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1. Details about boundary adjustment comparison
Section 4.3 of the main paper compares our proposed boundary adjustment (BA) strategy (Our BA, cf. Eq. 17 and Fig. 2

of the main paper) to the traditional edgetapering method (ET once, cf. Eq. 11 of the main paper) and the BA approach (ET
each) of CSF [3]; these BA strategies are compared within our FDN model, the CSF model, and a standard Wiener filter [5].

Specifically, we use the publicly available code to train different variants of the CSF model on a dataset of the same size
as ours, and only adjust the BA strategy. Furthermore, we apply the Wiener filter as defined in Eq. 2 of the main paper, which
we can use iteratively with our BA approach by replacing y with ϕt(y,k,xt); we estimate the expected image spectrum n
from 3000 clean image patches.

While our BA comparison is depicted visually in Fig. 5 of the main paper, Table 1 also provides the numeric results and
additionally includes stages 6 – 10 of our FDN model. As compared to the BA approach of CSF (ET each), the results suggest
that CSF would also benefit from further stages if used with our BA strategy (cf. 6th column). Remarkably, the performance
of the Wiener filter is not even fully saturated after 50 iterations (Wiener50) when applied with our BA approach (cf. 3rd

column, only every 5th step shown after iteration 10).
Fig. 1 shows an example where our proposed BA strategy yields a substantial improvement in image quality compared to

standard edgetapering (ET once).

Wiener CSF5
5×5 FDN10

G

Stage ET once Our BA ET each ET once Our BA ET each ET once Our BA

1 31.75 31.75 32.87 32.87 32.87 32.72 32.71 32.71
2 31.93 33.77 33.78 33.89 33.92 33.94 33.99
3 32.06 34.02 33.98 34.13 34.24 34.22 34.40
4 32.16 34.06 34.04 34.26 34.11 34.29 34.54
5 32.25 34.06 34.09 34.32 34.22 34.32 34.64
6 32.32 33.92 34.33 34.73
7 32.38 34.09 34.37 34.79
8 32.43 34.11 34.37 34.86
9 32.48 34.13 34.39 34.87

10 32.52 34.24 34.43 34.98

15 32.68
20 32.79
25 32.87
30 32.93
35 32.98
40 33.02
45 33.05
50 33.08

Table 1. Comparison of BA methods for FDN, CSF, and Wiener filter. Shown are average PSNR (dB) on the dataset of Levin et al. [1].
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Ground truth Observation σ = 1.5

Wiener, ET once 25.57 dB Wiener50, Our BA 30.97 dB

CSF5
5×5, ET once 32.31 dB CSF5

5×5, Our BA 32.75 dB

FDN10
G , ET once 33.28 dB FDN10

G , Our BA 33.78 dB

Figure 1. Qualitative comparison of our boundary adjustment strategy (Our BA) with common edgetapering (ET once) for three deconvo-
lution methods (Wiener filter, CSF, and our FDN) on an example image from the dataset of Levin et al. [1]. See text for details.
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2. Detailed results and additional models
We provide here the results of our greedily trained model FDN10

G (for σ ∈ [1.0, 3.0]) after every of its ten stages, instead
of just the final result after stage 10 as shown in Table 1 of the main paper.

Furthermore, we evaluate additional models for different (ranges of) noise levels: Following the common practice of most
discriminative deconvolution methods, we train two noise-specialized models (for σ = 1.5 and σ = 2.55) to be used for the
benchmarks of Levin et al. [1] and Sun et al. [4], respectively. Furthermore, we train a single model to be used for noise of
up to 5% strength, i.e. using a much wider range of noise levels during training with σtrain = [0.1, 12.75], which should cover
most typical blurred photographs.

Detailed results of all our ten-stage models for both benchmarks are shown in Table 2. Fig. 2 additionally illustrates the
greedy stage-wise performance for each of the two datasets. As expected, the noise-specialized models are on par or slightly
better than our model from the main paper for σ ∈ [1.0, 3.0]. However, the difference is typically quite small. The much
more versatile model for σ ∈ [0.1, 12.75] has somewhat lower performance, but is still competitive with the state-of-the-art
methods EPLL [6] and RTF [2] on both datasets (cf. Table 1 of the main paper). Nevertheless, future work should investigate
how to increase the performance of noise-versatile models even further.

σtrain DS Model Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10

1.5 [1]
FDN10

G 32.67 34.02 34.44 34.59 34.73 34.81 34.88 34.94 34.98 35.02
FDN10

T 35.18

2.55 [4]
FDN10

G 29.78 31.88 32.31 32.41 32.54 32.57 32.62 32.63 32.63 32.62
FDN10

T 32.59

[1.0, 3.0]
(main paper)

[1]
FDN10

G 32.71 33.99 34.40 34.54 34.64 34.73 34.79 34.86 34.87 34.98
FDN10

T 35.09

[4]
FDN10

G 29.63 31.69 32.22 32.30 32.43 32.45 32.54 32.55 32.60 32.62
FDN10

T 32.67

[0.1, 12.75]
[1]

FDN10
G 32.59 33.46 34.01 34.24 34.44 34.55 34.69 34.75 34.82 34.84

FDN10
T 34.86

[4]
FDN10

G 29.93 31.59 32.15 32.20 32.36 32.32 32.30 32.27 32.31 32.23
FDN10

T 32.41

Table 2. Detailed results (PSNR in dB) for non-blind deblurring on the two benchmark datasets (DS) of Levin et al. [1] and Sun et al. [4].
FDN10

G with greedy training and FDN10
T with subsequent finetuning. At test time, used σ = 1.5 for Levin et al. and σ = 2.55 for Sun et al.

1 2 3 4 5 6 7 8 9 10
32.5

33.0

33.5

34.0

34.5

35.0

35.5

FDN10
g , σtrain = 1.5

FDN10
g , σtrain = [1.0, 3.0]

FDN10
g , σtrain = [0.1, 12.75]

(a) Dataset of Levin et al. [1]

1 2 3 4 5 6 7 8 9 10
29.5

30.0

30.5

31.0

31.5

32.0

32.5

33.0

FDN10
g , σtrain = 2.55

FDN10
g , σtrain = [1.0, 3.0]

FDN10
g , σtrain = [0.1, 12.75]

(b) Dataset of Sun et al. [4]

Figure 2. Greedy stage-wise performance (PSNR in dB) on two non-blind deblurring benchmarks for three models each (cf. Table 2).
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3. Learned CNNs at different stages
Figure 6 (top row) of the main paper shows the output of the CNNs φCNN

t for the first five stages of a learned model.
Intuitively, the CNN serves the purpose of modulating smoothness, which is sensitive to the location of edges in the sharp
image. Since this is challenging to accomplish based on the observed blurred image, the CNN is less important at the first
stage. However, the CNN can and will do a better job when the current estimate of the deblurred image improves after each
stage. Nevertheless, Fig. 6 of the paper shows that the output of the CNNs will be very similar after only a few stages.

4. Additional example results
Additional results for example images from the dataset of Sun et al. [4] are shown in Figs. 3 to 6.
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Ground truth Observation σ = 2.55

EPLL 32.33 dB RTF 32.46 dB

CSF5
5×5 32.38 dB FDN10

T 32.65 dB

Figure 3. Deblurring example, comparing our FDN10
T model (σtrain = [1.0, 3.0]) with EPLL [6], RTF [2], and CSF [3].
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Ground truth Observation σ = 2.55

EPLL 39.48 dB RTF 39.12 dB

CSF5
5×5 39.07 dB FDN10

T 39.09 dB

Figure 4. Deblurring example, comparing our FDN10
T model (σtrain = [1.0, 3.0]) with EPLL [6], RTF [2], and CSF [3].
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Ground truth Observation σ = 2.55

EPLL 32.24 dB RTF 31.90 dB

CSF5
5×5 31.86 dB FDN10

T 32.67 dB

Figure 5. Deblurring example, comparing our FDN10
T model (σtrain = [1.0, 3.0]) with EPLL [6], RTF [2], and CSF [3].
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Ground truth Observation σ = 2.55

EPLL 25.15 dB RTF 25.34 dB

CSF5
5×5 25.09 dB FDN10

T 25.77 dB

Figure 6. Deblurring example, comparing our FDN10
T model (σtrain = [1.0, 3.0]) with EPLL [6], RTF [2], and CSF [3].
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