
Uncertainty-Driven 6D Pose Estimation of Objects and Scenes
from a Single RGB Image

- Supplementary Material -

Eric Brachmann*, Frank Michel, Alexander Krull, Michael Ying Yang, Stefan Gumhold, Carsten Rother
TU Dresden

Dresden, Germany
*eric.brachmann@tu-dresden.de

This supplementary material provides useful details for re-
implementing our approach. We give a formal definition
of our 2D projection measure and a complete listing of pa-
rameter settings used in our experiments. Then, we expand
on qualitative and quantitative results. Finally, we explain
how the supplementary video was created. In summary, this
document contains:

• Implementation details
• Details on the 2D projection measure
• List of parameter settings
• Additional results
• Details on the supplementary video

1. Implementation Details
1.1. Standard Random Forest

This subsection contains details on the training of stack
level 0. We will expand on this with regard to object coor-
dinate auto-context in the next subsection.

We draw training samples uniformly from within the ob-
ject segmentation and up to a certain distance outside the
segmentation. This distance is set to 50% of the maxi-
mum feature size. We additionally draw samples of the
background class from a selection of random interior back-
ground images.

To be scale invariant during test time, the forest has to
be trained with different sizes of training images. We ap-
proximate re-scaling training images by scaling the feature
offsets instead. The scale factor is chosen randomly per
training sample. The scale range depends on the minimal
and maximal object scale expected at test time. We use a
similar approach when adding in-plane rotation to training
images. We do not actually rotate training images but we
rotate the feature offset vectors instead.

At each tree depth level, a pool of features is created
by sampling feature parameters uniformly. Feature thresh-
olds are also chosen randomly by calculating the feature re-

sponse at a random training pixel. Should a feature access
a pixel outside the object segmentation during training we
return uniform color noise.

When learning the empirical distribution in the forest
leafs, we increase the number of training samples passed
through the tree by a factor of 3. We keep at most 2000 sam-
ples per leaf and object before running mean-shift. Modes
with less than 10 samples supporting it are dismissed. We
calculate full co-variance for each mode, setting the mean
of the distribution to the mode coordinate.

1.2. Object Coordinate Auto-Context Forest

Starting with the second layer of the stack, we calculate
the prediction of the previous forest for each training im-
age. Since our training images are segmented and contain
no background, we paste each training image into a random
image of our background image set at a random position.
The resulting montage is most likely physically implausi-
ble, but we found this simple strategy sufficient. We cal-
culate the forest prediction on the montage. The resulting
auto-context feature channels are stored sub-sampled. This
reduces the memory footprint, and increases the effective
range of smoothing operations between auto-context layers.

Before training the next layer, we also calculate object
probabilities of the previous layer on the background image
set. The background images represent our set of negative
samples, hence object probabilities should be low. Back-
ground regions with high object probability represent hard
negatives, i.e. samples where the prediction of the last layer
was wrong. When training the new layer, we draw 50% of
the background training samples according to object prob-
ability. Thus, sampling has a bias towards hard negatives.
We found this giving a slight but no substantial gain in seg-
mentation performance of the forest.

1

1.3. RANSAC

We draw an hypothesis by sampling 4 pixels according
to PD

i (c). Pixels 2-4 are sampled in the vicinity of the first
pixel chosen. We use the following heuristic to determine
a sensible search radius: First, we read out the object coor-
dinate prediction y1 associated with the first pixel chosen.
We calculate the maximum distance of y1 to the 3D ob-
ject bounding box. We project this distance into the image,
assuming a worst case depth of 30cm (minimal object dis-
tance from the camera). The result is a worst case search
window depended on the object size. We relax the worst
case scenario, by shrinking the search window to 30% size.

We reject configurations of 4 pixels which do not pass
the following tests: The minimum distance of all pixels in
image space should be at least 10px. The minimum dis-
tance of all pixels in object space should be at least 10mm.
None 3 pixels should be co-linear in object space. Hence,
we enforce a minimum distance of 10mm between the line
formed by two pixels and the third pixel. Finally, the re-
projection error of the 4 correspondences should be below
the inlier threshold. If after 1M iterations no valid pixel set
has been found, we abort. We discard a hypothesis if the
resulting 2D bounding box occupies less than 400 pixels.

We use two different implementations of perspective-n-
point. We use the approach of [3] when calculating a hy-
pothesis from 4 correspondences (it gave the most stable
results in the minimal setting). We use the approach of [8]
to re-calculate a hypothesis based on the complete inlier set
(it was stable in the general setting and fast). We use the
implementations available in OpenCV [2].

When re-calculating the hypothesis based on inlier cor-
respondences we use at most 1000, randomly chosen with
replacement. For full refinement using uncertainty, we run
100 iterations of [9] (gradient free). We use the implemen-
tation of NLopt [6]. When calculating the log-likelihood
of each pixel, we ignore the contribution of mixture com-
ponents whose covariance matrix has a determinant of less
than 1000 (object coordinates are measured in mm). We
threshold the log-likelihood of each pixel between -100 and
100 for robustness.

2. 2D Projection Measure

This measure is calculated using a 3D model or a point
cloud of the object. We accept an estimated pose, if the
average re-projection error of all object model vertices is
below 5px. To calculate the re-projection error, we project
the vertices into the image using the ground truth pose and
the estimated pose. We calculate the average distance of the
projections of corresponding vertices:

1

|V|
∑
v∈V
||CHcv − CH̃cv||2 < 5px, (1)

where V is the set of all object model vertices, C is the cam-
era matrix, Hc is the ground truth pose and H̃c is the esti-
mated pose. We assume normalization of the homogeneous
vector before calculating the L2 norm.

3. List of Parameter Settings
In this section, we report the parameter settings used in

our experiments. First, we report our default parameter set.
Then, we report deviating parameters for specific experi-
ments, e.g. for the RGB-D variant of our system or for cam-
era localization. For the binaries of Brachmann et al. we
used the default settings reported in [1]. For the LINE2D
baseline [5] we used the standard settings of OpenCV [2].
For the color check post-processing we use the thresholds
reported in [4].

3.1. Standard Setting

Trees in the forest: 3
Stack level: 3
Samples drawn per object: 500k
Samples drawn from background: 1.5M
Features sampled: 1000
Maximum feature offset: 10px
Object coordinate proxy classes: 125
Maximal tree depth: 64
Minimal number of samples in leafs: 50
Bandwidth of mean-shift: 25mm
Neighborhood used in gdC: 5× 5
Sub-sampling of auto-context feature channels: 2
Neighborhood used in gd

Y : 3× 3
Inlier threshold: 3px
Hypotheses sampled: 256
Pixel batch size: 100000
Full refinement iterations: 100
Full refinement bounds X/Y/Z/Rot:
±50mm/50mm/200mm/10◦

3.2. Object Pose Estimation (RGB-D)

Parameters used in the RGB-D variant of our system for
estimating object poses (see Sec. 4.1.2).

Maximum feature offset: 10px × m (depth normalized)
Inlier threshold: 10mm

3.3. Camera Localization (RGB)

Parameters used in the RGB variant of our system for
camera localization (see Sec. 4.3).

Samples drawn per scene: 2.5M
Maximum feature offset: 20px
Inlier threshold: 10px
In-plane rotation range (training): -30◦ to +30◦

Sub-sampling of auto-context feature channels: 4

To achieve equal run-time of the two RANSAC variants
w/ sharing and w/o sharing we adjusted parameters in the
following way: The final hypothesis of the variant w/ shar-
ing will at least pass 8 rounds of pre-emptive RANSAC
(drawing of pixel batches and re-solving PnP), then it is re-
fined using uncertainty. For the variant w/o sharing there
is no minimum number of pre-emptive passes. This results
in less pixels drawn and less iterations of re-solving PnP.
Also, there is no refinement using uncertainty. Using these
settings results in a run-time of ca. 700ms for both variants
to process all 7 scenes per test image.

3.4. Camera Localization (RGB-D)

Parameters used in the RGB-D variant of our system for
camera localization (see Sec. 4.3).

Samples drawn per scene: 2.5M
Maximum feature offset: 50px × m (scale normalized)
Inlier threshold: 100mm
In-plane rotation range (training): -30◦ to +30◦

Sub-sampling of auto-context feature channels: 4

4. Results
For the data set of Hinterstoisser et al. [4] we report rates

of correctly estimated poses per object in Table 1. We also
list median pose errors in x/y/z and rotation. Qualitative re-
sults for individual objects are shown in Fig 1, and for mul-
tiple objects in Fig 2. These figures also show the interme-
diate output of the auto-context random forest at different
stack levels.

We show results on individual scenes of the data set of
Shotton et al. [10] in Table 2. Qualitative results are shown
in Fig 3.

5. Supplementary video
We created a video showing different visual effects to

demonstrate the accuracy of our pose estimation system.
The system consists of three different sequences. The first
two sequences show results for object pose estimation on
the data set of Hinterstoisser et al. [4], the third sequence
shows results for camera localization on the data set of Shot-
ton et al. [10].

5.1. Object Pose Estimation Sequences

The data set of Hinterstoisser et al. [4] contains 1000+
frames per object. However, these sequences are assemblies
of separate shots of the scene, i.e. there are no smooth cam-
era transitions. To create a pseudo-smooth image sequence
we selected frames in the following way:

We transformed the camera pose of each frame to az-
imuth/elevation/distance. We clustered all frames accord-
ing to 5◦ azimuth bins. For each bin, we aim at selecting

one image resulting in a sequence as smooth as possible.
Therefore, we formulate a chain-MRF with 72 nodes repre-
senting 72 frames, and a pairwise term which ensures that
two neighboring frames:

• belong to neighboring azimuthal bins,
• have close 2D projections of object centers (euclidean

distance),
• have similar distances of the camera to the object (eu-

clidean distance),
• have a small angular distance in camera pose.

We solve this formulation to create one image sequence
per object. Then, we apply our pose estimation method to
the sequence, and add visual effects.

5.2. Camera Localization Sequence

We took one sequence (Chess, sequence 2) of the data
set of Shotton et al. [10], and added a virtual object.

References
[1] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton,

and C. Rother. Learning 6d object pose estimation using 3d
object coordinates. In ECCV, 2014. 2

[2] G. Bradski. Opencv. Dr. Dobb’s Journal of Software Tools,
2000. 2

[3] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete
solution classification for the perspective-three-point prob-
lem. TPAMI, 2003. 2

[4] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski,
K. Konolige, and N. Navab. Model based training, detec-
tion and pose estimation of texture-less 3D objects in heavily
cluttered scenes. In ACCV, 2012. 2, 3, 4

[5] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit. Multimodal templates for real-time
detection of texture-less objects in heavily cluttered scenes.
In ICCV, 2011. 2

[6] S. G. Johnson. The nlopt nonlinear-optimization package. 2
[7] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolu-

tional network for real-time 6-dof camera relocalization. In
ICCV, 2015. 4

[8] V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An accurate
o (n) solution to the pnp problem. IJCV, 2009. 2

[9] J. A. Nelder and R. Mead. A simplex method for function
minimization. In Computer Journal, 1965. 2

[10] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and
A. Fitzgibbon. Scene coordinate regression forests for cam-
era relocalization in rgb-d images. In CVPR, 2013. 3, 4

[11] J. Valentin, M. Nießner, J. Shotton, A. Fitzgibbon, S. Izadi,
and P. H. S. Torr. Exploiting uncertainty in regression forests
for accurate camera relocalization. In CVPR, 2015. 4

Table 1. Results of our approach per object on the data set of Hinterstoisser et al. [4].

Object 2D Proj.
2D B.
Box

6D Pose
([4])

6D Pose
([10])

Median
X Err.

Median
Y Err.

Median
Z Err.

Median
Rot. Err.

RGB
Ape 85.2% 98.2% 33.2% 34.4% 0.2cm 0.2cm 2.1cm 6.4◦

Bench Vise 67.9% 97.9% 64.8% 40.6% 0.2cm 0.2cm 2.1cm 5.7◦

Camera 58.7% 96.9% 38.4% 30.5% 0.3cm 0.4cm 2.7cm 6.7◦

Can 70.8% 97.9% 62.9% 48.4% 0.2cm 0.2cm 1.9cm 4.9◦

Cat 84.2% 98.0% 42.7% 34.6% 0.2cm 0.2cm 2.1cm 6.4◦

Driller 73.9% 98.6% 61.9% 54.5% 0.2cm 0.2cm 2.2cm 4.1◦

Duck 73.1% 97.4% 30.2% 22.0% 0.3cm 0.2cm 2.7cm 9.0◦

Egg Box 83.1% 98.7% 49.9% 57.1% 0.2cm 0.2cm 1.8cm 4.2◦

Glue 74.2% 96.6% 31.2% 23.6% 0.3cm 0.2cm 3.1cm 8.4◦

Hole Puncher 78.9% 95.2% 52.8% 47.3% 0.2cm 0.2cm 1.7cm 5.1◦

Iron 83.6% 99.2% 80.0% 58.7% 0.2cm 0.2cm 1.4cm 4.2◦

Lamp 64.0% 97.1% 67.0% 49.3% 0.3cm 0.2cm 1.8cm 4.7◦

Phone 60.6% 96.0% 38.1% 26.8% 0.3cm 0.3cm 3.3cm 6.9◦

Average 73.7% 97.5% 50.2% 40.6% 0.2cm 0.2cm 2.2cm 5.9◦

RGB-D
Ape 95.8% 99.7% 98.1% 59.0% 0.1cm 0.1cm 0.2cm 4.4◦

Bench Vise 97.3% 99.2% 99.0% 92.9% 0.1cm 0.1cm 0.2cm 2.3◦

Camera 98.7% 96.9% 99.7% 92.8% 0.1cm 0.1cm 0.2cm 2.4◦

Can 98.6% 99.8% 99.7% 89.6% 0.1cm 0.1cm 0.2cm 2.6◦

Cat 97.9% 99.8% 99.1% 80.1% 0.1cm 0.1cm 0.1cm 2.9◦

Driller 93.2% 99.4% 100.0% 93.1% 0.1cm 0.1cm 0.3cm 1.8◦

Duck 90.5% 100.0% 96.2% 52.1% 0.1cm 0.1cm 0.2cm 4.8◦

Egg Box 98.2% 99.1% 99.7% 96.8% 0.1cm 0.2cm 0.2cm 2.2◦

Glue 92.8% 100.0% 99.0% 55.1% 0.1cm 0.1cm 0.2cm 4.6◦

Hole Puncher 96.1% 99.6% 98.0% 80.3% 0.1cm 0.1cm 0.2cm 3.1◦

Iron 97.0% 99.0% 99.9% 96.9% 0.1cm 0.1cm 0.2cm 2.6◦

Lamp 92.4% 100.0% 99.5% 91.7% 0.2cm 0.1cm 0.2cm 2.7◦

Phone 95.6% 99.8% 99.6% 86.8% 0.2cm 0.1cm 0.3cm 2.6◦

Average 95.7% 99.6% 99.0% 82.1% 0.1cm 0.1cm 0.2cm 4.3◦

Table 2. Results of our approach per object on the data set of Shotton et al. [10].
5cm 5◦ Median Error

RGB RGB-D RGB
Scene Ours Sparse RGB[10] Ours Valentin et al. [11] Ours PoseNet[7]
Chess 94.9% 70.7% 99.6% 99.4% 1.5cm, 1.3◦ 32cm, 3.8◦

Fire 73.5% 49.9% 94.0% 94.6% 3.0cm, 1.4◦ 57cm, 7.0◦

Heads 48.1% 67.6% 89.3% 95.9% 5.9cm, 3.4◦ 30cm, 6.1◦

Office 53.2% 36.6% 93.4% 97.0% 4.7cm, 1.7◦ 48cm, 5.1◦

Pumpkin 54.5% 21.3% 77.6% 85.1% 4.3cm, 2.1◦ 49cm, 4.3◦

Red Kitchen 42.2% 29.8% 91.1% 89.3% 5.8cm, 2.2◦ 64cm, 4.2◦

Stairs 20.1% 9.2% 71.7% 63.4% 17.4cm, 7.0◦ 48cm, 7.5◦

Average 55.2% 40.7% 88.1% 89.5% 6.1cm, 2.7◦ 46.9cm, 5.4◦

RGB Frame and Pose
Auto Context Prediction
Level 1 Level 2 Level 3 Ground Truth

Object
Label

Object
Coordinates

Object
Label

Object
Coordinates

Object
Label

Object
Coordinates

Figure 1. Single object pose estimation results. (Left) An RGB frame with the estimated pose of one object. The bounding box color
encodes the object ID. (Center) The prediction of the auto-context random forest at different stack levels zoomed in on the object. The
top row shows object probabilities, the bottom row shows object coordinates. Object coordinates are visualized by mapping x/y/z to r/g/b.
(Right) Ground truth segmentation and ground truth object coordinates.

RGB Frame and Poses Level 2
Object Label Prediction
Auto-Context Level 1 Level 3

Figure 2. Multi-object pose estimation results. (Left) An RGB frame with the estimated poses of all objects. Only detections with an
minimum number of 400 inliers are shown. (Right) The label prediction of the auto-context random forest at different stack levels. Colors
encode object IDs.

RGB Frame
Object Coordinate Prediction
Auto-Context Level 1 Level 2 Level 3

Object Coordinate
Ground Truth

Reconstructed
Camera Path

Figure 3. Camera localization results. We show (from left to right) an RGB frame of a room sequence, the object coordinate prediction of
different auto-context levels, the object coordinate ground truth, and the estimated camera path (green) for one complete image sequence.
We removed some extreme outlier poses, which results in rare gaps in the estimated path. The ground truth camera path (orange) is also
shown for comparison.

