb(zi)

𝐵

𝜃𝑖 𝑥𝑖 = 1, Θ
𝐹 = − logΘb(zi)

𝐹

b zi ∈ {1, . . 𝐾} is the bin in which zi falls in 

Θ𝑘
𝐹/𝐵
∈ 0,1

 

𝑘

Θ𝑘
𝐹/𝐵
= 1

Our Goal is to find optimal: 
• Segmentation 𝒙,
• K-value vector Θ𝑘

𝐹

• K-value vector Θ𝑘
𝐵

𝒙, Θ𝐹 , Θ𝐵



Derive optimal appearance model
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𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 

𝑖

𝜃𝑖 𝑥𝑖 , Θ
𝐹 , Θ𝐵 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|
𝒙, Θ𝐹 , Θ𝐵

𝒙
= 𝑎𝑟𝑔𝑚𝑖𝑛 min  

𝑖

𝜃𝑖 𝑥𝑖 , Θ
𝐹 , Θ𝐵 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|
Θ𝐹 , Θ𝐵

𝑛𝐹 =  𝑖 𝑥𝑖 number of foreground pixel (𝑛𝐵 background in same fashion)

𝑛𝑘
𝐹 =  𝑖 𝑥𝑖 number of foreground pixel in bin 𝑘 (𝑛𝑘

𝐵 background in same fashion)

It is: Θ𝑘
𝐹∗ = 𝑛𝑘

𝐹 / 𝑛𝐹 (i.e. is the empirical histogram, Θ𝑘
𝐹∗ means optimal solution 

(Θ𝑘
𝐵∗ done in the same fashion)  

given 𝒙
kk

background 
distribution

foreground 
distribution

Θ𝐹∗ Θ𝐵∗

discretized image

𝜃𝑖 𝑥𝑖 = 0, Θ
𝐵 = − logΘb(zi)

𝐵

𝜃𝑖 𝑥𝑖 = 1, Θ
𝐹 = − logΘb(zi)

𝐹



Proof: Θ𝑘,𝐹
∗ = 𝑛𝑘

𝐹 / 𝑛𝐹
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(substitute Θ1) 



Re-write the energy
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𝜃𝑖 𝑥𝑖 = 0 = − log [𝑛𝑘
𝐵 / 𝑛𝐵]

𝜃𝑖 𝑥𝑖 = 1 = − log [𝑛𝑘
𝐹 / 𝑛𝐹]

𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛  

𝑖

𝜃𝑖 𝑥𝑖 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|

𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 min  

𝑖

𝜃𝑖 𝑥𝑖 , Θ
𝐹 , Θ𝐵 +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|
Θ𝐹 , Θ𝐵

𝜃𝑖 𝑥𝑖 = 0, Θ
𝐵 = − logΘb(zi)

𝐵

𝜃𝑖 𝑥𝑖 = 1, Θ
𝐹 = − logΘb(zi)

𝐹

𝑛𝐹 =  𝑖 𝑥𝑖 number of foreground pixel

𝑛𝑘
𝐹 =  𝑖 𝑥𝑖 number of foreground pixel in bin 𝑘

Remember: 
Depends on the 
full labeling 𝒙 !

Given: Θ𝑘
𝐹∗ = 𝑛𝑘

𝐹 / 𝑛𝐹



Re-write the energy
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𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛  

𝑘

[ − nk
F log [𝑛𝑘

𝐹 / 𝑛𝐹] − nk
B log [𝑛𝑘

𝐵 / 𝑛𝐵] ] +  

𝑖,𝑗∈𝑁4

|𝑥𝑖 − 𝑥𝑗|

Sum over all𝑲 bins 
in the histogram

Image histogram
K

𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 [ ℎ 𝑛𝐹 + 

𝑘

ℎ𝑘 𝑛𝑘
𝐹 +  

𝑖,𝑗∈𝑁4

𝑥𝑖 − 𝑥𝑗 ]

ℎ 𝑛𝐹 = 𝑔 𝑛 + 𝑔(𝑛 − 𝑛𝐹)

𝑛𝐹 =  𝑖 𝑥𝑖 number of foreground pixel

𝑛𝑘
𝐹 =  𝑖 𝑥𝑖 number of foreground pixel in bin 𝑘

ℎ𝑘 𝑛𝑘
𝐹 = −𝑔 𝑛𝑘

𝐹 − 𝑔(𝑛𝑘 − 𝑛𝑘
𝐹)

with 𝑔 𝑧 = 𝑧 log 𝑧

𝑛𝑘 = number of pixels in bin 𝑘 (independent of 𝒙)

𝑛 = number of pixels in image (independent of 𝒙)



Proof: Previous re-formulation 
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done



Visualization of the energy
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𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸′ 𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛 [ ℎ 𝑛𝐹 + 

𝑘

ℎ𝑘 𝑛𝑘
𝐹 +  

𝑖,𝑗∈𝑁4

𝑥𝑖 − 𝑥𝑗 ]
𝒙

ℎ 𝑛𝐹 = 𝑔 𝑛𝐹 + 𝑔(𝑛 − 𝑛𝐹) 𝑛𝐹 =  𝑖 𝑥𝑖 number of foreground pixel

𝑛𝑘
𝐹 =  𝑖 𝑥𝑖 number of foreground pixel in bin 𝑘ℎ𝑘 𝑛𝑘

𝐹 = −𝑔 𝑛𝑘
𝐹 − 𝑔(𝑛𝑘 − 𝑛𝑘

𝐹)

with 𝑔 𝑧 = 𝑧 log 𝑧
𝑛𝑘 = number of pixels in bin 𝑘 (independent of 𝒙)

𝑛 = number of pixels in image (independent of 𝒙)

Visualization: 𝑔 𝑧 = 𝑧 log 𝑧 Visualization: h 𝑧



Proof: minimum of function ℎ
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Visualization of the energy
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𝑛𝐹0 n/2 n

g

Prefers “equal area” segmentation Each color either fore- or background

hk

0 max 𝑛𝑘
𝐹

convex concave

𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸′ 𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛 [ ℎ 𝑛𝐹 + 

𝑘

ℎ𝑘 𝑛𝑘
𝐹 +  

𝑖,𝑗∈𝑁4

𝑥𝑖 − 𝑥𝑗 ]
𝒙

ℎ 𝑛𝐹 = 𝑔 𝑛𝐹 + 𝑔(𝑛 − 𝑛𝐹) 𝑛𝐹 =  𝑖 𝑥𝑖 number of foreground pixel

𝑛𝑘
𝐹 =  𝑖 𝑥𝑖 number of foreground pixel in bin 𝑘ℎ𝑘 𝑛𝑘

𝐹 = −𝑔 𝑛𝑘
𝐹 − 𝑔(𝑛𝑘 − 𝑛𝑘

𝐹)

with 𝑔 𝑧 = 𝑧 log 𝑧
𝑛𝑘 = number of pixels in bin 𝑘 (independent of 𝒙)

𝑛 = number of pixels in image (independent of 𝒙)

ℎ ℎ𝑘



Some Results
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Globally Optimal in 61% of cases … but runtime is ~90sec for a 250 x 160 image

Input GrabCut Global Optimum



Adapting the weighting
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0.4 ℎ0.3 ℎ ℎ 1.5 ℎ

𝑛𝐹0 n/2 n

g

Prefers “equal area” segmentation Each color either fore- or background

hk

0 max 𝑛𝑘
𝐹

convex concaveℎ𝑘ℎ



Adapting the weighting
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1.35 ℎ 1.35 ℎ 1.5 ℎ 1.7 ℎ

1 ℎ1 ℎ1 ℎ1 ℎ



How to optimize it?
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𝑛𝐹0 n/2 n

g

Prefers “equal area” segmentation Each color either fore- or background

hk

0 max 𝑛𝑘
𝐹

convex
concave

𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸′ 𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛 [ ℎ 𝑛𝐹 + 

𝑘

ℎ𝑘 𝑛𝑘
𝐹 +  

𝑖,𝑗∈𝑁4

𝑥𝑖 − 𝑥𝑗 ]
𝒙

ℎ 𝑛𝐹 = 𝑔 𝑛 + 𝑔(𝑛 − 𝑛𝐹) 𝑛𝐹 =  𝑖 𝑥𝑖 number of foreground pixel

𝑛𝑘
𝐹 =  𝑖 𝑥𝑖 number of foreground pixel in bin 𝑘ℎ𝑘 𝑛𝑘

𝐹 = −𝑔 𝑛𝑘
𝐹 − 𝑔(𝑛𝑘 − 𝑛𝑘

𝐹)

with 𝑔 𝑧 = 𝑧 log 𝑧
𝑛𝑘 = number of pixels in bin 𝑘 (independent of 𝒙)

𝑛 = number of pixels in image (independent of 𝒙)

ℎ
ℎ𝑘



Question
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min E(x) = min [ E1(x) + θTx + E2(x) – θTx ] 
xx

x x
? min [E1(x) + θTx] + min [E2(x) - θTx]

Question:

1) Is ? a ≤
2) Is ? a <
3) Is ? a ≥
4) Is ? a >
5) Is ? a =



Dual Decomposition 
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min E(x) = min [ E1(x) + θTx  + E2(x) – θTx ] 

• θ is called the dual vector (same size as x) 

• Goal: max L(θ) ≤ min E(x)

• Properties:

• L(θ) is concave (optimal bound can be found)

• If x1=x2 then problem solved (no guarantee that this will happen)

• Dual Decomposition is sometimes also called Problem Decomposition  

xx

xθ

Hard to optimize Possible to optimize Possible to optimize

x1 x2
“Lower bound”

≥ min [E1(x1) + θTx1] + min [E2(x2) - θTx2] =: L(θ)



Why is the lower bound a concave function?
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L(θ)  = min [E1(x1) + θTx1] + min [E2(x2) - θTx2] x1 x2

L(θ) : Rn -> R

L1(θ) 

θ

L1(θ) L2(θ) 

L(θ) concave since a sum of two concave functions: L1(θ), L2(θ) 

θTx’1

θTx’’1

θTx’’’1

1D illustration: 
(note θ is high-dimensional)



How to maximize the lower bound?
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L(θ)  = min [E1(x1) + θTx1] + min [E2(x2) - θTx2] x1 x2

L(θ) : Rn -> R

L1(θ) 

Θ

L1(θ) L2(θ) 

θTx’1

θTx’’1

θTx’’’1

Θ’’ = Θ’ + λ g

Θ’ Θ’’ 

= Θ’ + λ x’1
(for L1(θ)) 

Θ’’ = Θ’ + λ (x1-x2)
(for L(θ)) 

Subgradient g

1D illustration: 
(since θ is high dimensional)



How to maximize the lower bound?
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L(θ)  = min [E1(x1) + θTx1] + min [E2(x2) - θTx2] x1 x2

Subproblem 1
x1 = min [E1(x1) + θTx1]

x1 x2

Iterative Optimization:

subgradient

Θ

Θ Θ

Θ = Θ + λ(x1-x2) 

x1

Subproblem 2
x2 = min [E2(x2) - θTx2]x2

“Slaves”

“Master”

Illustrating the optimization

• Guaranteed to converge to optimal bound L(θ)

• Choose step-width λ correctly ([Bertsekas ’95])

• Pick solution x as the best of x1 or x2

• E and L can in- and decrease during optimization 

*

* *

*

* *



Dual Decomposition - Analysis 
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Θ’’ = Θ’ + λ (x1-x2)  

L(θ)  = min [E1(x1) + θTx1] + min [E2(x2) - θTx2] 

Update step:

Consider pixel p: 

Case2: x1p = 1 x2p = 0    then  Θ’’ = Θ’+ λ

push x1p towards 0  push x2p towards 1  

Case1: x1p = x2p      then  Θ’’ = Θ’ 

Case3: x1p = 0 x2p = 1    then  Θ’’ = Θ’- λ

push x1p towards 1  push x2p towards 0  

* *

*

*

* *

*

*



Dual Decomposition – Our Model 
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𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 [ ℎ 𝑛𝐹 +  𝑖Θ𝑖𝑥𝑖 + 𝑘 ℎ𝑘 𝑛𝑘

𝐹 +  𝑖,𝑗∈𝑁4 𝑥𝑖 − 𝑥𝑗 −  𝑖Θ𝑖𝑥𝑖]

ℎ 𝑛𝐹 = 𝑔 𝑛 + 𝑔(𝑛 − 𝑛𝐹) 𝑛𝐹 =  𝑖 𝑥𝑖 number of foreground pixel

𝑛𝑘
𝐹 =  𝑖 𝑥𝑖 number of foreground pixel in bin 𝑘ℎ𝑘 𝑛𝑘

𝐹 = −𝑔 𝑛𝑘
𝐹 − 𝑔(𝑛𝑘 − 𝑛𝑘

𝐹)

with 𝑔 𝑧 = 𝑧 log 𝑧
𝑛𝑘 = number of pixels in bin 𝑘 (independent of 𝒙)

E1(x) E2(x) 

Solving the Sub-problems:

• E1(x) can be computed globally optimal (see article)

• E2(x) can be computed globally optimal (see next)



Special high-order functions
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hk

0 max

concave

𝑛𝑘
𝐹 =  𝑖 𝑥𝑖 number of foreground pixel in bin 𝑘

ℎ𝑘

 𝑖 𝑥𝑖

𝐸2 𝒙 =  𝑘 ℎ𝑘 𝑛𝑘
𝐹 +  𝑖,𝑗∈𝑁4 𝑥𝑖 − 𝑥𝑗 −  𝑖Θ𝑖𝑥𝑖

Goal: convert this higher-order function into a pairwise function 
using 𝑃𝑛 Potts Model



Reminder: 𝑃𝑛 Potts Model
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+

=

0 max

Approximate with 
lower envelop of 
linear functions

0 max  𝑖 𝑥𝑖

𝐸(𝑛)

 𝑖 𝑥𝑖

𝐸(𝑛)

Arbitrary concave 
function 



Roadmap this lecture

• GrabCut: Interactive Image Segmentation from a Bounding Box

• Joint optimization of segmentation and appearance models
[Vicente, Kolmogorov, Rother, ICCV 2009]

• A state-of-the-art approach 
[GrabCut in OneCut, Tang, Gorelick, Veksler, Boykov; ICCV 2013]

• Gaussian Markov Random Fields

30/06/2016 44



Remove the parts which are hard to optimize
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[GrabCut in One Cut, Tang, Gorelick, Veksler, Boykov, ICCV ’13]

hk

nF

Each color either fore- or background

0 max
k

nF0 n/2 n

g

Prefers “equal area” segmentation

concaveconvex

hk

nF

Each color either fore- or background

0 max
k

nF0 n/2 n

g

Prefers segmentation with all pixels 
assigned to foreground

concavelinear

“Balloning
force”

ℎ

ℎ ℎ𝑘

ℎ𝑘



OneCut Energy
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hk

nF

Each color either fore- or background

0 max
k

nF0 n/2 n

g concavelinear

“Balloning
force”

𝒙
𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸′ 𝒙 = 𝑎𝑟𝑔𝑚𝑖𝑛 [ 𝑖 𝜆 (1 − 𝑥𝑖) + 𝑘 ℎ𝑘 𝑛𝑘

𝐹 +  𝑖,𝑗∈𝑁4 𝑥𝑖 − 𝑥𝑗 ]
𝒙

The global optimum can be computed efficiently (as seen above)

ℎ ℎ𝑘

Prefers segmentation with all pixels 
assigned to foreground



Comparison to previous approaches
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More bins gives better separation 
in camouflage cases:

GrabCut = Block Coordinate Descent
DD          = Dual decomposition 

(as discussed above)



Results
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Different Terms ℎ𝑘
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Conclusion: the simple 𝐿1 term is best in terms of accuracy and speed 



Roadmap this lecture

• GrabCut: Interactive Image Segmentation from a Bounding Box

• Joint optimization of segmentation and appearance models
[Vicente, Kolmogorov, Rother, ICCV 2009]

• A state-of-the-art approach 
[GrabCut in OneCut, Tang, Gorelick, Veksler, Boykov; ICCV 2013]

• Gaussian Markov Random Fields
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The following part is not relevant 
for the exam
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Gaussian MRF (GMRF)
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x∊ ℝn , ∑-1 ∊ ℝnxn i.e. one multi-dimensional Gaussian

Re-write as Energy (Gibbs distribution):
P(x) = 1/f exp{ -E(x)}    with E(x) = ½ xTAx – xTb + constant

P(x) = 1/√det(2π∑) exp{-1/2 (x-μ)T ∑-1 (x-μ)}

where ∑-1 is positive-definite 

It is x* = argmin E(x) = argmax P(x)
x x



Gaussian MRF

Reminder
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Gaussian MRF
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Gaussian MRF
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Gaussian MRF
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𝜕𝐸 𝑥

𝜕𝑥
=
𝜕𝐸 𝑥

𝜕𝑥1
, … ,
𝜕𝐸 𝑥

𝜕𝑥𝑛
= 𝑨𝒙 − 𝒃 = 0

𝒙∗ = 𝑨−𝟏𝒃 (closed-from solution, or other solvers) 

Let’s use:

Then it is: 𝐸 𝑥 =
1

2
𝒙𝑻𝑨𝒙 − 𝒙𝑻𝒃 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

!



Example: GMRF
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for  E(x) = ½ xTAx – xTb

E(x) = (x1, x2, x3, x4) 

1

-1 1

-1 1

-1

1 -1

1 -1

1 -1

1 -1

-1 2 -1

-1 2 -1

-1 1

(x1-x2, x2-x3, x3-x4)

E(x) = ∑ (xi-xj)2

x1

x2

x3

x4

(x1-x2, x2-x3, x3-x4)T

=: ½ A

with b = 0

i,j

We would like to model: E(x) = ∑ (xi-xj)2

i,j ∈ 𝑵
x2x1 x4x3

xi∊ ℝ



A simple de-noising model

30/06/2016

Generative model for a noisy image:

P(x,z) = P(z|x) P(x)

x* = argmax P(z|x) P(x)  (for a given z)   

x* = argmin Eu(x,z) + Ep(x)

Data z
(pixel independent 
Gaussian noise)

Label x

x

i

x

Likelihood:

P(z|x) = 1/σ 2𝜋 ∏ exp{-1/(2σ2) (xi-zi)2}

(f is a factor, which can be ignored) 

xi

Eu

zi

-log P(z|x) = Eu(x) = f ∑ (xi-zi)2

i

𝑥𝑖

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑧𝑖

= f (x-z)T I (x-z) = f (xT I x - 2xTz + zTz)

(this is a quadratic form)



A simple de-noising model
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Generative model for a noisy image:

P(x,z) = P(z|x) P(x)

x* = argmax P(z|x) P(x)  (for a given z)   

x* = argmin Eu(x,z) + Ep(x)
x

x

-log P(x) = f Ep(x) = f ∑ (xi-xj)2

Prior:

(f is a factor, which can be ignored) 
i,j ∈ 𝑵

= f½ xTAx (as done above)

|xi-xj|

Ep

Data z
(pixel independent 
Gaussian noise)

Label x



A simple de-noising system
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Generative model for a noisy image:

P(x,z) = P(z|x) P(x)

x* = argmax P(z|x) P(x)  (for a given z)   

x* = argmin Eu(x) + Ep(x)
x

x

xi

Eu Ep

zi

|xi-xj|

original Input z 256 discrete labels x
(TRW-S)HBF [Szeliski ‘06]~ 15times faster

continuous label x

Random Field Models in Computer Vision

Data z
(pixel independent 
Gaussian noise)

Label x



Practical view: Potentials are often not Gaussian
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Learning the potentials (Loss-minimizing parameter learning) 
gives non-Gaussian potentials

Unary potential: zi-xi Pairwise potential: xi-xj

[Putting MAP back on the map, Pletscher et al. DAGM 2010]

Ideal output  Label x

Noisy input image z



Stereo Matching - Energy
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U
n

ar
y 

te
rm

Disparity d

Quite arbitrary functions

Ground truth depthLeft image Right image

𝑥-direction (black low cost)  (e.g. 𝑦 = 100)D
is

p
ar

it
y 

d

e.g. 𝑥 = 100

𝑒. 𝑔. 𝑥 = 200

𝑥

𝑦

[Scharstein et al.  IJCV ‘02]

Unary terms (many options)
Patch-Cost for a pixel i with disparty 𝑑𝑖:

𝜃𝑖 𝑑𝑖 =  

𝑗∈𝑁𝑖

𝐼𝑗
𝑙 − 𝐼𝑗−𝑑𝑖

𝑟 2



Continuous-valued MRF for Segmentation
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Energy: E(x) = ∑ (wij |xi-xj|)p 

Optimize: x* = argmin E(x) 

sb.t. xi=1 for foreground; xi=0 for background

Output xo = round(x*) i.e. xo = 0 if x* < 0.5, 1 otherwise

i,j Є N4

Foreground 
brush

Background 
brushwhere wij = exp{-ß||zi-zj||})  

(as before)

x

xi ∊ R

For any p ≥ 1 this can be solved globally optimal (but not guaranteed to have a 
unique solution). Here optimized with IRLS (iterated reweighted least squares)

[Singaraju, Grady et al. MRF book, ch. 8]



Continuous-valued MRF for Segmentation
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Varying the p-norm:

• p=1, the rounded solution is the same as the solution to discrete 
problem: xi ϵ {0,1}
(i.e GraphCut [Boykov, Jolly, ICCV ‘01])

• p=2, Gaussian MRF
(known as random walker solution [Grady PAMI ‘06])

• p -> ∞, solution becomes ambiguous: one solution is shortest geodesic 
path to a foreground or background brush [Bai et al. ICCV ‘07] 

Energy: E(x) = ∑ (wij |xi-xj|)p 

i,j Є N4



Proximity bias
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Sensitivity of the segmentation to the placement of the brush 
strokes



Proximity bias
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Small p may be better

Sensitivity of the segmentation to the placement of the brush 
strokes



Metrication (discretization) artefacts
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“Blockiness” of the segmentation due to the underlying pixel grid

Larger p is better



Shrinking Bias
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Shortening of the segmentation due to regularization

Small p may be better

a practical 
study showed 
that p=1.4 is 
empirically a 
good value



Gaussian MRF for Matting
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[Levin et al. CVPR ‘06]

Input z Output α

E(α) = αT L α

Input: z
Output: α , F,B
Constraint: zi = αi Fi + (1- αi) Bi

Each pixel gives 3 constraints and has 7 unknowns

α*  = argmin E(α)  sb.t brush strokes 

L called Matting Laplacian and has the form:

α

L = 

0

0

≠0

User constraints Output F
(true foreground 

color; background 
color is not shown)

Composition on 
new background



Gaussian MRF for Matting
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http://www.alphamatting.com/



Continuous Labels - Summary

• Used for problems with continuous label space:
e.g. image intensity, depth, motion, transparency (i.e. matting)

• Regularization term (pairwise, higher-order) must be written in 
some parametric form (Gaussian, Filters, etc) 

• Gaussian Random Field are often not used since data-term is 
typically non-Gaussian and often expansive to evaluate for 
continuous labels.

• Gaussian Random Field can be useful successfully when the terms 
are set in an image-adaptive way (see e.g. Jancsary, Nowozin, Sharp, and 
Rother, Regression Tree Fields, CVPR 2012)
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