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Abstract

This work addresses the task of non-blind image decon-
volution. Motivated to keep up with the constant increase
in image size, with megapixel images becoming the norm,
we aim at pushing the limits of efficient FFT-based tech-
niques. Based on an analysis of traditional and more re-
cent learning-based methods, we generalize existing dis-
criminative approaches by using more powerful regulariza-
tion, based on convolutional neural networks. Additionally,
we propose a simple, yet effective, boundary adjustment
method that alleviates the problematic circular convolution
assumption, which is necessary for FFT-based deconvolu-
tion. We evaluate our approach on two common non-blind
deconvolution benchmarks and achieve state-of-the-art re-
sults even when including methods which are computation-
ally considerably more expensive.

1. Introduction

Image deblurring is a classic image restoration problem
with a vast body of work in computer vision, signal process-
ing and related fields (see [25] for a fairly recent survey). In
this work, we focus on the case of uniform blur, where the
observed blurred image y = k⊗x+η is obtained via con-
volution of the true image x with known blur kernel (point
spread function) k and additive Gaussian noise η. The task
of recovering x is then called (non-blind) image deconvolu-
tion. Note that although the assumption of uniform blur
is often not accurate [12, 15], such image deconvolution
techniques can in fact outperform methods which assume
a more realistic non-uniform blur model [cf. 12]. Further-
more, image deconvolution can be used as a building block
to address the removal of non-uniform blur [cf. 28].

When it comes to image deconvolution methods, it is
useful to broadly separate them into two classes: (1) those
where the most costly computational operations are a fixed
number of Fourier transforms or convolutions, and (2) those
which require more expensive computation, often due to (it-
erative) solvers for large linear systems of equations. While
the first class of methods can scale to large megapixel-sized
images, the latter class generally falls short in this regard.

These computationally demanding methods often exhibit
high restoration quality [e.g., 20, 31], but typically need sev-
eral minutes, or more, to deconvolve images of 1 megapixel
(see current deblurring benchmarks [e.g., 12, 24]). Of
course, this runtime issue is even more severe for images
that are multiple times larger, which are common nowa-
days. While the power of computers increases each year,
so does the size of images taken by typical cameras. For
the reasons outlined above, in this paper we focus on a class
of deconvolution methods where the fast Fourier transform
(FFT) is the most expensive operation, with computational
complexity O(n log n) for input size, i.e. pixel count, n.
Note that, while our proposed method is very efficient, we
even slightly outperform state-of-the-art techniques which
are considerably more computationally expensive.

Since image deconvolution is mathematically ill-posed
in the presence of noise, some form of regularization has
to be used to recover a restored image. A classic fast FFT-
based deconvolution method is the Wiener filter [27], which
uses quadratic regularization of the expected image spec-
trum to obtain the restored image in closed form. How-
ever, it is well-known that quadratic regularization is not
ideal for natural images, which we assume here. Hence,
better methods [e.g., 13, 26] employ sparse regularization
and iterative optimization, where each iteration is similar to
a Wiener filter. More recently, the advent of discriminative
deblurring [22] has generalized these methods to yield even
higher quality results without increasing the computational
demands [9, 21, 28]. In Section 2, we study these tradi-
tional FFT-based deconvolution methods and their more re-
cent learning-based extensions. Based on this analysis, we
propose a new, generalized learning-based approach utiliz-
ing the power of convolutional neural networks in Section 3.

In order to improve the quality of the restored image
even further, we address the often neglected topic of image
boundary handling. FFT-based deconvolution hinges on a
blur model which assumes a convolution with periodic (cir-
cular) boundary conditions. Unfortunately, this assumption
is almost never satisfied for blurred natural images, such
as typical photographs degraded by camera shake or mo-
tion blur. To alleviate this problem, an observed blurred
image is typically padded and pre-processed by an “edgeta-
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per” operation1 [cf. 19], which applies additional circular
convolution to only the boundary region of the padded im-
age. However, we want to go beyond this dated boundary
processing approach. Towards this end, we take inspiration
from recent work [2, 16] and devise a simple, yet effective,
boundary adjustment strategy that can easily be applied to
any FFT-based deconvolution method, without introducing
additional parameters or computational cost.

We show the efficacy of our proposed model and bound-
ary adjustment method in various non-blind deconvolution
experiments in Section 4, before we conclude in Section 5.

In this work, we solely focus on non-blind deconvolu-
tion, while recent research in the field has arguably shifted
its focus towards blind deconvolution, which aims to esti-
mate both the blur kernel k and the restored image x. How-
ever, most of these approaches make use of non-blind de-
convolution steps [e.g., 4, 29]. Recent discriminative meth-
ods [23, 28] alternate between updating the blur kernel and
employing non-blind deconvolution to update the restored
image. Hence, it remains important to develop better non-
blind techniques.

In summary, our main contributions are threefold:

• We generalize discriminative FFT-based deconvolu-
tion approaches by using more powerful regularization
based on convolutional neural networks.

• We propose a simple and effective boundary adjust-
ment method that alleviates the problematic circular
convolution assumption, which is necessary for FFT-
based deconvolution.

• We obtain state-of-the-art results on non-blind decon-
volution benchmarks, even when including methods
that are computationally considerably more expensive.

2. Review of FFT-based deconvolution
We consider the common blur model

y = k⊗ x+ η, (1)

where the observed corrupted image y is the result of cir-
cular convolution of the image x with blur kernel k plus
Gaussian noise with variance σ2, i.e. η ∼ N (0, I/λ) with
precision λ = 1/σ2 and I being the identity matrix. For
notational convenience, we assume all variables in bold to
be vectors (lower case) or matrices (upper case).

2.1. Traditional approaches

A classic solution to obtain an estimate of the restored
image is given by the Wiener filter [27] as

x̂ = F−1
(
F(k~ y)

|F(k)|2 + n/s

)
, (2)

1cf. MATLAB’s edgetaper function.

where F corresponds to the two-dimensional discrete
Fourier transform and n = 1/λ and s are the expected
power spectra of the noise and image, respectively. Note
that k ~ y = F−1(F(k) � F(y)) denotes correlation of
y and k, where � is the entrywise (Hadamard) product and
v is the complex conjugate of v. All other operations in
Eq. (2), such as division, are applied entrywise.

The Wiener filter is very efficient due to FFT-based infer-
ence, but not state-of-the-art anymore. Many modern meth-
ods are based on minimizing an energy function

E(x) =
λ

2
‖k⊗ x− y‖2 +

∑
i
1Tρi(fi ⊗ x), (3)

where the data term stems from the blur model of Eq. (1),
and the regularization term with i = 1, . . . , N is based
on penalty functions ρi, applied entrywise to responses of
linear filters fi, which most commonly are simple image
derivative filters [e.g., 13]. If quadratic penalty functions
are used, i.e. ρi(u) = β

2u
2, then x̂ = argminxE(x) yields

the same form as the Wiener filter of Eq. (2), except that the
spectrum s is replaced by β

∑
i|F(fi)|2:

x̂ = F−1
(

F
(
k~ y

)
|F(k)|2 + β

λ

∑
i|F(fi)|2

)
. (4)

It is well-known that quadratic regularization leads to in-
ferior restoration results for natural images. High-quality
results can be achieved by using sparse (non-quadratic) reg-
ularization terms, e.g. with hyper-Laplacian penalty func-
tions ρi(u) = |u|α and 0 < α ≤ 1 [13]. Unfortunately, this
makes energy minimization more complicated. To address
this issue, it has been shown helpful to use half-quadratic
splitting [10, 26], in this context also known as quadratic
penalty method [cf. 17, § 17.1]. To that end, the energy is
augmented with latent variables z = {z1, . . . , zN} as

Eβ(x, z) =
λ

2
‖k⊗ x− y‖2

+
∑

i
1Tρi(zi) +

β

2
‖fi ⊗ x− zi‖2, (5)

such that E(x) = limβ→∞Eβ(x, z). Energy minimization
is now carried out in an iterative manner, where the latent
variables and the restored image are updated at each step t:

zt+1
i = argminzi

Eβ(x
t, z) = ψi(fi ⊗ xt) (6)

xt+1 = argminxEβ(x, z
t+1). (7)

In Eq. (6), ψi = proxρi/β is a 1D shrinkage function ob-
tained as the proximal operator of penalty ρi with parame-
ter β−1 [cf. 18]. Note that β needs to be increased during
optimization such that the result of the optimization closely
resembles a solution to the original energy of Eq. (3). By
combining Eqs. (6) and (7), we obtain the following update



equation for the restored image at step t:

xt+1 = F−1
(
F
(
k~ y + β

λφ(x
t)
)

|F(k)|2 + β
λ

∑
i|F(fi)|2

)
(8)

with φ(xt) =
∑

i
fi ~ ψi(fi ⊗ xt). (9)

Note that Eq. (8) has the same form as Eq. (4) when using
a quadratic penalty, with the only difference that the term
β
λφ(x

t), based on the current image estimate xt, appears in
the numerator. While this change may seem insignificant,
it does lead to deconvolution results of much higher quality
when Eq. (8) is applied iteratively [13, 26].

Note that there are many different variants of splitting
methods [cf. 8] besides the one that we presented above,
such as the popular alternating direction method of multi-
pliers (ADMM) [cf. 17, § 17.4]. Applied in our context,
ADMM is actually an extension of the splitting approach of
Eqs. (5) to (9) with the benefit of converging more quickly
to a minimum of Eq. (3). However, such improved conver-
gence behavior is not relevant for us, since we will use a
discriminative generalization of Eqs. (8) and (9) that does
not aim to minimize Eq. (3) anymore.

2.2. Discriminative learning-based approaches

Discriminative non-blind deblurring has been proposed
by Schmidt et al. [20] through “unrolling” iterative half-
quadratic optimization for a fixed small number of steps.
Good results can be achieved by learning specialized model
parameters for each of the few optimization steps. Schmidt
and Roth [21] applied this idea to the iterative FFT-based
deconvolution updates of Eq. (8) by learning step-specific
weights βt, shrinkage functions ψit, and linear filters fit to
directly optimize the quality of the restored image, instead
of minimizing Eq. (3). Crucial to their approach is that they
directly modeledψit as differentiable functions with closed-
form expressions, which allowed them to use standard loss-
based training with gradient-based methods. They called
the resulting model a cascade of shrinkage fields (CSF).

Zhang et al. [30] adopted a similar approach to shrink-
age fields, but used fixed horizontal and vertical image gra-
dient filters fit and replaced univariate shrinkage functions
ψit with standard convolutional neural networks (CNNs).
However, they did not train the CNNs to directly optimize
image quality. In the context of combining low-level and
high-level image processing, Diamond et al. [9] extended
shrinkage fields specifically for color images by replacing
shrinkage functions with CNNs that operate independently
in the spatial domain but exploit correlations between color
channels. Schuler et al. [23] addressed discriminative blind
deconvolution by making use of CNNs and alternating up-
dates of the restored image and blur kernel. However, their
image updates are based on a simple Wiener filter, where
they used a flat spectrum n/s = β1 with learned scalar β.

3. Our approach
Given the insights from the previous section, we now

introduce our own approach which further generalizes the
formulation of discriminative methods. After that, we de-
scribe our second contribution, which is a simple, yet ef-
fective boundary adjustment technique. An overview of our
full approach is illustrated in Fig. 1.

Although in a limited manner, previous work [9, 30] has
already attempted to replace the 1D shrinkage functions ψi
in Eq. (9) with CNNs that go beyond pixel-independent pro-
cessing. However, we want to go further than just replacing
ψi and instead propose to replace φ (Eq. 9) altogether with
a CNN, thereby generalizing Eq. (8), since numerator and
denominator are no longer coupled through shared filters fi.
As a result, we alter the update step to

xt+1 = F−1
(
F
(
k~ y + 1

ωt(λ)
φCNN
t (xt)

)
|F(k)|2 + 1

ωt(λ)

∑
i|F(fit)|2

)
, (10)

where we make explicit that we learn a specialized CNN-
based term φCNN

t for every step t besides the linear filters fit.
Furthermore, we replace λ with a learned scalar function
ωt(λ) that acts as a noise-specific regularization weight; this
is necessary, because simply using λ = 1/σ2 based on noise
level σ empirically leads to sub-par results. Most previous
work [e.g., 13, 20, 21, 23] addressed this issue by learning
a fixed regularization weight ωt, hence they need to train a
separate model for each noise level σ. In contrast, Eq. (10)
generalizes well to a range of noise levels if exposed to them
during training (cf. Section 4). Note that we also remove the
scalar weight β, since it can be absorbed into ωt(λ), which
we parameterize as a multilayer perceptron.

In general, our motivation is to push the limits of a
flexible and powerful regularization, without breaking the
efficient FFT-based optimization, which is made possible
by the assumptions underlying the common blur formation
model of Eq. (1). To improve the quality of the restored
image even further, we should also make sure that these
assumptions are satisfied, which specifically are: (1) con-
volution is carried out with circular (periodic) boundary
conditions and (2) that noise is additive and drawn pixel-
independently from a Gaussian distribution.

While the Gaussian noise assumption can be problem-
atic, especially in low-light conditions, we are not going
to address this here. Instead, we focus on the issue that
the circular convolution assumption is especially troubling
for typical blurred photographs, since it can lead to strong
restoration artifacts [cf. 19]. A more realistic blur model is
that the convolution y = k ⊗V x does not go beyond the
image boundary2 of x. As a result, the observed blurred
image y ∈ Rm is actually smaller than the true image

2Often called convolution with “valid” or “inner” boundary conditions.
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φCNN
t (xt)

ϕt(y,k,x
t)

Eq. (17)

F−1
(
F
(
k~ ϕt(y,k,x

t) + 1
ωt(λ)

φCNN
t (xt)

)
|F(k)|2 + 1

ωt(λ)

∑
i|F(fit)|2

)
Eq. (16)

ωt(λ)

xt+1

one
m

odelstage

(1.5)−2

Figure 1: Overview for one model stage. We propose an extension of iterative FFT-based deconvolution methods, which update the
restored image xt → xt+1 at each step t. Specifically, we generalize shrinkage fields [21] by removing unnecessary parameter sharing
and replacing pixel-wise applied shrinkage functions with CNNs (φCNN

t ) that operate on the whole image, i.e. can take advantage of spatial
dependencies between pixels (see Fig. 6 for an example). Additionally, we take inspiration from [2, 16] and propose a simple, yet effective,
strategy to better adhere to the circular blur assumption that underlies all FFT-based deconvolution methods; to that end, we replace the
observed blurred image y with ϕt(y,k,x

t).

x ∈ Rn, i.e. m < n. Hence, we would ideally like to use
unknown boundary conditions, i.e. disable the blur model
at the boundary and only use the regularization term. Un-
fortunately, only determinate boundary conditions may lead
to structured optimization problems that admit fast infer-
ence [cf. 2, 16]. Of those, circular boundary conditions are
arguably the most appealing, since they lead to equation
systems with matrices that can be diagonalized in Fourier
space, hence admit fast and closed-form image updates as
presented throughout this section. Given this, we seek to
modify the observed blurred image y to better adhere to the
circular blur model, which we discuss next.

3.1. Boundary adjustment

A common boundary pre-processing step is to first pad
the observed blurred image y ∈ Rm by replicating its edge
pixels3 with linear operator Pr ∈ Rn×m such that Pry ∈
Rn has the same size as the true image x ∈ Rn. This is
followed by the classic edgetaper operation [cf. 19] to arrive
at the modified blurred image

ỹ = edgetaper(Pry,k), (11)

which better adheres to the circular blur model. While this
pre-processing approach goes a long way to reduce restora-
tion artifacts, it is several decades old and does not solve the
problem completely.

In order to come up with a better approach, Matakos et
al. [16] and Almeida and Figueiredo [2] proposed to change
the blur model from Eq. (1) to

y = C(k⊗ x) + η, (12)

where convolution is still carried out with periodic bound-
ary conditions, but the result is cropped via multiplication

3Often called padding with “replicate” or “edge” mode.

with matrix C ∈ Rm×n, such that only the inner part is
retained, which is of the same size as the observed blurred
image y. Note that C(k⊗ x) = k⊗V x corresponds to the
more realistic blur assumption, as described above. Using
common regularizers, both [2, 16] then develop an efficient
deconvolution algorithm based on the ADMM framework.

Since at the core of their approach is also a quadratic
splitting technique, we can adopt it to extend Eq. (5). To
that end, we replace k⊗x by the latent vector u and impose
a soft constraint based on weight γ that favors both terms to
be equal. With such a modification, we arrive at

Eβ,γ(x, z,u) =
λ

2
‖Cu− y‖2 + γ

2
‖k⊗ x− u‖2

+
∑

i
1Tρi(zi) +

β

2
‖fi ⊗ x− zi‖2, (13)

where again E(x) = limβ→∞,γ→∞Eβ,γ(x, z,u), but
based on the new blur model of Eq. (12).

We now employ the same alternating optimization as we
have used in Eqs. (5) to (7), but based on Eq. (13) and with
the additional update step ut+1=argminuEβ,γ(x

t, zt,u).
Note that the update steps for x and z actually do not
change, the difference is only that u has taken the place
of y (and γ that of λ). Again, we combine all equations to
obtain the update of the restored image at step t as

xt+1 = F−1
(
F
(
k~ ϕ(y,k,xt) + β

γφ(x
t)
)

|F(k)|2 + β
γ

∑
i|F(fi)|2

)
, (14)

where φ is defined as in Eq. (9) and

ϕ(y,k,xt) =
(
λ
γC

TC+I
)−1(λ

γC
Ty+(k⊗ xt)

)
(15)

= MI

(
αP0y+(1−α)(k⊗ xt)

)
+ME

(
k⊗ xt

)
with α = λ/(λ + γ), P0 = CT, and “masking” matrices
MI and ME for interior and exterior (i.e. boundary) pixels,
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Figure 2: Boundary adjustment approach of Eq. (17) for t > 0. The current best estimate xt, the blurred image y and the blur kernel k
are used to construct two images (middle), which are combined to give the boundary-adjusted observation (right). The circular blur model
behind FFT-based deconvolution methods assumes knowledge of the circularly blurred boundary regions of the true image x. Since these
are not available, we instead employ our current best estimate xt as a proxy for x and artificially blur its boundaries to be used instead.
This allows us to better adhere to the circular blur model and as a consequence obtain image deconvolution results of higher quality.

respectively. The diagonal matrix MI = P0C ∈ Rn×n has
entries of 1 for all interior pixels and zeros otherwise; multi-
plication with ME = I−MI conversely retains all exterior
pixels, while setting all interior pixels to zero (cf. Fig. 2).
Note that multiplication with P0 performs 0-padding, i.e.
MIv can be understood as first cropping the boundary of v
with subsequent padding of zeros.

While Eq. (15) may look complicated at first glance, its
role can be understood quite easily. First, if we compare
Eq. (8), which does not use any boundary adjustment, to
Eq. (14), we find that y has been replaced by ϕ(y,k,xt).
Hence, we can interpret Eq. (15) as padding y with the
boundary of k ⊗ xt (a circularly blurred copy of the cur-
rent estimate of the deconvolved image); furthermore, the
interior of y is replaced by a convex combination of y and
k⊗ xt based on weight α ∈ [0, 1].

Intuitively, it is very sensible to pad y with the bound-
ary of k ⊗ xt, but only if xt is already similar to the true
image x. By doing this, we essentially modify y to better
adhere to the circular blur assumption. However, replac-
ing the boundary in such a way does not seem to be a good
idea for t = 0, since x0 is usually initialized as the edgeta-
pered blurred image ỹ (Eq. 11) and thus is typically very
dissimilar to the true image x. Consequently, we adopt this
boundary modification approach only for t > 0.

For t = 0, we use the standard edgetapered image ỹ.
Furthermore, we choose not to use a convex combination of
k ⊗ xt and y for the interior pixels; since the blur model
of Eq. (1) is actually valid for the interior pixels, we simply
use y as is. Overall, this leads us to modify our previously
chosen update equation (Eq. 10) to arrive at our final model

xt+1 = F−1
(
F
(
k~ϕt(y,k,xt) + 1

ωt(λ)
φCNN
t (xt)

)
|F(k)|2 + 1

ωt(λ)

∑
i|F(fit)|2

)
(16)

with the boundary adjustment function

ϕt(y,k,x
t) =

{
ỹ if t = 0

P0y +ME

(
k⊗ xt

)
if t > 0,

(17)

which we visualize in Fig. 2. Our boundary strategy of
Eq. (17) is very simple, yet effective (cf. Section 4.3), does
not add any parameters or increase the computational bur-
den, and can easily be applied to existing FFT-based decon-
volution methods.

4. Experiments

In the following we conduct experiments with our pro-
posed model for the task of non-blind image deconvolu-
tion. We compare our results to the state-of-the-art on two
popular datasets, both in terms of average peak signal-to-
noise ratio (PSNR) and test runtime. Additional experi-
ments show the effectiveness of our boundary strategy (Sec-
tion 4.3) as compared to the common edgetapering (Eq. 11).

Our implementation4 is based on Keras [6] and Tensor-
Flow [1], allowing us to make use of built-in GPU accelera-
tion and automatic differentiation for all model parameters.

4.1. Model configuration and training

For all experiments, we parameterize φCNN
t (cf. Fig. 1)

with a common CNN architecture of six sequential convo-
lutional layers with 3×3 kernels. While the first five layers
each have 32 feature channels followed by ELU [7] acti-
vations, the final layer outputs a single channel and does
not use a non-linear activation function. We choose a small
multilayer perceptron to specify ωt(λ), using 3 hidden lay-
ers of 16 neurons each (with ELU activations); the final out-
put neuron goes through a softplus activation function to en-
sure positivity. Finally, at each step t we use 24 linear filters
fit of size 5×5 pixels for the denominator of Eq. (16).

Our full model consists of several identically structured
stages as defined in Eq. (16), each taking as input the predic-
tion made by its predecessor. Since each stage hinges on the
(fast) Fourier transform and all stages together form a sin-
gle deep network, we call our model Fourier Deconvolution
Network (FDN). Following [5, 21], who report their best

4Code is available on our webpages.



Figure 3: Top row. Examples of simulated blur kernels from [20],
which we use for model training. Bottom row. The 8 blur kernels
used in the benchmark datasets [15, 24].

results with a greedy training scheme, we first train each
successive stage individually. Since each stage is differen-
tiable, we also investigate to jointly finetune the parameters
of all stages in an end-to-end fashion. We apply Adam [11]
to minimize negative PSNR as our objective function.

We use grayscale images from the Berkeley segmenta-
tion dataset [3] to train our model, specifically by extract-
ing random patches that we then synthetically blur with a
randomly selected blur kernel. To that end, we make use
of simulated kernels taken from [20] (see top row of Fig. 3
for some examples). We add Gaussian noise to the blurred
image and subsequently use 8-bit quantization for all pixels.

For all experiments, we train on 3000 random image
patches x, which are blurred with kernels k of sizes up to
37× 37 to yield blurred images y of 284× 284 pixels each.

4.2. Evaluation

We evaluate our model on two well-known benchmark
datasets. The one compiled by Levin et al. [15] consists
of four 255 × 255 grayscale images, each optically blurred
with a set of eight real-world blur kernels to yield 32 im-
ages in total. The eight kernels are shown in the bottom row
of Fig. 3. The standard deviation σ of Gaussian noise on
these blurred images is commonly stated as 1% of the dy-
namic range [e.g., 23, 24], i.e. σ = 2.55 for typical images
with pixel values 0 . . . 255. However, we found this to be
inaccurate and empirically determined σ to be closer to 1.5.

Sun et al. [24] use the same eight blur kernels as Levin
et al., but apply each of them to synthetically blur 80 higher
resolution images (long side scaled to 1024 pixels), yield-
ing a benchmark dataset of 640 images in total. Finally,
1% Gaussian noise (i.e., σ = 2.55) is added to each image
before 8-bit quantization.

Instead of following the common practice [e.g., 20, 21,
23] of training a specialized model for each noise level σ
(here, 1.5 and 2.55), we instead learn a more versatile model
from training data with various amounts of noise. Specifi-
cally, we create our training images by adding noise with
σ uniformly chosen at random from the interval [1.0, 3.0],
which allows us to train a single model that yields excellent
results on both benchmark datasets. Please see the supple-
mental material for results that were obtained from models
trained for either a single σ or wider range of noise levels.

Method σtrain Levin [15] Sun [24]

FDN10
G (ours) [1.0, 3.0] 34.98 (1.5) 32.62 (2.55)

FDN10
T (ours) [1.0, 3.0] 35.09 (1.5) 32.67 (2.55)

CSF3
pw. [21] 0.5 33.481 (0.5)

CSF5
5×5

(trained by us)

1.5 34.06 (1.5)

2.55 32.21 (2.55)

EPLL [31] – 34.75 (1.5) 32.462 (2.55)

RTF [20] 0.5 33.973 (0.5)

2.55 32.49 (2.55)

Levin [14] – 33.822 (?)

Table 1: Results for non-blind deblurring benchmarks. Av-
erage PSNR for two well-known deblurring benchmarks [15, 24],
where each method uses the ground truth blur kernels. The sec-
ond column denotes the noise level that the respective method was
trained for, whereas the small numbers in parentheses in columns
3 and 4 denote the noise level assumed or given as input at test
time. The upper part of the table shows efficient FFT-based meth-
ods, while methods in the lower part have higher computational
cost. Scores marked with 1, 2 and 3 quoted from [21], [24] and
[20], respectively; others computed with publicly available code.

As mentioned above, we consider two training variants:
First, we greedily train our FDN model with 10 stages,
which we abbreviate as FDN10

G . Second, we use the pa-
rameters from FDN10

G as initialization to jointly finetune all
stages and denote the resulting model as FDN10

T . We apply
our two models to both benchmark datasets. Note that we
strictly adhere to the evaluation protocol of the respective
dataset to ensure a fair comparison, which includes discard-
ing regions close to the border of each image.

Table 1 shows the results of our models compared to
other state-of-the-art methods on both datasets. We outper-
form our strongest competitors (EPLL [31] and RTF [20],
respectively) by around 0.2 – 0.3 dB. Please see Fig. 7 for
a qualitative comparison. While this performance improve-
ment may not seem very large, it is important to note that
our approach is orders of magnitude faster than both EPLL
and RTF (Section 4.4), neither of which can use efficient
FFT-based inference.

While the FFT-based deconvolution method CSF [21]
has similar computational cost as our approach, we do out-
perform it on the benchmarks of Sun et al. and Levin et
al. by large margins of around 0.5 and 1 dB, respectively.
Note that our improvements are already compared to more
powerful CSF models5 that we trained on datasets of the
same size as ours. One major reason for the inferior perfor-

5We use 24 filters of 5×5 pixels, since this most closely resembles our
FDN model. A simpler pairwise CSF as used in [21] performed much
worse in our tests. CSF results are already saturated after 5 stages.



(a) Edgetapered input (b) Traditional edgetapering (c) Our method (d) Difference of (b) and (c) (e) Ground truth

Figure 4: Example result of the proposed boundary adjustment method. Output of our greedy ten-stage model with our proposed
boundary adjustment method (c) compared to just using traditional edgetapering (b). The boundary region outside the green inner square
is discarded for the final output. While most of the changes are close to the image border, the difference image (d) shows that our boundary
approach also has an effect on details within the image.

mance of CSF is due to its use of edgetapering after each
stage, which is clearly inferior to our boundary adjustment
strategy (Section 4.3). In particular, we find that the perfor-
mance of our FDN10

G model would deteriorate by a substan-
tial 0.74 dB on the benchmark of Levin et al. if we used the
same boundary approach as CSF does.

4.3. Boundary adjustment comparison

We compare our proposed boundary adjustment (BA)
strategy (Our BA, cf. Eq. 17 and Fig. 2) to the traditional
edgetapering method (ET once, cf. Eq. 11); Fig. 4 provides
an illustration for an example image. Since the CSF model
[21] additionally crops its current estimate of the restored
image after each stage and re-applies edgetapering to it (ET
each), we also compare against this BA method.

Furthermore, we not only compare these BA strategies
within our FDN model, but also apply them to the CSF
model and a standard Wiener filter. To that end, we train
separate variants of each model that only differ in their BA
strategy, but are otherwise trained in exactly the same way.

The results of our evaluation on the benchmark of Levin
et al. [15] are shown in Fig. 5; more details can be found in
the supplemental material. First, we find that our BA strat-
egy is always superior to using edgetapering, which also
demonstrates the applicability to other FFT-based deconvo-
lution methods. Especially remarkable is that we can boost
the performance of a Wiener filter by over 1 dB when we
apply it iteratively with our BA method. Second, the re-
sults allow us to better analyze the respective contributions
from the CNN-based regularization on one hand, and our
BA strategy on the other hand. Using ET each, after 5
stages we only see a modest improvement of 0.16 dB with
our FDN model over CSF. However, we see a boost twice
as large (0.32 dB) when using Our BA, which suggests that
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Figure 5: Comparison of boundary adjustment methods. Av-
erage PSNR (in dB) on the benchmark of Levin et al. with dif-
ferent boundary adjustment (BA) strategies. Vertical partitions of
bars correspond to respective model stages. Our BA method shows
a clear improvement over edgetapering (ET). See text for details.

our BA approach is actually important to exploit our more
flexible CNN-based regularization. Third, we find that the
performance of FDN does not improve further after stage 3
with ET each; this does not apply to our BA, which enables
FDN to increase the PSNR by 0.58 dB within stages 4 – 106.

4.4. Runtime

As mentioned before, when it comes to runtime, we find
it useful to distinguish between deconvolution methods that
admit efficient FFT-based inference on one hand, and much
more computationally demanding methods, such as EPLL
[31] and RTF [20], on the other hand. Furthermore, FFT-
based methods employ closed-form update steps and thus
offer predictable runtime. In contrast, slower methods typ-
ically need to use iterative equation system solvers, whose
runtime may vary significantly based on the given image
and blur kernel.

6Stages 6 – 10 not shown in Fig. 5 for fair comparison to 5-stage CSF.
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Figure 6: CNN outputs with associated weights (top) and model predictions (bottom) for first 5 stages of FDN10
G . From left to right,

we show the CNN outputs φCNN
t (xt) with their associated noise-specific weights ωt(λ) and the predictions xt+1 with t ∈ {0 . . . 4} for an

example image (bottom far left, associated ground truth shown above; λ = 1/1.52). The green lines delineate the padded boundary region.

(a) EPLL (26.75 dB) (b) RTF (26.91 dB) (c) FDN10
t (27.21 dB) (d) Ground truth

Figure 7: Comparison of deconvolution results. Result of our finetuned ten-stage model (c) compared to two state-of-the-art methods,
EPLL (a) and RTF (b), for a challenging image from the Sun et al. benchmark. Our FDN model is able to restore fine details even in highly
textured image regions. Images are best viewed magnified on a screen.

While the specific runtime of a method depends on soft-
ware implementation and computing hardware, we find it
instructive to give ballpark numbers for some of the meth-
ods shown in Table 1. Our ten-stage model takes around
0.15 seconds for the small images from the dataset of Levin
et al. (255 × 255 pixels), and roughly 0.75 seconds for
the somewhat larger images from Sun et al. (less than 1
megapixel). These numbers are based on our TensorFlow
implementation with an NVIDIA Titan X GPU.

Whereas CSF should have similar or slightly lower run-
time compared to our method, EPLL and RTF are orders of
magnitude slower. Based on their public CPU-based imple-
mentations, we find that they take around 1 minute for the
small images from Levin et al., and in the order of 5 – 10
minutes for the bigger Sun et al. images. While it is not en-
tirely fair to compare such numbers to our GPU-based run-
times, it is evident that these slower methods are not practi-
cal for large images of potentially many megapixels.

5. Conclusion
We generalized efficient FFT-based deconvolution meth-

ods, specifically shrinkage fields, by introducing a CNN at
each stage to provide more powerful regularization. Our
model keeps all the benefits of fast FFT-based inference
and discriminative end-to-end training, yet is shown to out-
perform much less efficient state-of-the-art methods on two
non-blind deblurring benchmarks. We also proposed a sim-
ple, yet effective, scheme to better cope with the effects of
the circular boundary assumption imposed by FFT-based in-
ference. This method is generic, free of parameters, and
shown to improve restoration results at essentially no extra
cost. There are various avenues for future work, including
the extension to blind deconvolution and non-uniform blur.
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