Image Segmentation with Markov Random Fields (Part 2)

Carsten Rother

30/06/2016

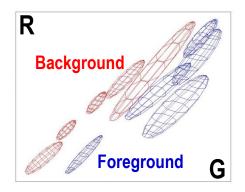
- GrabCut: Interactive Image Segmentation from a Bounding Box
- Joint optimization of segmentation and appearance models [Vicente, Kolmogorov, Rother, ICCV 2009]
- A state-of-the-art approach [GrabCut in OneCut, Tang, Gorelick, Veksler, Boykov; ICCV 2013]
- Gaussian Markov Random Fields

So far: Brush-Interface Image Segmentation

Image I



Output *x*



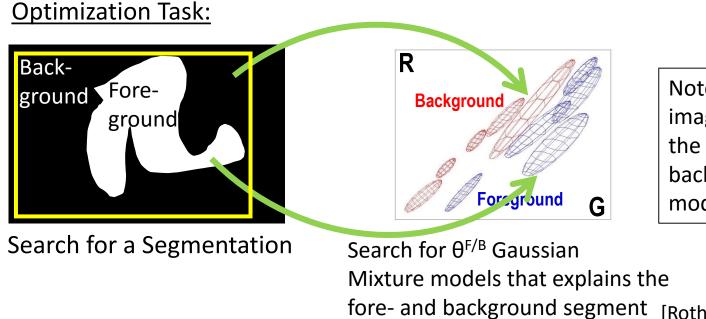
 $\theta^{\mbox{\scriptsize F/B}}$ Gaussian Mixture models

Energy:

$$E(\mathbf{x}) = \sum_{i} \theta_{i}(x_{i}) + \sum_{i,j \in N_{4}} |x_{i} - x_{j}|$$
$$\theta_{i}(x_{i} = 1) = -\log P^{blue}(z_{i}|x_{i} = 1)$$
$$\theta_{i}(x_{i} = 0) = -\log P^{red}(z_{i}|x_{i} = 0)$$

Bounding Box Image Segmentation: GrabCut

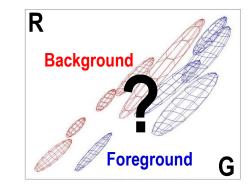
Image I



Note, all pixels in the image now define the foreground and background color models

fore- and background segment [Rother et al. Siggraph '04]

Bounding Box Image Segmentation: GrabCut



 $\theta^{F/B}$ Gaussian Mixture models

$$\frac{\text{Litergy.}}{E(\mathbf{x}, \Theta^F, \Theta^B)} = \sum_{i} \theta_i(x_i, \Theta^F, \Theta^B) + \sum_{i,j \in N_4} |x_i - x_j|$$

$$\theta_i(x_i = 0, \Theta^B) = -\log P^{red}(z_i | x_i = 0, \Theta^B)$$

$$\theta_i(x_i = 1, \Theta^F) = -\log P^{blue}(z_i | x_i = 1, \Theta^F)$$

Note all pixels in the image now define the foreground and background color models

<u>Optimization Problem:</u> $x^* = \underset{x, \Theta^B, \Theta^F}{\operatorname{argmin}} E(x, \Theta^B, \Theta^F)$

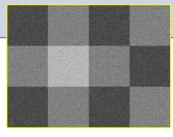
[Rother et al. Siggraph '04]

Enoravi

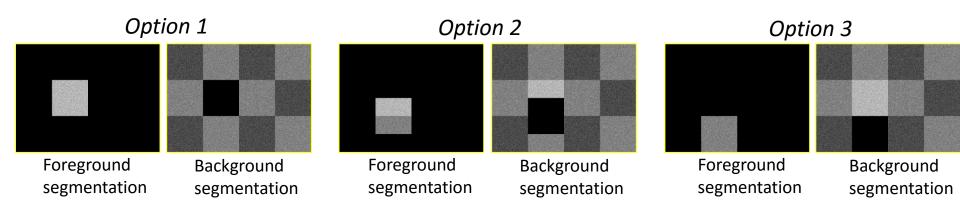
Joint Model: Motivation

- The joint optimization over appearance (Θ's) and segmentation has a long history, e.g. Chan-Vese functional, TextonBoost for Semantic segmentation, etc
- The implicit assumption is that the foreground segment has similar colors and also the background segment has similar colors (see next slides)

Question



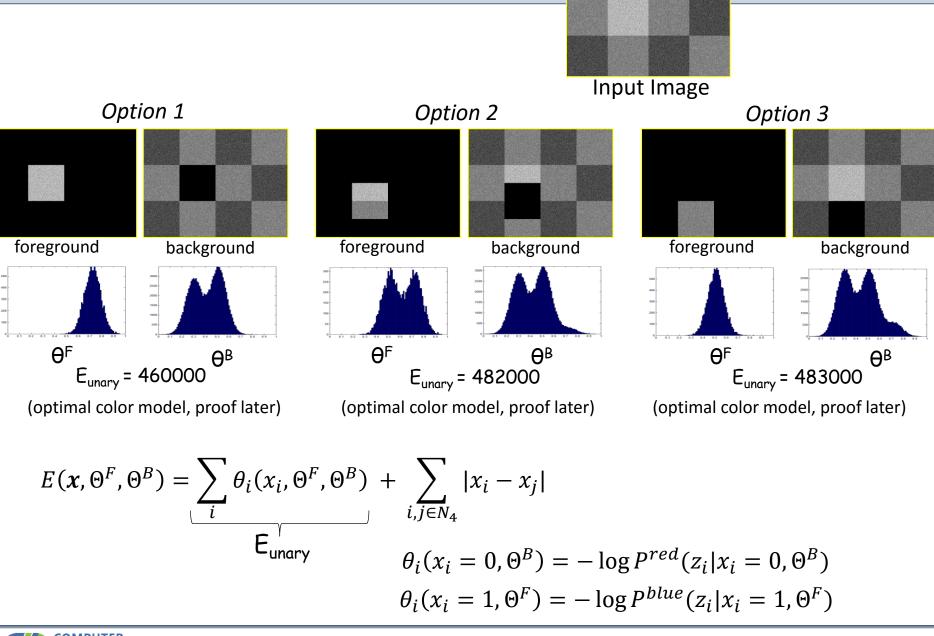
Input Image



Which Segmentation do you prefer:

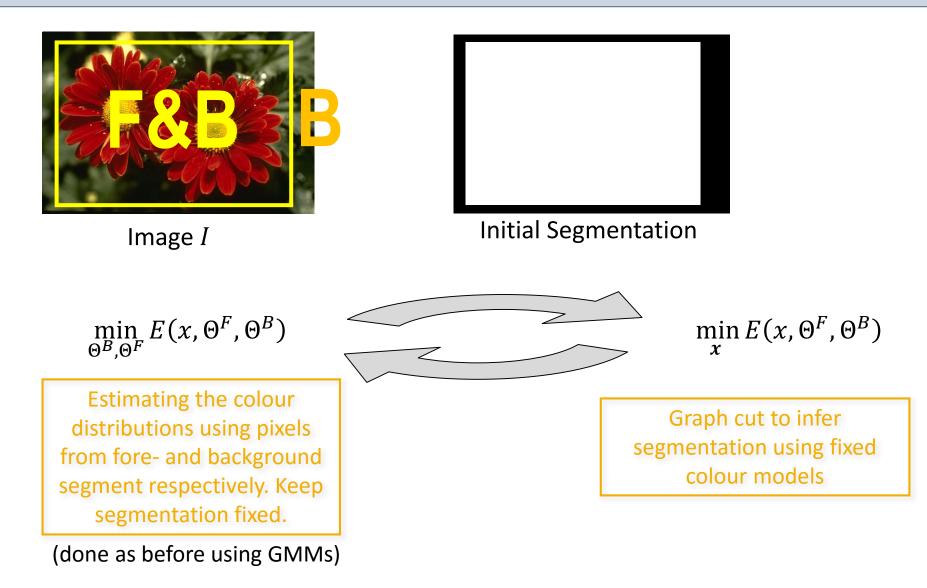
- 1) Option 1
- 2) Option 2
- 3) Option 3

Joint Model: Motivation



- Block Coordinate Descent (iterative optimization) (see next slides)
- Globally Optimal segmentation (see next section)

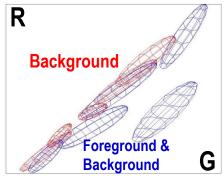
Block-Coordinate Descent



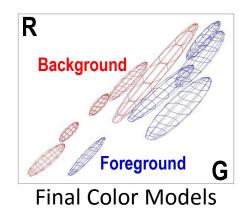
[Rother et al. Siggraph '04]

Block-Coordinate Descent

Result



Initial Color Models



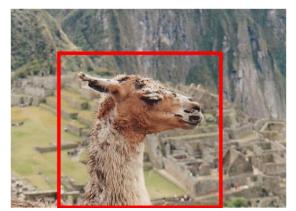
Optimization over $\Theta's$ helps in other cases too



Input

Color models from brushes only [Boykov&Jolly '01]

Color models from all image pixels [GrabCut '04]



Input

Color models from all image pixels [GrabCut '04]

How to initialize?

<u>Idea 1:</u>

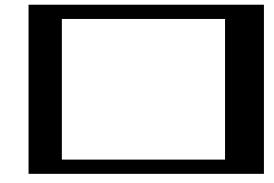
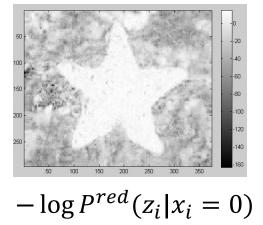
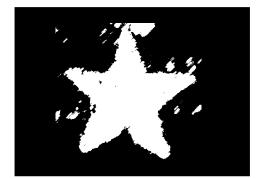


Image I

<u>Idea 2:</u>





Take as foreground 33% of pixels where $-\log P^{red}(z_i|x_i = 0)$ is high (result sketched)

How to initialize?

Idea 3: Use Parametric Maxflow [Kolmogorov, Boykov, Rother ICCV 07]

Input image

parametric maxflow gives you a sequence of solutions (faked here) [Kolmogorov et al. ICCV 2007]

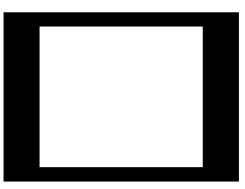
Initialize with a result that is close to the bounding box

Paramteric Maxflow

Energy:
$$E(\mathbf{x}, \lambda) = \sum_{i} \theta_{i}(x_{i}) + \sum_{i,j \in N_{4}} |x_{i} - x_{j}| + \sum_{i} \lambda x_{i}$$

<u>Optimization</u>: find all possible segmentations (for any λ)

Extreme case: $\lambda = -\infty$



Extreme case: $\lambda = \infty$

Paramteric Maxflow - Example

$$E(\mathbf{x},\lambda) = \sum_{i} \theta_i(x_i) + \omega \sum_{i,j \in N_4} |x_i - x_j| + \sum_{i} \lambda x_i \qquad \theta_i(0) = z_i \quad \theta_i(1) = 255 - z_i$$

9389 solutions (superimposed) ($\omega = 0.01$)

6058 solutions (superimposed) (ω = 0.1)

Input Image

2027 solutions (superimposed) ($\omega = 1$)

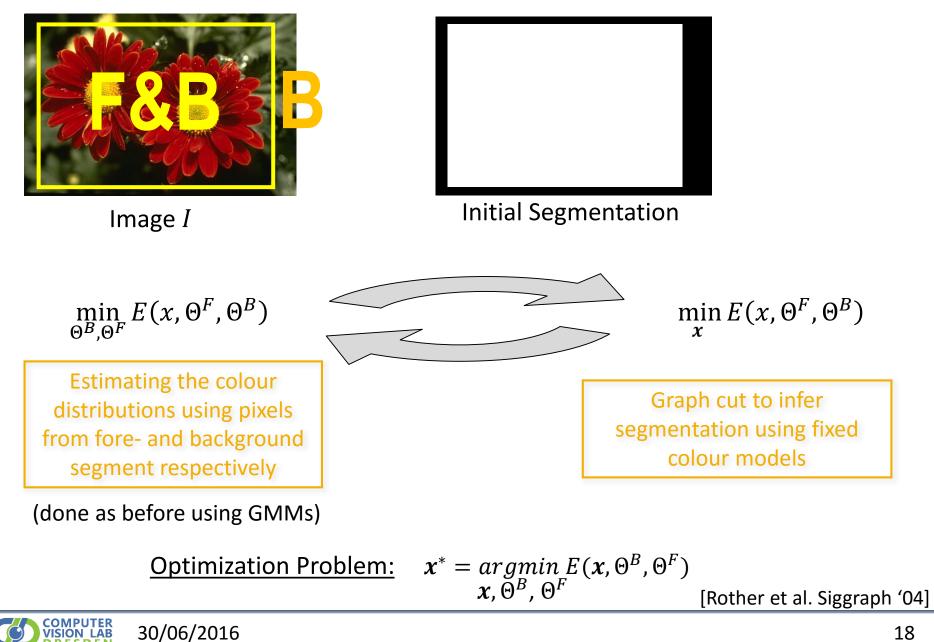
214 solutions (superimposed) (ω = 10)

COMPUTER VISION LAB D R E S D E N

Roadmap this lecture

- GrabCut: Interactive Image Segmentation from a Bounding Box
- Joint optimization of segmentation and appearance models [Vicente, Kolmogorov, Rother, ICCV 2009]
- A state-of-the-art approach [GrabCut in OneCut, Tang, Gorelick, Veksler, Boykov; ICCV 2013]
- Gaussian Markov Random Fields

Recap: Block-Coordinate Descent

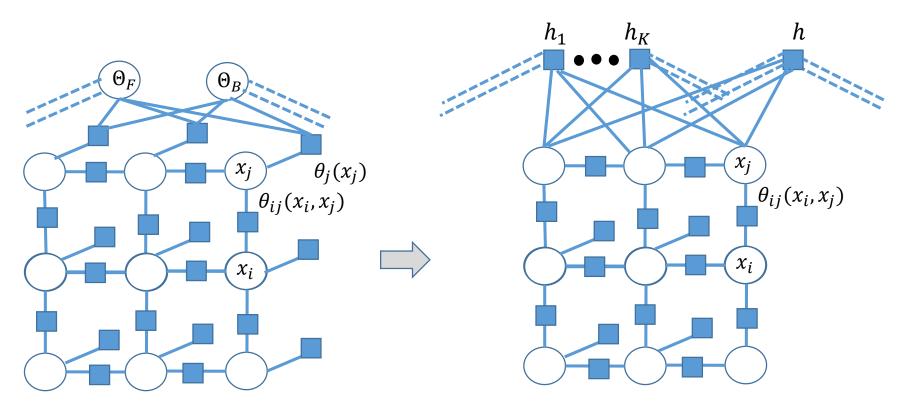


Our goal

$$\begin{aligned} \mathbf{x}^* &= \operatorname{argmin}_{\mathbf{x}, \Theta^F, \Theta^B} E(\mathbf{x}, \Theta^F, \Theta^B) = \operatorname{argmin}_{\mathbf{x}, \Theta^F, \Theta^B} \left[\sum_i \theta_i(x_i, \Theta^F, \Theta^B) + \sum_{i,j \in N_4} |x_i - x_j| \right] \\ &= \mathbf{x}, \Theta^F, \Theta^B \qquad \mathbf{x}, \Theta^F, \Theta^B \end{aligned}$$

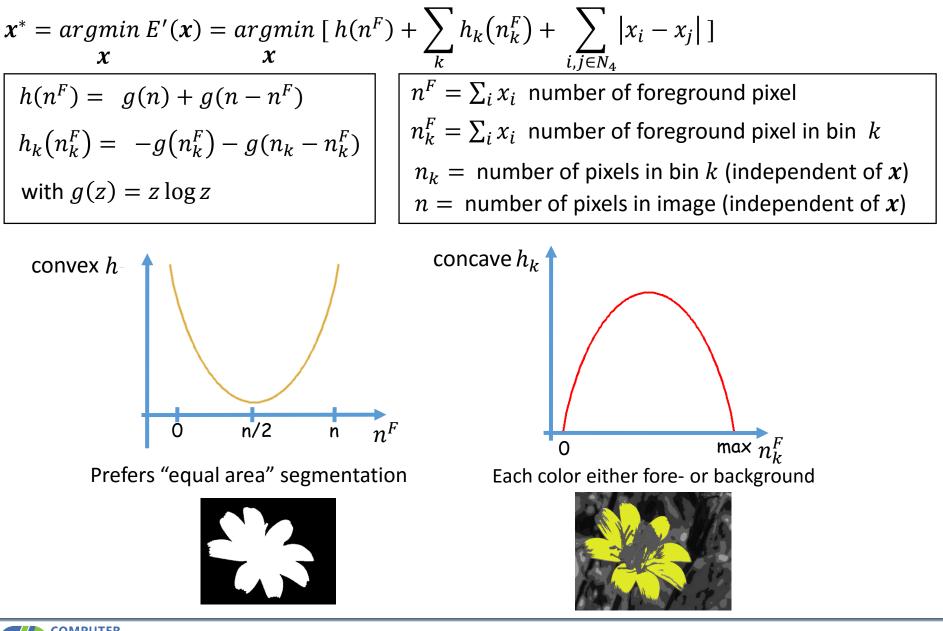
Reformulate to:

$$\begin{aligned} \mathbf{x}^* &= \underset{\mathbf{x}}{\operatorname{argmin}} E'(\mathbf{x}) = \underset{\mathbf{x}}{\operatorname{argmin}} \left[h(n(\mathbf{x})) + \sum_k h_k(n_k(\mathbf{x})) + \sum_{i,j \in N_4} |x_i - x_j| \right] \end{aligned}$$



Our goal: Visualization of the final energy

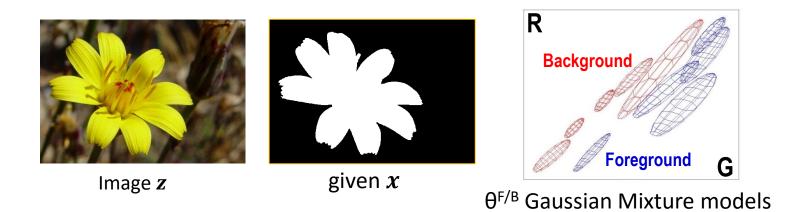
30/06/2016



Reminder: Gaussian Mixture Model

$$\boldsymbol{x}^{*} = \underset{\boldsymbol{x}, \Theta^{F}, \Theta^{B}}{\operatorname{argmin}} \sum_{\boldsymbol{x}, \Theta^{F}, \Theta^{B}} \sum_{i} \theta_{i}(x_{i}, \Theta^{F}, \Theta^{B}) + \sum_{i, j \in N_{4}} |x_{i} - x_{j}|$$

$$\theta_i(x_i = 0, \Theta^B) = -\log P^{red}(z_i | x_i = 0, \Theta^B)$$
$$\theta_i(x_i = 1, \Theta^F) = -\log P^{blue}(z_i | x_i = 1, \Theta^F)$$



Histogram Model

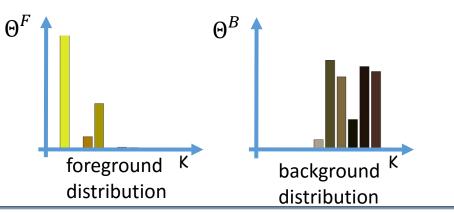
$$\boldsymbol{x}^{*} = \underset{\boldsymbol{x}, \Theta^{F}, \Theta^{B}}{\operatorname{argmin}} \sum_{\boldsymbol{x}, \Theta^{F}, \Theta^{B}} \sum_{i} \theta_{i}(x_{i}, \Theta^{F}, \Theta^{B}) + \sum_{i, j \in N_{4}} |x_{i} - x_{j}|$$

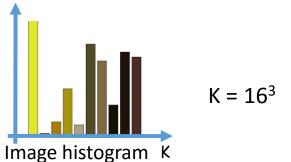
Image

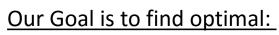
discretized in bins

 $b(z_i) \in \{1, .., K\}$ is the bin in which z_i falls in

$$\theta_i(x_i = 1, \Theta^F) = -\log \Theta^F_{b(z_i)}$$
$$\theta_i(x_i = 0, \Theta^B) = -\log \Theta^B_{b(z_i)}$$







• Segmentation *x*,

• K-value vector
$$\Theta_k^F$$

• K-value vector
$$\Theta_k^B$$

$$\Theta_k^{F/B} \in [0,1]$$
$$\sum \Theta_k^{F/B} = 1$$

k

COMPUTER VISION LAB D R E S D E N

Derive optimal appearance model

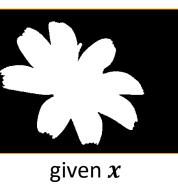
$$\begin{aligned} \boldsymbol{x}^{*} &= \underset{\boldsymbol{x}, \Theta^{F}, \Theta^{B}}{\operatorname{ensembol{eq:starsequation}}} \sum_{i} \theta_{i}(x_{i}, \Theta^{F}, \Theta^{B}) + \sum_{i, j \in N_{4}} |x_{i} - x_{j}| \\ &= \underset{\boldsymbol{x}}{\operatorname{argmin}} \min_{\Theta^{F}, \Theta^{B}} \sum_{i} \theta_{i}(x_{i}, \Theta^{F}, \Theta^{B}) + \sum_{i, j \in N_{4}} |x_{i} - x_{j}| \\ &\quad \theta_{i}(x_{i} = 1, \Theta^{F}) = -\log \Theta^{F}_{b(z_{i})} \\ &\quad \theta_{i}(x_{i} = 0, \Theta^{B}) = -\log \Theta^{B}_{b(z_{i})} \end{aligned}$$

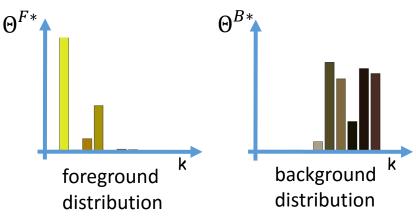
It is: $\Theta^{F*}_{k} = n_{k}^{F} / n^{F}$ (i.e. is the empirical histogram, Θ^{F*}_{k} means optimal solution $(\Theta^{B*}_{k} \text{ done in the same fashion}) \\ n^{F} = \sum_{i} x_{i} \text{ number of foreground pixel } (n^{B} \text{ background in same fashion}) \\ n^{F}_{k} = \sum_{i} x_{i} \text{ number of foreground pixel in bin } k (n_{k}^{B} \text{ background in same fashion}) \end{aligned}$

discretized image

COMPUTER VISION LAB DRESDEN

30/06/2016





Proof: $\Theta_{k,F}^* = n_k^F / n^F$ Example with two bins h=100, h, =30, hz=70 what is the optimal D, and D2 ? objective min - n, log 0, - n2 log 02; so; to 0,+02=1 0,07 $N \min_{\substack{\theta_1 \ \theta_2}} - h_1 \log (1 - \theta_2) - h_2 \log \theta_2$ $f(\theta_2)$ (substitute Θ_1) $\frac{\partial f(\theta_2)}{\partial \theta_2} = \frac{+\mu_1}{1-\theta_2} - \frac{\mu_2}{\theta_2} \stackrel{!}{=} 0$ $\int_{0}^{+\mu_{1}} \frac{\theta_{2} - \mu_{2}(1 - \theta_{2})}{\theta_{2}(1 - \theta_{2})} \stackrel{!}{=} 0$ $M + n_1 \theta_2 - n_2 + h_2 \theta_2 = 0$ $\square = \theta_2 = \frac{n_2}{n_1 + n_2}$

30/06/2016

 $\Delta = \theta_1 = \frac{h_1}{h_1 + h_2}$

Re-write the energy

$$\begin{aligned} \mathbf{x}^* &= \underset{\mathbf{x}}{\operatorname{argmin}} \min_{\mathbf{\theta}^F, \mathbf{\Theta}^B} \sum_{i} \theta_i(x_i, \mathbf{\Theta}^F, \mathbf{\Theta}^B) + \sum_{i,j \in N_4} |x_i - x_j| \\ \theta_i(x_i = 1, \mathbf{\Theta}^F) &= -\log \mathbf{\Theta}^F_{\mathsf{b}(z_i)} \\ \theta_i(x_i = 0, \mathbf{\Theta}^B) &= -\log \mathbf{\Theta}^B_{\mathsf{b}(z_i)} \end{aligned}$$

$$\begin{aligned} \overline{\mathsf{Given}} : \mathbf{\Theta}^{F*}_k &= n_k^F / n^F \\ \mathbf{x}^* &= \underset{i}{\operatorname{argmin}} \sum_{i} \theta_i(x_i) + \sum_{i,j \in N_4} |x_i - x_j| \\ \theta_i(x_i = 1) &= -\log [n_k^F / n^F] \end{aligned}$$

$$\begin{aligned} \mathsf{Remember:} \\ \theta_i(x_i = 0) &= -\log [n_k^B / n^B] \end{aligned}$$

$$\begin{aligned} \mathsf{Remember:} \\ \mathsf{Depends on the} \\ \mathsf{full labeling } \mathbf{x} : ! \\ n^F &= \sum_i x_i \text{ number of foreground pixel} \\ n_k^F &= \sum_i x_i \text{ number of foreground pixel in bin } k \end{aligned}$$

Re-write the energy

$$\mathbf{x}^{*} = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{k} \left[-n_{k}^{F} \log \left[n_{k}^{F} / n^{F} \right] - n_{k}^{B} \log \left[n_{k}^{B} / n^{B} \right] \right] + \sum_{i,j \in N_{4}} |x_{i} - x_{j}|$$
Sum over all K bins
in the histogram
$$n^{F} = \sum_{i} x_{i} \text{ number of foreground pixel}$$

$$n_{k}^{F} = \sum_{i} x_{i} \text{ number of foreground pixel in bin } k$$

$$\mathbf{x}^{*} = \underset{\mathbf{x}}{\operatorname{argmin}} \left[h(n^{F}) + \sum_{k} h_{k}(n_{k}^{F}) + \sum_{i,j \in N_{4}} |x_{i} - x_{j}| \right]$$

$$h(n^{F}) = g(n) + g(n - n^{F})$$

$$n_{k} = \text{ number of pixels in bin } k \text{ (independent of } x)$$

$$n = \text{ number of pixels in image (independent of x)}$$

$$with g(z) = z \log z$$

Proof: Previous re-formulation

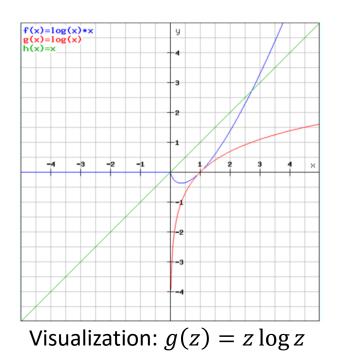
$$\begin{split} & \sum_{k} -n_{k}^{T} \log \frac{n_{k}^{T}}{n^{T}} - n_{k}^{g} \log \frac{n_{k}^{g}}{n^{g}} \qquad \begin{array}{l} \sum_{k=n_{k}^{T}+n_{k}^{T}} \\ n_{k} + n_{k}^{g} + n_{k}^{T} \\ n_{k} + n_{k}^{g} + n_{k}^{T} \\ \end{array} \\ & \sum_{k} -n_{k}^{T} \log \frac{n_{k}^{T}}{n^{T}} - (n_{k} - n_{k}^{T}) \log \frac{n_{k} - n_{k}^{T}}{n - n^{T}} \\ & \sum_{k} -n_{k}^{T} \log n_{k}^{T} + n_{k}^{T} \log n_{T} - n_{k} \log \frac{n_{k} - n_{k}^{T}}{n - n^{T}} \\ & \sum_{k} -n_{k}^{T} \log n_{k}^{T} + n_{k}^{T} \log n_{T} - n_{k} \log \frac{n_{k} - n_{k}^{T}}{n - n^{T}} \\ & \sum_{k} -n_{k}^{T} \log n_{k}^{T} + n_{k}^{T} \log n_{T}^{T} - n_{k} \log \frac{n_{k} - n_{k}^{T}}{n - n^{T}} \\ & \sum_{k} -n_{k}^{T} \log n_{k}^{T} + n_{k}^{T} \log n_{T}^{T} - n_{k} \log (n_{k} - n_{k}^{T}) \\ & + h_{k}^{T} \log (n_{k} - n_{k}^{T}) - n_{k}^{T} \log (n_{k} - n_{k}^{T}) \\ & \sum_{k} n_{k}^{T} \log n_{k}^{T} + n \log (n - n^{T}) - n^{T} \log (n - n^{T}) \\ & \sum_{k} n_{k}^{T} \log n_{k}^{T} + n_{k} \log (n_{k} - n_{k}^{T}) - n_{k}^{T} \log (n_{k} - n_{k}^{T}) \\ & \sum_{k} n_{k}^{T} \log n_{k}^{T} + (n - n^{T}) \log (n_{k} - n_{k}^{T}) \\ & \sum_{k} n_{k}^{T} \log n_{k}^{T} + (n - n^{T}) \log (n_{k} - n_{k}^{T}) \\ & \sum_{k} n_{k}^{T} \log n_{k}^{T} + (n_{k} - n_{k}^{T}) \log (n_{k} - n_{k}^{T}) \\ & \sum_{k} n_{k} \log n_{k}^{T} + (n_{k} - n_{k}^{T}) \log (n_{k} - n_{k}^{T}) \\ & \sum_{k} h_{k} (n_{k}^{T}) \\ \end{array}$$

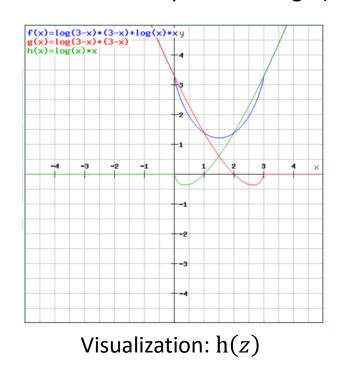
30/06/2016

Visualization of the energy

$$\begin{aligned} \mathbf{x}^* &= \underset{\mathbf{x}}{\operatorname{argmin}} E'(\mathbf{x}) = \underset{\mathbf{x}}{\operatorname{argmin}} \left[\begin{array}{l} h(n^F) + \sum_k h_k (n^F_k) + \sum_{i,j \in N_4} \left| x_i - x_j \right| \right] \\ h(n^F) &= \begin{array}{l} g(n^F) + g(n - n^F) \\ h_k (n^F_k) &= -g(n^F_k) - g(n_k - n^F_k) \end{array} & n^F = \sum_i x_i \text{ number of foreground pixel in bin } k \\ \text{with } g(z) &= z \log z \end{aligned}$$

$$\begin{aligned} n_k &= \operatorname{number of pixels in bin } k \text{ (independent of } x) \\ n &= \operatorname{number of pixels in image (independent of } x) \end{aligned}$$





Proof: minimum of function h

$$h(z) = 2\log z + (n-2)\log(n-2)$$

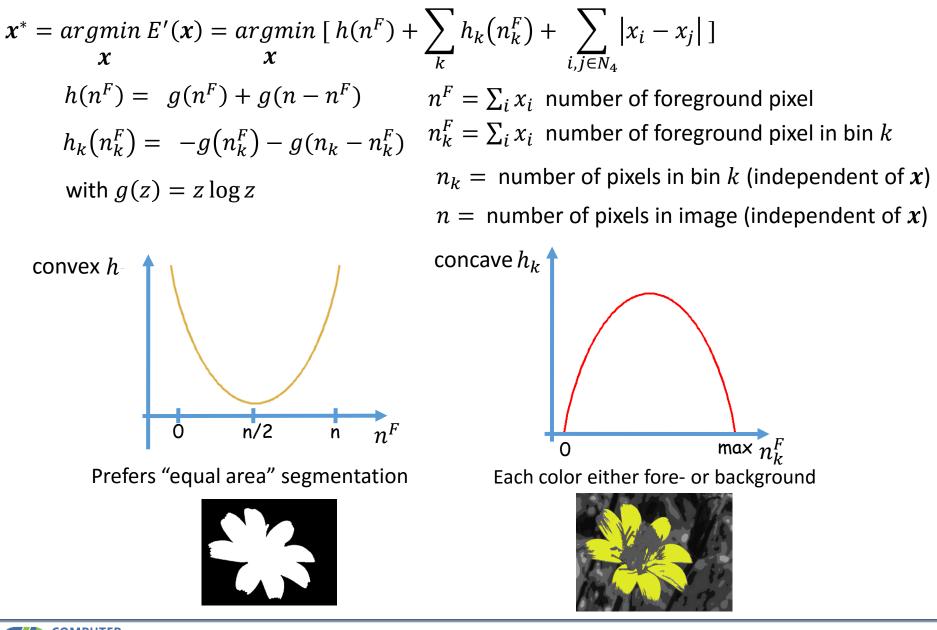
$$\frac{\partial h(z)}{\partial z} = \frac{z}{z} + \log z + \frac{(n-2)}{(n-2)\cdot(-1)} - \log(n-2)$$

$$= \log z - \log(n-2) \stackrel{!}{=} 0$$

$$A = 2 = n-2$$

$$A = \frac{h}{2}$$

Visualization of the energy



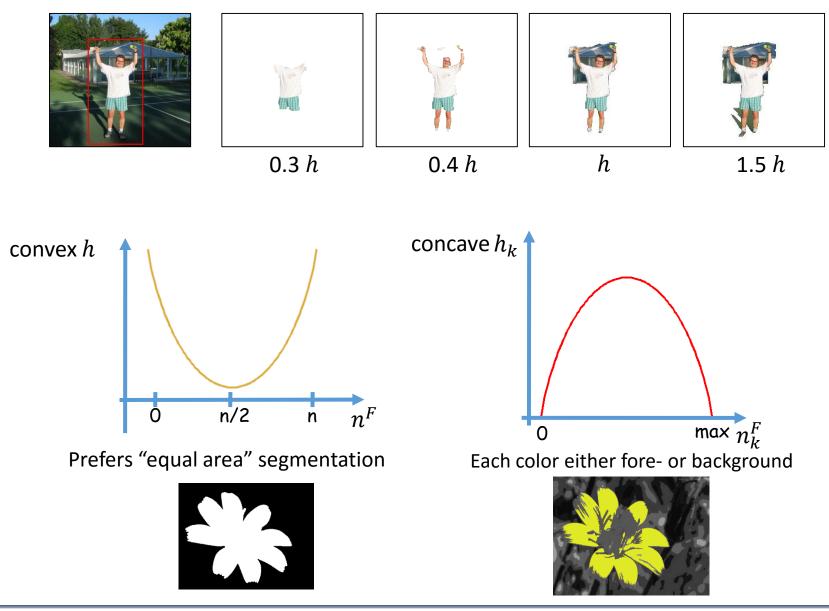
Some Results

GrabCut

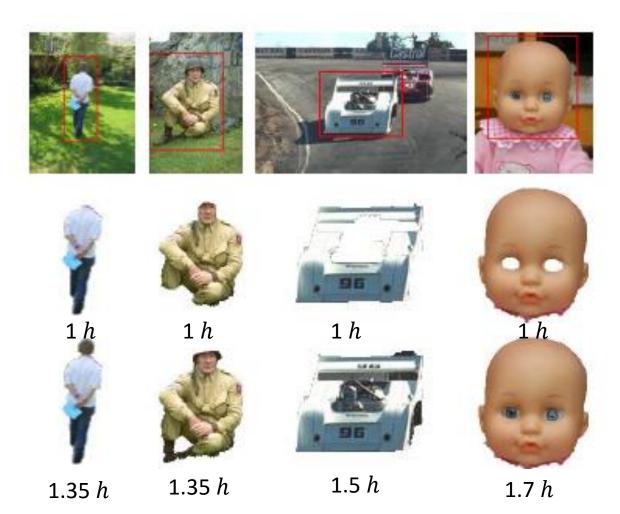
Global Optimum

Globally Optimal in 61% of cases ... but runtime is ~90sec for a 250 x 160 image

Adapting the weighting



Adapting the weighting

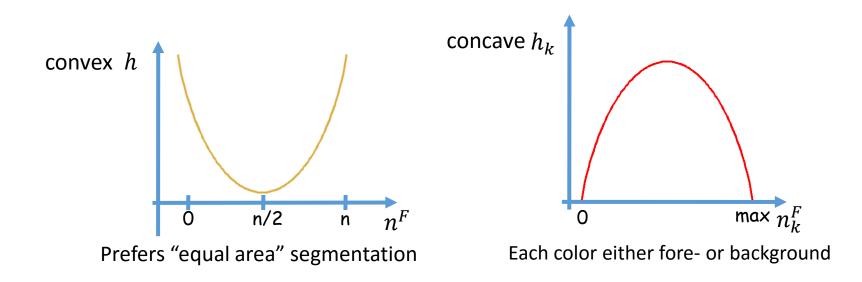


How to optimize it?

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} E'(\mathbf{x}) = \underset{\mathbf{x}}{\operatorname{argmin}} \left[h(n^F) + \sum_k h_k(n^F_k) + \sum_{i,j \in N_4} |x_i - x_j| \right]$$

 $h_k(n_k^F) = -g(n_k^F) - g(n_k - n_k^F)$ with $q(z) = z \log z$

 $h(n^F) = g(n) + g(n - n^F)$ $n^F = \sum_i x_i$ number of foreground pixel $n_k^F = \sum_i x_i$ number of foreground pixel in bin k n_k = number of pixels in bin k (independent of x) n = number of pixels in image (independent of x)



Question

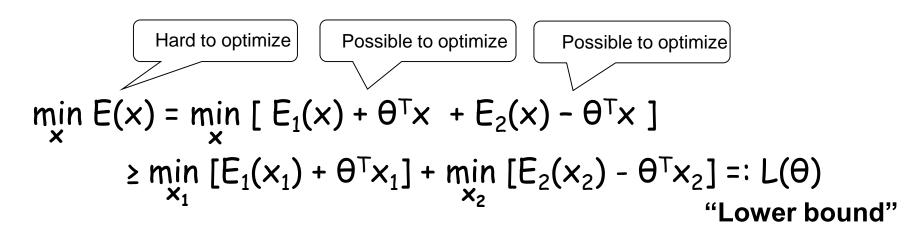
$$\min_{\mathbf{x}} \mathbf{E}(\mathbf{x}) = \min_{\mathbf{x}} \left[\mathbf{E}_{1}(\mathbf{x}) + \mathbf{\Theta}^{\mathsf{T}}\mathbf{x} + \mathbf{E}_{2}(\mathbf{x}) - \mathbf{\Theta}^{\mathsf{T}}\mathbf{x} \right]$$

$$? \min_{\mathbf{x}} \left[\mathbf{E}_{1}(\mathbf{x}) + \mathbf{\Theta}^{\mathsf{T}}\mathbf{x} \right] + \min_{\mathbf{x}} \left[\mathbf{E}_{2}(\mathbf{x}) - \mathbf{\Theta}^{\mathsf{T}}\mathbf{x} \right]$$

<u>Question:</u>

1) Is ? a ≤
 2) Is ? a <
 3) Is ? a ≥
 4) Is ? a >
 5) Is ? a =

Dual Decomposition

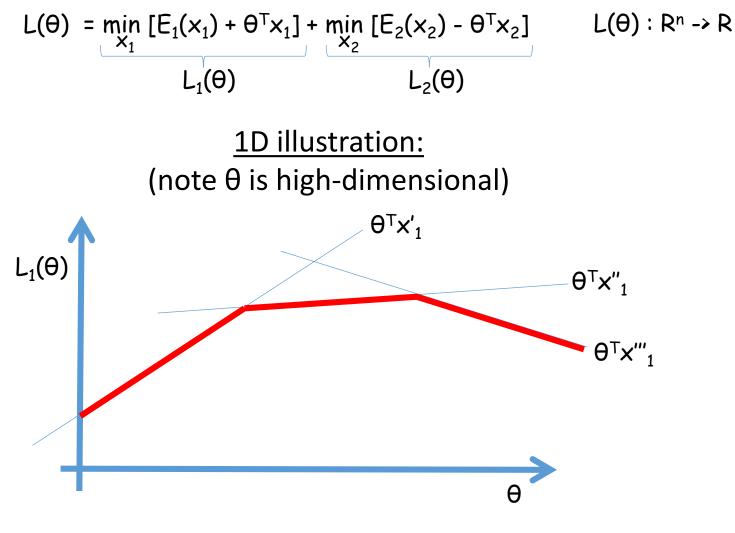


• θ is called the dual vector (same size as x)

• Goal:
$$\max_{\Theta} L(\Theta) \leq \min_{X} E(X)$$

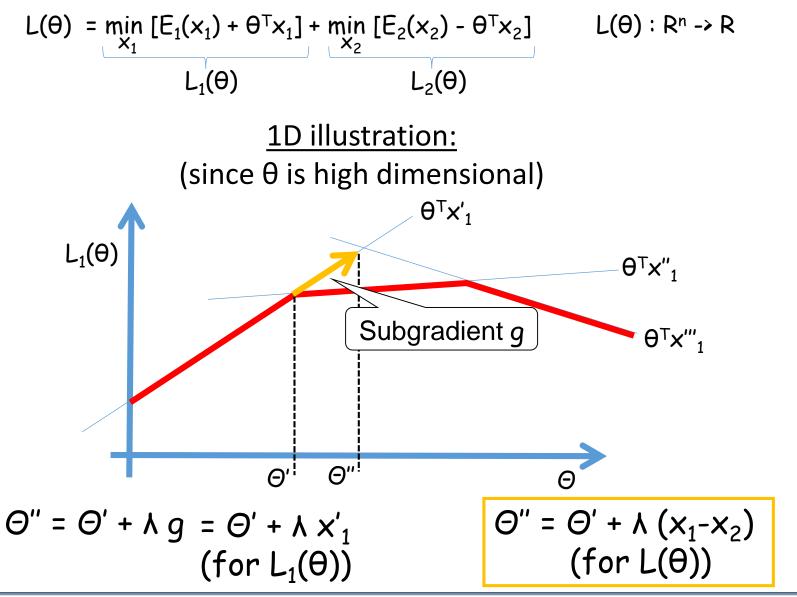
- Properties:
 - $L(\theta)$ is concave (optimal bound can be found)
 - If $x_1 = x_2$ then problem solved (no guarantee that this will happen)
- Dual Decomposition is sometimes also called Problem Decomposition

Why is the lower bound a concave function?



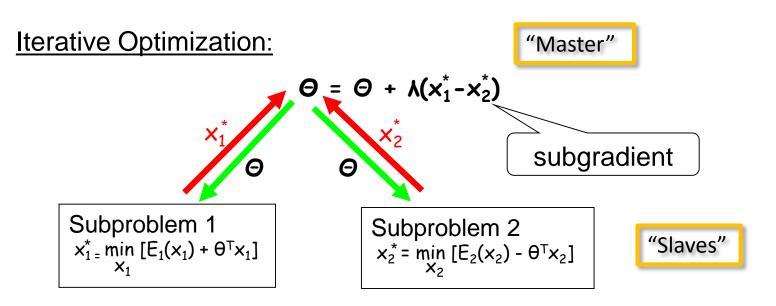
 $L(\theta)$ concave since a sum of two concave functions: $L_1(\theta)$, $L_2(\theta)$

How to maximize the lower bound?

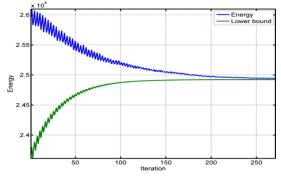


How to maximize the lower bound?

$$L(\theta) = \min_{X_1} [E_1(x_1) + \theta^T x_1] + \min_{X_2} [E_2(x_2) - \theta^T x_2]$$

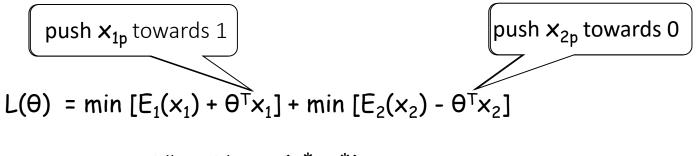


- Guaranteed to converge to optimal bound $L(\theta)$
- Choose step-width Å correctly ([Bertsekas '95])
- Pick solution \mathbf{x} as the best of \mathbf{x}_1 or \mathbf{x}_2
- E and L can in- and decrease during optimization



Illustrating the optimization

Dual Decomposition - Analysis

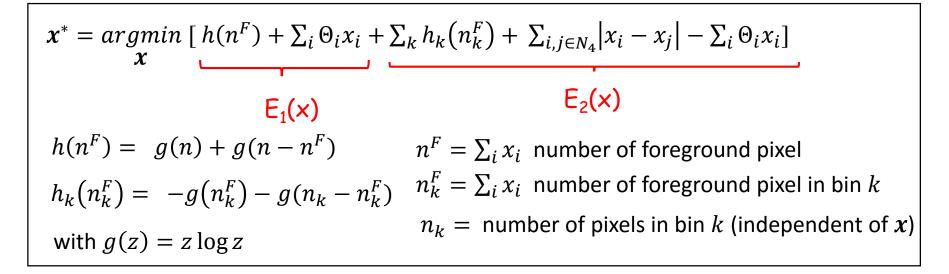


Update step: $\Theta'' = \Theta' + \Lambda (x_1^* - x_2^*)$

Consider pixel p:

Case1: $x_{1p}^* = x_{2p}^*$ then $\Theta'' = \Theta'$ Case2: $x_{1p}^* = 1 x_{2p}^* = 0$ then $\Theta'' = \Theta' + \Lambda$ Case3: $x_{1p}^* = 0 x_{2p}^* = 1$ then $\Theta'' = \Theta' - \Lambda$

Dual Decomposition – Our Model



Solving the Sub-problems:

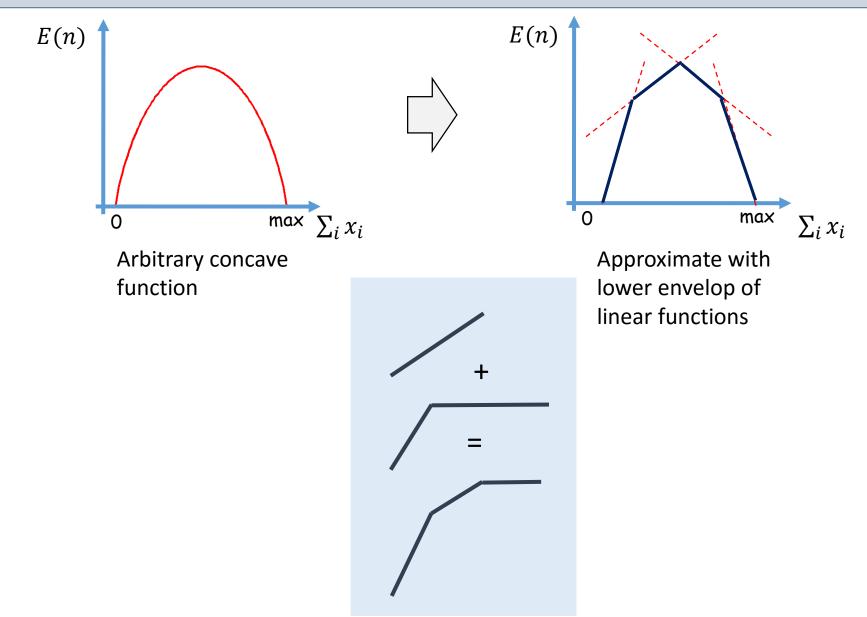
- E₁(x) can be computed globally optimal (see article)
- $E_2(x)$ can be computed globally optimal (see next)

Special high-order functions

 $n_{k}^{F} = \sum_{i} x_{i} \text{ number of foreground pixel in bin } k$ $E_{2}(x) = \sum_{k} h_{k} (n_{k}^{F}) + \sum_{i,j \in N_{4}} |x_{i} - x_{j}| - \sum_{i} \Theta_{i} x_{i}$ concave h_{k} $\int_{0}^{\infty} \max \sum_{i} x_{i}$

Goal: convert this higher-order function into a pairwise function using P^n Potts Model

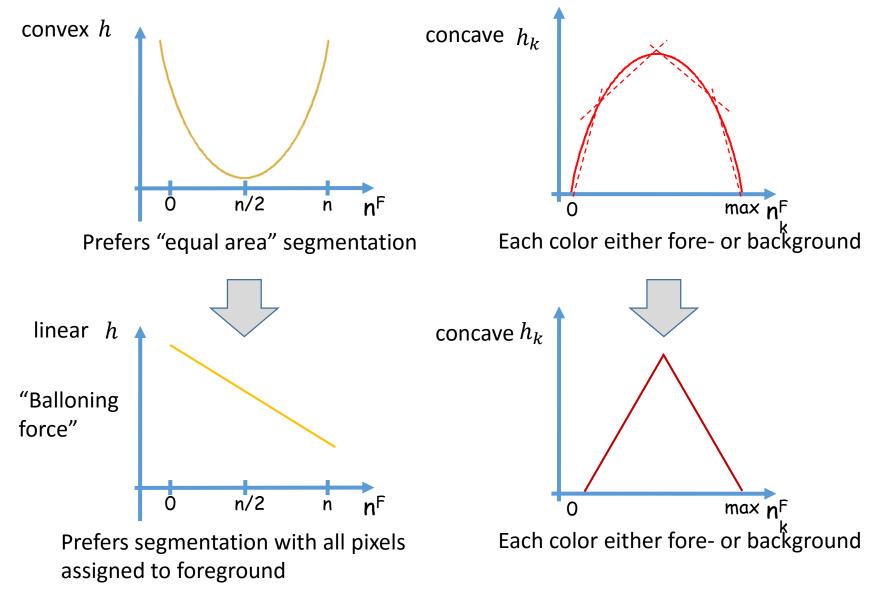
Reminder: Pⁿ Potts Model



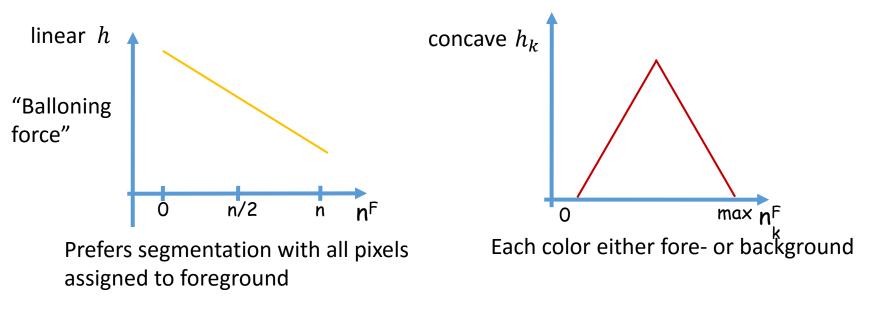
COMPUTER VISION LAB

- GrabCut: Interactive Image Segmentation from a Bounding Box
- Joint optimization of segmentation and appearance models [Vicente, Kolmogorov, Rother, ICCV 2009]
- A state-of-the-art approach [GrabCut in OneCut, Tang, Gorelick, Veksler, Boykov; ICCV 2013]
- Gaussian Markov Random Fields

Remove the parts which are hard to optimize



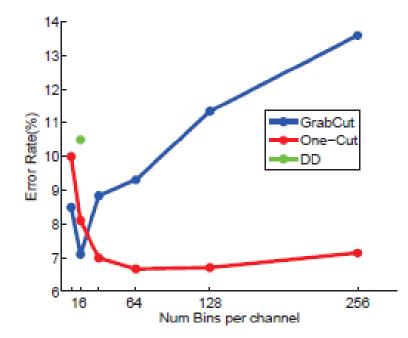
[GrabCut in One Cut, Tang, Gorelick, Veksler, Boykov, ICCV '13]



$$\boldsymbol{x}^* = \underset{\boldsymbol{x}}{\operatorname{argmin}} E'(\boldsymbol{x}) = \underset{\boldsymbol{x}}{\operatorname{argmin}} \left[\sum_i \lambda \left(1 - x_i \right) + \sum_k h_k \left(n_k^F \right) + \sum_{i,j \in N_4} \left| x_i - x_j \right| \right]$$

The global optimum can be computed efficiently (as seen above)

Comparison to previous approaches



	Error rate	Mean runtime
GrabCut (8 ³ bins)	8.54%	2.48 s
GrabCut (16 ³ bins)	$7.1\%^{2}$	1.78 s
GrabCut (32 ³ bins)	8.78%	1.638
GrabCut (64 ³ bins)	9.31%	1.64s
GrabCut (1283 bins)	11.34%	1.45s
GrabCut (256 ³ bins)	13.59%	1.46s
DD (16 ³ bins)	10.5%	576 s
One-Cut (8 ³ bins)	9.98%	18 s
One-Cut (16 ³ bins)	8.1%	5.8 s
One-Cut (32 ³ bins)	6.99%	2.4 s
One-Cut (643 bins)	6.67%	1.3 s
One-Cut (128 ³ bins)	6.71%	0.8 s
One-Cut (256 ³ bins)	7.14%	0.8 s

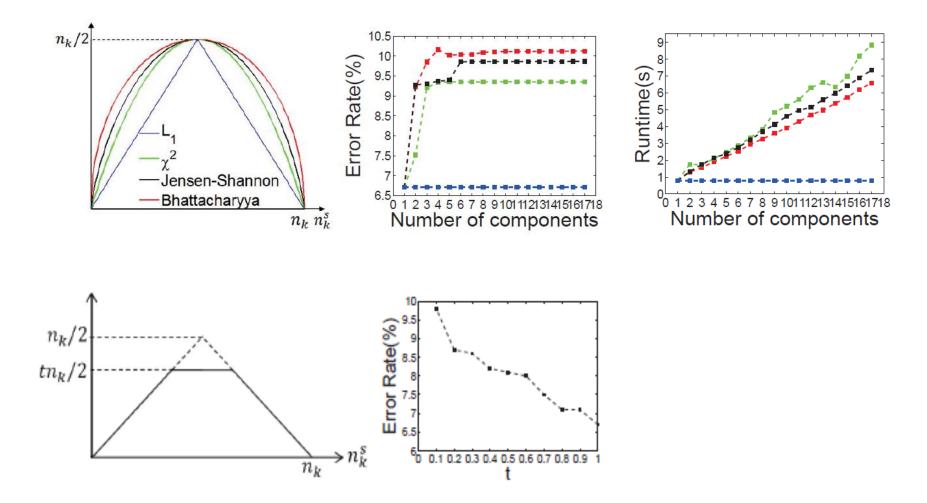
GrabCut = Block Coordinate Desc								
DD	= Dual decomposition							
	(as discussed above)							

More bins gives better separation in camouflage cases:



Results

Different Terms h_k



Conclusion: the simple L_1 term is best in terms of accuracy and speed

- GrabCut: Interactive Image Segmentation from a Bounding Box
- Joint optimization of segmentation and appearance models [Vicente, Kolmogorov, Rother, ICCV 2009]
- A state-of-the-art approach [GrabCut in OneCut, Tang, Gorelick, Veksler, Boykov; ICCV 2013]
- Gaussian Markov Random Fields

The following part is not relevant for the exam

Gaussian MRF (GMRF)

P(x) =
$$1/\sqrt{\det(2\pi\Sigma)} \exp\{-1/2(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$

x∈ \mathbb{R}^n , $\Sigma^{-1} \in \mathbb{R}^{n \times n}$ i.e. one multi-dimensional Gaussian where Σ^{-1} is positive-definite

<u>Re-write as Energy (Gibbs distribution)</u>: $P(x) = 1/f \exp\{-E(x)\}$ with $E(x) = \frac{1}{2} x^T A x - x^T b + constant$ It is $x^* = \underset{x}{\operatorname{argmin}} E(x) = \underset{x}{\operatorname{argmax}} P(x)$

$$(X-b)^{T}A(x-b) = (x-b)^{T}(Ax-Ab)$$
$$= (x^{T}-b^{T})(Ax-Ab)$$
$$= x^{T}Ax - x^{T}Ab - b^{T}Ax + b^{T}Ab$$
$$= \frac{1}{2}x^{T}A^{T}x - x^{T}b^{T} + Constant$$

Reminder

In linear algebra, a symmetric $n \times n$ real matrix M is said to be **positive definite** if the scalar $z^{T}Mz$ is positive for every non-zero column vector z of n real numbers. Here z^{T} denotes the transpose of z.^[1]

• The real symmetric matrix

$$M = egin{bmatrix} 2 & -1 & 0 \ -1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix}$$

is positive definite since for any non-zero column vector z with entries a, b and c, we have

$$egin{aligned} z^{\mathrm{T}}Mz &= (z^{\mathrm{T}}M)z = \left[\,(2a-b) \quad (-a+2b-c) \quad (-b+2c)\,
ight] \left[egin{aligned} a \ b \ c \ \end{array}
ight] \ &= 2a^2-2ab+2b^2-2bc+2c^2 \ &= a^2+(a-b)^2+(b-c)^2+c^2 \end{aligned}$$

This result is a sum of squares, and therefore non-negative; and is zero only if a = b = c = 0, that is, when z is zero.

Remindes

$$\frac{\partial Y}{\partial x} = \left(\frac{\partial Y}{\partial x_1}, \dots, \frac{\partial Y}{\partial x_n}\right) \in \mathbb{R}^n, \quad Y \in \mathbb{R}, \quad x \in \mathbb{R}^n$$

$$\frac{\partial Y}{\partial x} = \left(\frac{\partial Y}{\partial x_1}, \dots, \frac{\partial Y}{\partial x_n}\right) \in \mathbb{R}^{n \times n}, \quad Y \in \mathbb{R}^n, \quad x \in \mathbb{R}^n$$

$$\frac{\partial x^{\mathsf{T}} b}{\partial x} = \left(\frac{\partial b_1 x_1 + \dots + b_n x_n}{\partial x_1} \right) \frac{\partial b_1 x_1 + \dots + b_n x_n}{\partial x_n} = (b_1 \dots + b_n) = b$$

x, b e Rⁿ

$$\frac{\Im B \times}{\Im \times} = \left(\frac{\Im B \times}{\Im \times_{i}} \right) - \left(\frac{\Im B \times}{\Im \times_{n}} \right) = \left(\frac{B_{i}}{B_{i}} \right) = \left(\frac{B_{i}}{B_{i}} \right) = \frac{B_{i}}{B_{i}} = \frac{B_{i}}{B_{i}} = \frac{B_{i}}{B_{i}}$$

$$b_{i} \quad is the ite column of B$$

-

Let's use: $\frac{\partial x^{T}b}{\partial x} = \left(\frac{\partial b_{1}x_{1}+\dots+b_{n}x_{n}}{\partial x_{1}}, \frac{\partial b_{1}x_{1}+\dots+b_{n}x_{n}}{\partial x_{n}}\right) = \left(b_{1}\dots,b_{n}\right) = b$ $x, b \in \mathbb{R}^{n}$

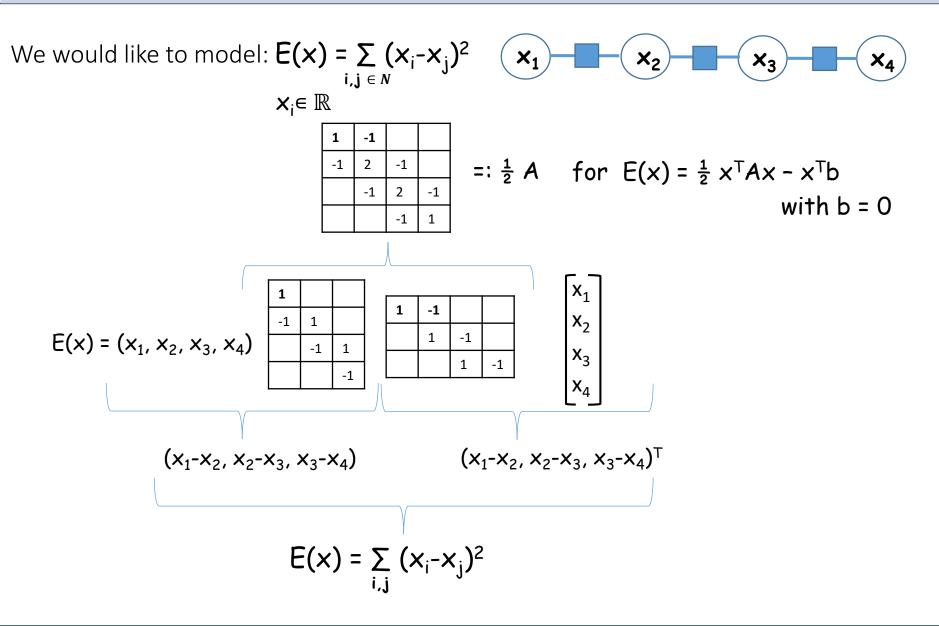
$$\frac{\partial x^{T}Ax}{\partial x} = \left(\frac{\partial x^{T}Ax}{\partial x_{1}}, \dots, \frac{\partial x^{T}Ax}{\partial x_{n}}\right) = 2Ax$$

Then it is:

$$E(x) = \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b} + constant$$
$$\frac{\partial E(x)}{\partial x} = \left(\frac{\partial E(x)}{\partial x_1}, \dots, \frac{\partial E(x)}{\partial x_n}\right) = A \mathbf{x} - \mathbf{b} \stackrel{!}{=} 0$$

 $x^* = A^{-1}b$ (closed-from solution, or other solvers)

Example: GMRF

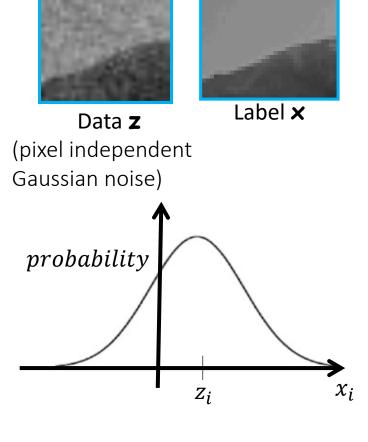


A simple de-noising model

<u>Generative model for a noisy image:</u> P(x,z) = P(z|x) P(x) $x^* = \underset{x}{\operatorname{argmax}} P(z|x) P(x) \text{ (for a given z)}$ $x^* = \underset{x}{\operatorname{argmin}} E_u(x,z) + E_p(x)$

Likelihood:

$$P(z|x) = 1/\sigma\sqrt{2\pi} \prod_{i} exp\{-1/(2\sigma^2) (x_i - z_i)^2\}$$



Zi

Xi

(f is a factor, which can be ignored)
-log P(z|x) =
$$E_u(x) = f \sum_i (x_i - z_i)^2$$

= f (x-z)^TI (x-z) = f (x^TI x - 2x^Tz + z^Tz)
(this is a quadratic form)

A simple de-noising model

<u>Generative model for a noisy image:</u> P(x,z) = P(z|x) P(x) $x^* = \operatorname{argmax}_{x} P(z|x) P(x)$ (for a given z) $x^* = \operatorname{argmin}_{x} E_u(x,z) + E_p(x)$

Data Z (pixel independent Gaussian noise)

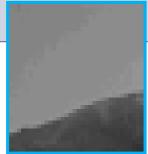
Prior:

-log P(x) = f $E_p(x) = f \sum_{i,j \in N} (x_i - x_j)^2$ (f is a factor, which can be ignored) = $f \frac{1}{2} x^T A x$ (as done above) E_p

 $|\mathbf{x}_{i} - \mathbf{x}_{i}|$

A simple de-noising system

Generative model for a noisy image: P(x,z) = P(z|x) P(x)x* = argmax P(z|x) P(x) (for a given z) x* = argmin $E_u(x) + E_p(x)$ Data **Z** (pixel independent Gaussian noise) Eu E_p Zi Xi $|\mathbf{x}_i - \mathbf{x}_j|$ original continuous label X Input **Z** HBF [Szeliski '06]~ 15times faster



Label X

256 discrete labels × (TRW-S)

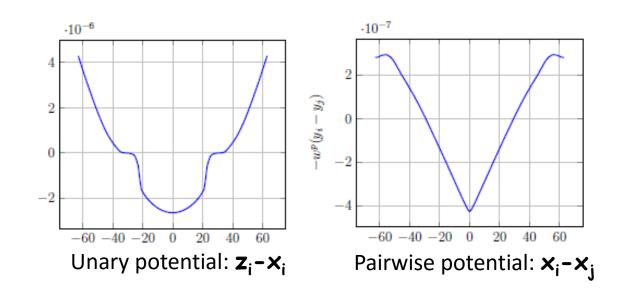
30/06/2016

Random Field Models in Computer Vision

Practical view: Potentials are often not Gaussian

Ideal output Label \mathbf{x}

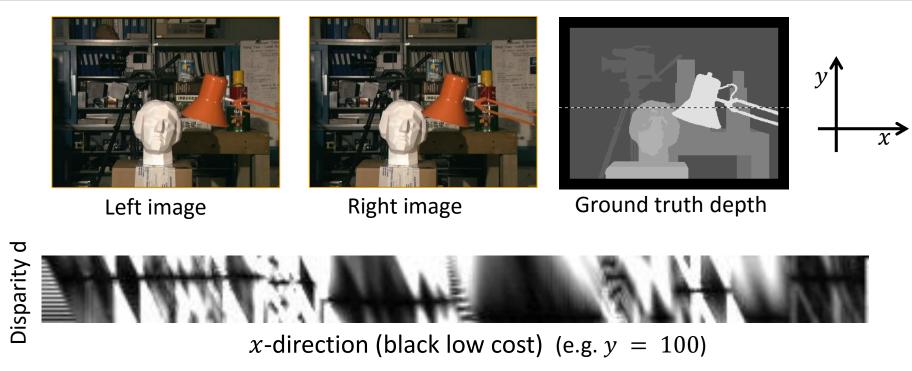
Noisy input image **Z**



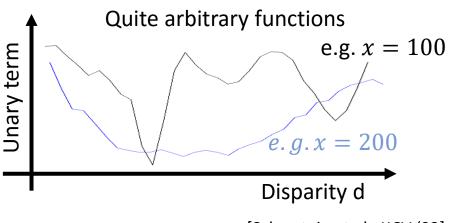
Learning the potentials (Loss-minimizing parameter learning) gives non-Gaussian potentials

[Putting MAP back on the map, Pletscher et al. DAGM 2010]

Stereo Matching - Energy



Unary terms (many options)
Patch-Cost for a pixel i with disparty
$$d_i$$
:
 $\theta_i(d_i) = \sum_{j \in N_i} (I_j^l - I_{j-d_i}^r)^2$



[Scharstein et al. IJCV '02]

Continuous-valued MRF for Segmentation

Energy:
$$E(x) = \sum_{i,j \in N_4} (w_{ij} |x_i - x_j|)^p \quad x_i \in \mathbb{R}$$

where $w_{ij} = \exp\{-\beta ||z_i - z_j||\}$
(as before)

<u>Optimize</u>: $x^* = \underset{x}{\operatorname{argmin}} E(x)$ sb.t. $x_i=1$ for foreground; $x_i=0$ for background

<u>Output</u> $x^\circ = round(x^*)$ i.e. $x^\circ = 0$ if $x^* < 0.5$, 1 otherwise

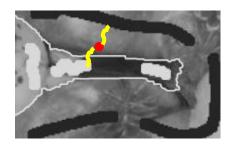
For any $p \ge 1$ this can be solved globally optimal (but not guaranteed to have a unique solution). Here optimized with IRLS (iterated reweighted least squares)

[Singaraju, Grady et al. MRF book, ch. 8]

Continuous-valued MRF for Segmentation

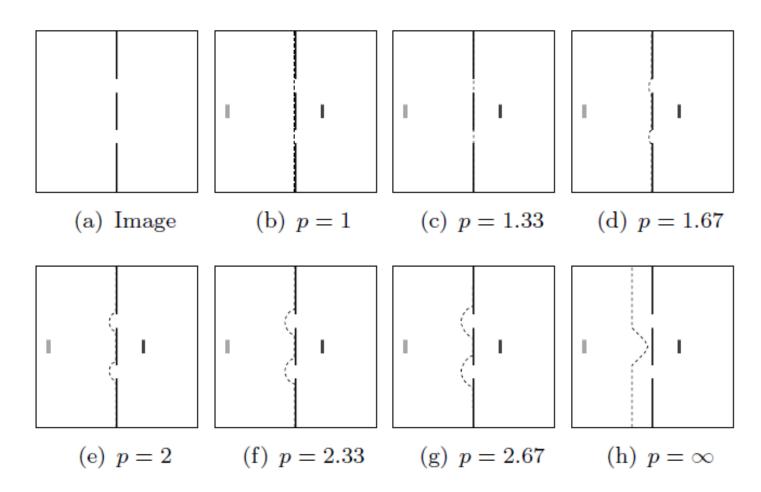
Varying the p-norm: **Energy:** $E(x) = \sum_{i,j \in N_4} (w_{ij} | x_i - x_j |)^p$

- p=1, the rounded solution is the same as the solution to discrete problem: x_i ∈ {0,1} (i.e GraphCut [Boykov, Jolly, ICCV '01])
- p=2, Gaussian MRF (known as random walker solution [Grady PAMI '06])
- p -> ∞, solution becomes ambiguous: one solution is shortest geodesic path to a foreground or background brush [Bai et al. ICCV '07]



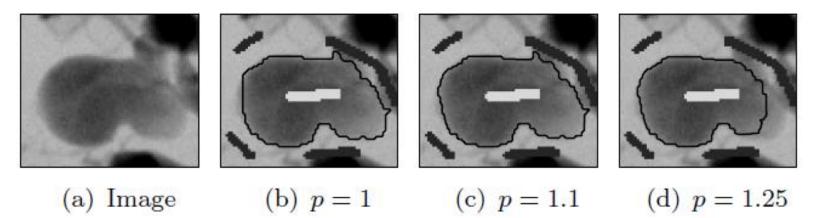
Proximity bias

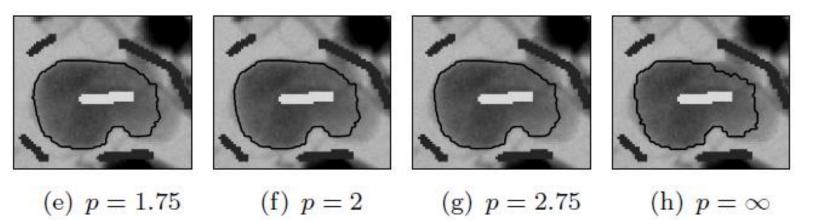
Sensitivity of the segmentation to the placement of the brush strokes



Proximity bias

Sensitivity of the segmentation to the placement of the brush strokes

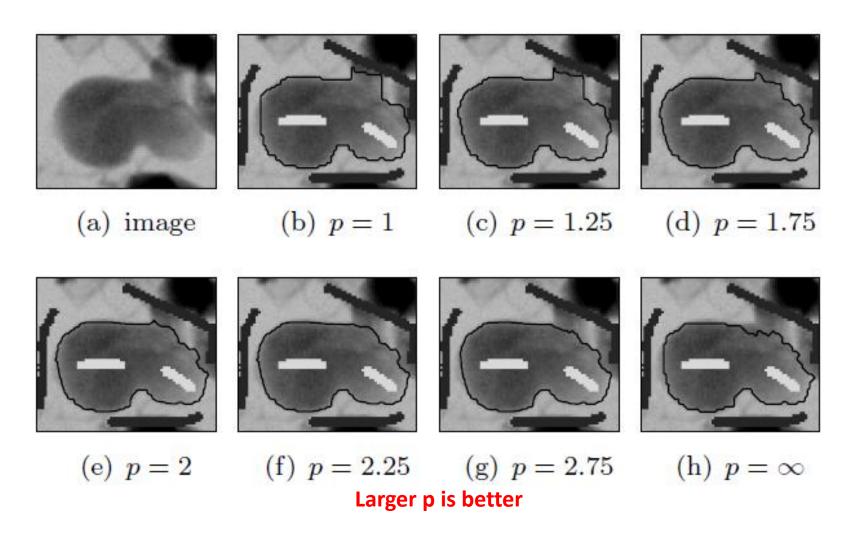




Small p may be better

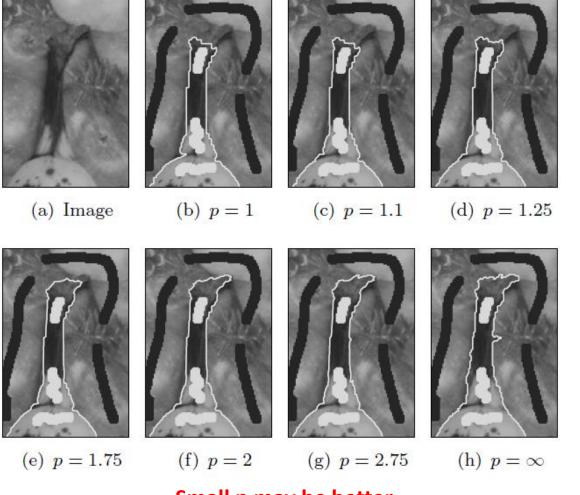
Metrication (discretization) artefacts

"Blockiness" of the segmentation due to the underlying pixel grid



Shrinking Bias

Shortening of the segmentation due to regularization



a practical study showed that p=1.4 is empirically a good value

Gaussian MRF for Matting

Input **z**

User constraints

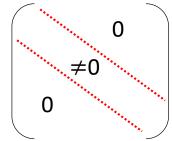
Output α

Output F (true foreground color; background color is not shown) Composition on new background

Input: z Output: α , F,B Constraint: $z_i = \alpha_i F_i + (1 - \alpha_i) B_i$ Each pixel gives 3 constraints and has 7 unknowns

 $E(\alpha) = \alpha^T L \alpha \quad \alpha^* = \underset{\alpha}{\operatorname{argmin}} E(\alpha) \text{ sb.t brush strokes}$

L called Matting Laplacian and has the form:



[Levin et al. CVPR '06]

Gaussian MRF for Matting

Image Matting

Evaluation • Datasets • Code • Submit

www.aipnamatting.cor

Hide Help

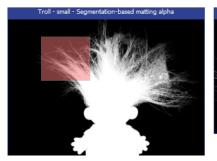
How to use this page?

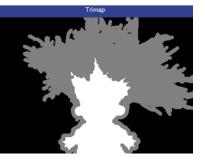
- 1. Please be patient until all images have loaded completely.
- 2. Move the mouse over the numbers in the table to see the corresponding images.
- 3. Drag the red rectangle in the leftmost image to change the location of the zoom.
- 4. Press and hold any key to temporarily deactivate the links.

Image matting evaluation results Competition: Low resolution High resolution Error type: SAD MSE Gradient Connectivity

Sum of Absolute Differences	overall	avg. small			Troll (Strongly Transparent) Input			Doll (Strongly Transparent) Input			Donkey (Medium Transparent) Input			Elephant (Medium Transparent) Input			Plant (Little Transparent) Input			Pineapple (Little Transparent) Input			Plastic bag (Highly Transparent) Input			Net (Highly Transparent) Input		
	rank	rank	rank	rank	small	large	user	small	large	user	small	large	user	small	large	user	small	large	user	small	large	user	small	large	user	small	large	user
Shared Matting	2.7	2.8	3.3	2	10.8 1	20.5 2	15 1	7.8 6	11.6 s	8.13	4.21	5.3 t	4.2 1	2.1 2	5.8 s	2.9 2	5.9 1	9.2 2	11.4 1	51	8.81	6.8 1	34.9 :	34.96	34.3 6	23.9 2	28.43	25.7
Segmentation-based matting	3.7	3.6	3.9	3.5	12.8 4	23.57	16.6 3	6.6 z	8.3 2	7.3 1	4.87	6.1 s	4.3 3	2.13	3.9 2	3.1 3	6.7 2	81	13.4 4	64	8.8 2	8.23	31.6 4	35.67	38.8 s	24.53	32 5	26.7
Improved color matting	4	3.9	4.1	4.1	14.9 s	24.5	20 7	6.74	9.54	8.5 5	4.6 3	6.1 s	4.34	2.67	5.44	3.47	7.5 s	9.93	12.5 2	63	10.1 4	8.44	26.1 3	26.7 3	23.6 2	23.8 1	25.6 1	26.7
Shared Matting (Real Time)	4.8	4.8	5	4.5	12.4 :	21.6 3	16.3 2	9.5 :	13.57	9.97	4.4 2	5.6 2	4.46	2.5 6	6.87	3.2 5	7.1 3	10.8 4	12.6 3	5.4 2	9.7 3	7.4 2	35.5 10	35.8 :	35.57	27.6 s	33.4 6	29.8
Learning Based Matting	5.1	5.1	4.6	5.6	16 s	22 6	18.7 s	6.63	7.4 1	7.4 2	4.8 s	6.14	4.3 5	2.11	3.7 1	2.81	7.5 6	14.5 9	19.5 9	8.6 10	14.17	14.6 10	22.5 1	24.8 1	19.9 t	34.6 :	38.5 :	51.2 t
Closed-Form Matting	5.2	5	4.4	6.1	12.7 3	21.9 5	17.2 4	5.9 1	8.53	8.6 6	4.7 4	63	4.3 2	2.2 4	4.6 3	3.3 6	9.3 9	12.1 s	19.3 :	8.3 :	14.9 9	13.4 9	34.27	32.4 5	27.4 4	26.5 4	25.7 z	48.3 1
Large Kernel Matting	6.3	7	5.9	6.1	17.27	21.8 4	20.7 8	7.2 5	9.6 s	8.44	5.3 9	6.6 s	4.67	2.99	8.29	4.2 :	8.6 :	12.1 s	14.7 s	87	13.4 6	11.27	33 5	31.8 4	26.1 3	32.1 6	32 4	38.41
Robust Matting	7.1	6	7.8	7.5	17.3	28.4 10	21.19	10.1 9	16.9 11	11.4 9	4.8 5	6.5 :	59	2.8 :	7.3 8	4.49	7.34	14 s	18.17	6.8 s	14.6 s	10.6 s	22.7 2	26.1 2	32.1 s	34.47	377	38 s
High-res matting	8.4	8	9.3	8	18.6 1	25.8 9	24.6 10	8.67	14.1 s	11.1 s	5 :	6.27	4.8 s	2.5 s	8.3 10	3.2 4	7.87	147	21.4 10	8.5 9	18.1 12	12.2 :	35.3 9	38.1 10	42.6 11	38.7 9	54.6 11	36.8
Random Walk Matting	10.5	11.3	9.4	10.8	17.99	20.3 1	19.4 6	11.3 10	15.6 9	11.8 10	5.8 10	7 10	6.3 12	3.4 10	6.7 s	4.6 10	13.1 12	22.1 1	27.4 12	12.3 13	18 11	15.7 13	44.1 13	43.5 13	41 10	75.1 13	81.8 13	80.61
Geodesic Matting	11	11.6	10.8	10.8	26.9 1	38.51	32.5 13	14.2 11	16.5 10	17.4 11	11.7 14	14 15	9.4 14	7.6 14	15.1 13	8.7 14	12.8 11	16.7 1	15.1 s	7.3 6	12.1 s	9.8 5	37.3 12	37.49	42.8 12	48.6 12	50 10	48.61
Iterative BP Matting	11.5	10.9	11.8	12	23.6 1	29.9 1	27.2 11	16.7 12	24.3 13	20.7 14	6.7 12	9 12	6.3 11	3.8 11	11.3 12	6.8 13	14.1 13	22.8 1	27.9 13	11.4 12	19 13	14.7 11	33.46	39.3 11	47.5 14	40.6 10	48.1 9	45.1
Easy Matting	12	12.1	11.9	12	23.9 1	32.6 1	30 12	17.1 13	21.8 12	19.4 13	6.3 11	7.5 11	5.8 10	4.7 12	10.5 11	5.6 11	12.1 10	15.7 10	22.9 11	11.2 11	17 10	14.8 12	49.5 14	49.6 14	46.2 13	77.8 14	108.6 1	109.2
Bayesian Matting	12.9	13	13.5	12.3	30.3 1	42.41	33.4 14	19.2 14	25.8 14	18.4 12	10.8 13	12.4 13	10.8 15	6.6 13	18.5 15	6.2 12	14.2 14	29.8 1	33.2 14	15.4 14	30.6 14	19.7 14	35.8 11	40.6 1	39.6 9	45.3 11	76.8 12	43.6
Poisson Matting	14.8	15	14.6	14.8	51.8 1	56.2 1	52 15	28.3 15	43.5 15	30.7 15	12.1 15	13.7 14	9.2 13	11.7 15	18.4 14	11.2 15	22.4 15	36.8 1	55.5 15	21.4 15	32.2 15	22.7 15	53.6 15	72.9 15	58.4 15	125.5 15	84.8 14	139.7

Move the mouse over the numbers in the table to see the corresponding images. Click to compare with the ground truth. Press a key to deactivate the links (to better use the zoom).





http://www.alphamatting.com/

Continuous Labels - Summary

- Used for problems with continuous label space: e.g. image intensity, depth, motion, transparency (i.e. matting)
- Regularization term (pairwise, higher-order) must be written in some parametric form (Gaussian, Filters, etc)
- Gaussian Random Field are often not used since data-term is typically non-Gaussian and often expansive to evaluate for continuous labels.
- Gaussian Random Field can be useful successfully when the terms are set in an image-adaptive way (see e.g. Jancsary, Nowozin, Sharp, and Rother, Regression Tree Fields, CVPR 2012)