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Abstract. This work addresses the problem of estimating the 6D Pose
of specific objects from a single RGB-D image. We present a flexible ap-
proach that can deal with generic objects, both textured and texture-less.
The key new concept is a learned, intermediate representation in form of
a dense 3D object coordinate labelling paired with a dense class labelling.
We are able to show that for a common dataset with texture-less objects,
where template-based techniques are suitable and state of the art, our
approach is slightly superior in terms of accuracy. We also demonstrate
the benefits of our approach, compared to template-based techniques, in
terms of robustness with respect to varying lighting conditions. Towards
this end, we contribute a new ground truth dataset with 10k images of
20 objects captured each under three different lighting conditions. We
demonstrate that our approach scales well with the number of objects
and has capabilities to run fast.

1 Introduction

The tasks of object instance detection and pose estimation are well-studied prob-
lems in computer vision. In this work we consider a specific scenario where the
input is a single RGB-D image. Given the extra depth channel it becomes feasi-
ble to extract the full 6D pose (3D rotation and 3D translation) of rigid object
instances present in the scene. The ultimate goal is to design a system that
is fast, scalable, robust and highly accurate and works well for generic objects
(both textured and texture-less) present in challenging real-world settings, such
as cluttered environments and with variable lighting conditions.

For many years the main focus in the field of detection and 2D/6D pose
estimation of rigid objects has been limited to objects with sufficient amount
of texture. Based on the pioneering work of [12, 16], practical, robust solutions
have been designed which scale to large number of object instances [19, 21].
For textured objects the key to success, for most systems, is the use of a sparse
representation of local features, either hand crafted, e.g. SIFT features, or trained
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Fig. 1. Overview of our system. Top left: RGB-D Test image (upper-half depth image
and lower-half RGB image). The estimated 6D pose of the query object (camera) is
illustrated with a blue bounding box, and the respective ground truth with a green
bounding box. Top right: Visualization of the algorithms search for the optimal pose,
where the inlet is a zoom of the centre area. The algorithm optimizes our energy
in a RANSAC-like fashion over a large, continuous 6D pose space. The 6D poses,
projected to the image plane, which are visited by the algorithm are color coded: red
poses are disregarded in a very fast geometry check; blue poses are evaluated using our
energy function during intermediate, fast sampling; green poses are subject to the most
expensive energy refinement step. Bottom, from left to right: (a) Probability map for
the query object, (b) predicted 3D object coordinates from a single tree mapped to the
RGB cube, (c) corresponding ground truth 3D object coordinates, (d) overlay of the
3D model in blue onto the test image (rendered according to the estimated pose)

from data. These systems run typically a two-stage pipeline: a) putative sparse
feature matching, b) geometric verification of the matched features.

Recently, people have started to consider the task of object instance detec-
tion for texture-less or texture-poor rigid objects, e.g. [8, 9, 22]. For this partic-
ular challenge it has been shown that template-based techniques are superior.
The main focus of these works has been to show that template-based tech-
niques can be made very fast, by using specific encodings [9] or additionally a
cascaded framework [22]. The typical problems of template-based techniques,
such as not being robust to clutter and occlusions as well as changing light-
ing conditions, have been partly overcome by carefully hand-crafted templates
and additional discriminative learning. Nevertheless, template-based techniques
have in our view two fundamental shortcomings. Firstly, they match the com-
plete template to a target image, i.e. encode the object in a particular pose with
one “global” feature. In contrast to this, sparse feature-based representations
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for textured objects are “local” and hence such systems are more robust with
respect to occlusions. Secondly, it is an open challenge to make template-based
techniques work for articulated or deformable object instances, as well as object
classes, due to the growing number of required templates.

Our approach is motivated by recent work in the field of articulated human
pose estimation from a pre-segmented RGB-D image [29]. The basic idea in [29] is
not to predict directly the 60-DOF human pose from an image, but to first regress
an intermediate so-called object coordinate representation. This means that each
pixel in the image votes for a continuous coordinate on a canonical body in a
canonical pose, termed the Vitruvian Manifold. The voting is done by a random
forest and uses a trained assemble of simple, local feature tests. In the next step
a “geometric validation” is performed, by which an energy function is defined
that compares these correspondences with a parametric body model. Finally, the
pose parameters are found by energy minimization. Hence, in spirit, this is akin
to the two-stage pipeline of traditional, sparse feature-based techniques but now
with densely learned features. Subsequent work in [25] applied a similar idea
to 6D camera pose estimation, showing that a regression forest can accurately
predict image-to-world correspondences that are then used to drive a camera
pose estimaten. They showed results that were considerably more accurate than
a sparse feature-based baseline.

Our system is based on these ideas presented in [29, 25] and applies them
to the task of estimating the 6D pose of specific objects. An overview of our
system is presented in Fig. 1. However, we cannot apply [29, 25] directly since we
additionally need an object segmentation mask. Note that the method in [29] can
rely on a pre-segmented human shape, and [25] does not require segmentation.
To achieve this we jointly predict a dense 3D object coordinate labelling and
a dense class labelling. Another major difference to [25] is a clever sampling
scheme to avoid unnecessary generation of false hypotheses in the RANSAC-
based optimization.

To summarize, the main contribution of our work is a new approach
that has the benefits of local feature-based object detection techniques and still
achieves results that are even slightly superior, in terms of accuracy, to template-
based techniques for texture-less object detection. This gives us many conceptual
and practical advantages. Firstly, one does not have to train a separate system
for textured and texture-less objects. Secondly, one can use the same system
for rigid and non-rigid objects, such as laptops, scissors, and objects in different
states, e.g. a pot with and without lid. Thirdly, by using local features we gain
robustness with respect to occlusions. Fourthly, by applying a rigorous feature
learning framework we are robust to changes in lighting conditions. Fig. 2 shows
the benefits of our system. The main technical contribution of our work is the
use of a new representation in form of a joint dense 3D object coordinate and
object class labelling. An additional minor contribution is a new dataset of 10k
images of 20 objects captured each under three different lighting conditions and
labelled with accurate 6D pose, which will be made publicly available.



4 E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, C. Rother

a) b)

c)

d)

Fig. 2. Our method is able to find the correct pose, where a template-based method
fails. (a) Test image showing a situation with strong occlusion. The pose estimate by
our approach is shown in blue. The pose estimated by our reimplementation of the
method by Hinterstoisser et al. from [9] is shown in red. (b) The coordinate predictions
for a from one tree mapped to the RGB-cube and multiplied with pc,i. (c) Ground truth
object coordinates for a mapped to the RGB-cube. (d) Test image showing extreme
light conditions, different from the training set. Estimated poses are displayed as in a.

2 Related Work

There is a vast literature in the area of pose estimation and object detection,
including instance and category recognition, rigid and articulated objects, and
coarse (quantized) and accurate (6D) poses. In the brief review below, we focus
on techniques that specifically address the detection of instances of rigid objects
in cluttered scenes and simultaneously infer their 6D pose. Some of the work
was already mentioned above.

Template-Based Approaches. Perhaps the most traditional approach to ob-
ject detection is to use templates, e.g. [12, 27, 8, 9]. This means a rigid template
is scanned across the image, and a distance measure is computed to find the
best match. As the state of the art in template-based approaches, [9] uses syn-
thetic renderings of a 3D object model to generate a large number of templates
covering the full view hemisphere. They employ an edge-based distance metric
which works well for textureless objects, and refine their pose estimates using
ICP to achieve an accurate 6D pose. Such template-based approaches can work
accurately and quickly in practice. The limitations of template-based approaches
were discussed above.

Sparse Feature-Based Approaches. A popular alternative to templates are
sparse feature-based approaches. These extract points of interest (often scale-
invariant) from the image, describe these with local descriptors (often affine
and illumination invariant), and match to a database. For example, Lowe [16]
used SIFT descriptors and clustered images from similar viewpoints into a sin-
gle model. Another great example of a recent, fast and scalable system is [17].
Sparse techniques have been shown to scale well to matching across vast vocab-
ularies [19, 21]. More recently a trend has been to learn interest points [23, 11],
descriptors [30], and matching [15, 20, 1]. Despite their popularity, a major limi-
tation of sparse approaches for real applications is that they require sufficiently
textured objects. Our approach instead can be applied densely at every image



Learning 6D Object Pose Estimation using 3D Object Coordinates 5

pixel regardless of texture, and can learn what are the most appropriate image
features to exploit. Note that there is also large literature on contour and shape
matching, which can deal with texture-less objects, e.g. [5], which is, however,
conceptually different to our work.
Dense Approaches. An alternative to templates and sparse approaches are
dense approaches. In these, every pixel produces some prediction about the de-
sired output. In the generalized Hough voting scheme, all pixels cast a vote in
some quantized prediction space (e.g. 2D object center and scale), and the cell
with the most votes is taken as the winner. In [28, 6], Hough voting was used for
object detection, and was shown able to predict coarse object poses. In our work
we borrow an idea from Gall et al. [6] to jointly train an objective over both
Hough votes and object segmentations. However, in contrast to [6] we found a
simple joint distribution over the outputs (in our case 3D object coordinates and
object class labeling) to perform better than the variants suggested in [6]. Drost
et al. [4] also take a voting approach, and use oriented point pair features to
reduce the search space. To obtain a full 6D pose, one could imagine a variant
of [6] that has every pixel vote directly for a global quantized 6D pose. How-
ever, the high dimensionality of the search space (and thus the necessary high
degree of quantization) is likely to result in a poor estimate of the pose. In our
approach, each pixel instead makes a 3D continuous prediction about only its
local correspondence to a 3D model. This massively reduces the search space,
and, for learning a discriminative prediction, allows a much reduced training set
since each point on the surface of the object does not need to be seen from every
possible angle. We show how these 3D object correspondences can efficiently
drive a subsequent model fitting stage to achieve a highly accurate 6D object
pose.

Finally, there are approaches for object class detection that use a similar
idea as our 3D object coordinate representation. One of the first systems is
the 3D LayoutCRF [10] which considers the task of predicting a dense part-
labelling, covering the 3D rigid object, using a decision forest, though they did
not attempt to fit a 3D model to those labels. After that the Vitruvian Manifold
[29] was introduced for human pose estimation, and recently the scene coordinate
regression forests was introduced for camera re-localization in RGB-D images
[25]. Both works were discussed in detail above.

3 Method

We first describe our decision forest that jointly predicts both 3D object coordi-
nates and object instance probabilities. Then we will discuss our energy function
which is based on forest output. Finally, we will address our RANSAC based op-
timization scheme.

3.1 Random forest

We use a single decision forest to classify pixels from an RGB-D image. A decision
forest is a set T of decision trees T j . Pixels of an image are classified by each
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tree T j and end up in one of the tree’s leafs lj . Our forest is trained in a way
that allows us to gain information about which object c ∈ C the pixel i might
belong to, as well as what might be its position on this object. We will denote a
pixel’s position on the object by yi and refer to it as the pixel’s object coordinate.
Each leaf lj stores a distribution over possible object affiliations p(c|lj), as well
as a set of object coordinates yc(l

j) for each possible object affiliation c. The
term yc(l

j) will be referred to as coordinate prediction. In the following we only
discuss the interesting design decisions which are specific to our problem and
refer the reader to the supplementary material for a detailed description.

Design and Training of the Forest. We build the decision trees using a
standard randomized training procedure [2]. We quantized the continuous dis-
tributions p(y|c) into 5× 5× 5 = 125 discrete bins. We use an additional bin for
a background class. The quantization allows us to use the standard information
gain classification objective during training, which has the ability to cope better
with the often heavily multi-model distributions p(y|c) than a regression objec-
tive [7]. As a node split objective that deals with both our discrete distributions,
p(c|lj) and p(y|c, lj), we use the information gain over the joint distribution.
This has potentially 125|C|+ 1 labels, for |C| object instances and background,
though many bins are empty and the histograms can be stored sparsely for speed.
We found the suggestion in [6] to mix two separate information gain criteria to
be inferior on our data.

An important question is the choice of features evaluated in the tree splits. We
looked at a large number of features, including normal, color, etc. We found that
the very simple and fast to compute features from [25] performed well, and that
adding extra feature types did not appear to give a boost in accuracy (but did
slow things down). The intuitive explanation is that the learned combination of
simple features in the tree is able to create complex features that are specialized
for the task defined by the training data and splitting objective. The features in
[25] consider depth or color differences from pixels in the vicinity of pixel i and
capture local patterns of context. The features are depth-adapted to make them
largely depth invariant [24]. Each object is segmented for training. If a feature
test reaches outside the object mask, we have to model some kind of background
to calculate feature responses. In our experiments we will use uniform noise or a
simulated plane the object sits on. We found this to work well and to generalize
well to new unseen images. Putting objects on a plane allows the forest to learn
contextual information.

For training, we use randomly sampled pixels from the segmented object
images and a set of RGB-D background images. After training the tree structure
based on quantized object coordinates, we push training pixels from all objects
through the tree and record all the continuous locations y for each object c
at each leaf. We then run mean-shift with a Gaussian kernel and bandwidth
2.5cm. We use the top mode as prediction yc(l

j) and store it at the leaf. We
furthermore store at each leaf the percentage of pixels coming from each object
c to approximate the distribution of object affiliations p(c|lj) at the leaf. We also
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store the percentage of pixels from the background set that arrived at lj , and
refer to it as p(bg|lj).
Using the Forest. Once training is complete we push all pixels in an RGB-D
image through every tree of the forest, thus associating each pixel i with a
distribution p(c|lji ) and one prediction yc(l

j
i ) for each tree j and each object c.

Here lji is the leaf outcome of pixel i in tree j. The leaf outcome of all trees for a

pixel i is summarized in the vector li = (l1i , . . . , l
j
i , . . . , l

|T |
i ). The leaf outcome of

the image is summarized in L = (l1, . . . , ln). After the pixels have been classified
we calculate for the object c we are interested in and for each pixel i in the image
a number pc,i by combining the p(c|lji ) stored at the leafs lji . The number pc,i can
be seen as the approximate probability p(c|li), that a pixel i belongs to object c

given it ended up in all its leaf nodes li = (l1i , . . . , l
j
i , . . . , l

|T |
i ). We will thus refer

to the number pc,i as object probability. We calculate the object probability as

pc,i =

∏|T |
j=1 p(c|l

j
i )∏|T |

j=1 p(bg|l
j
i ) +

∑
ĉ∈C

∏|T |
j=1 p(ĉ|l

j
i )
. (1)

A detailed deduction for Eq. 1 can be found in the supplementary material.

3.2 Energy Function

Our goal is to estimate the 6 DOF pose Hc for an object c. The pose Hc is defined
as the rigid body transformation (3D rotation and 3D translation) that maps a
point from object space into camera space. We formulate the pose estimation as
an energy optimization problem. To calculate the energy we compare synthetic
images rendered using Hc with the observed depth values D = (d1, . . . , dn) and
the results of the forest L = (l1, . . . , ln). Our energy function is based on three
components:

Êc(Hc) = λdepthEdepth
c (Hc) + λcoordEcoord

c (Hc) + λobjEobj
c (Hc). (2)

While the component Edepth
c (H) punishes deviations between the observed and

ideal rendered depth images, the components Ecoord
c (H) and Eobj

c (H) punish
deviations from the predictions of the forest. Fig. 3 visualizes the benefits of
each component. The parameters λdepth, λcoord and λobj reflect the reliability of
the different observations. We will now describe the components in detail.
The Depth Component. This component is defined as

Edepth
c (Hc) =

∑
i∈MD

c (Hc)
f(di, d

∗
i (Hc))

|MD
c (Hc)|

, (3)

where MD
c (Hc) is the set of pixels belonging to object c. It is derived from

the pose Hc by rendering the object into the image. Pixels with no depth
observation di are excluded. The term d∗i (Hc) is the depth at pixel i of our
recorded 3D model for object c rendered with pose Hc. In order to handle
inaccuracies in the 3D model we use a robust error function: f(di, d

∗
i (H)) =
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depth component coordinate component object component final energy

Fig. 3. Benefits of the different energy components. While different energy components
display strong local minima, their combination usually shows the strongest minimum
at the correct pose. The energies were calculated for different poses and projected into
image space using minimum projection. White stands for high energy dark blue for
low energy. Each component is displayed below data it is related to. Left to right:
depth component of test image together with Edepth

c (Hc), predicted object coordinates
from one of the trees with Ecoord

c (Hc), object probabilities with Eobject
c (Hc), the RGB-

components of test image is displayed with the final energy Ec(Hc). The estimated pose
(blue) and ground truth pose (green) are shown as bounding box.

min (||x(di)− x(d∗i (H))||, τd) /τd, where x(di) denotes the 3D coordinates in the
camera system derived from the depth di. The denominator in the definition
normalizes the depth component to make it independent of the object’s distance
to the camera.
The Object Component. This component punishes pixels inside the ideal
segmentation MD

c which are, according to the forest, unlikely to belong to the
object. It is defined as

Eobj
c (Hc) =

∑
i∈MD

c (Hc)

∑|T |
j=1− log p(c|lji )

|MD
c (Hc)|

. (4)

The Coordinate Component. This component punishes deviations between
the object coordinates yc(l

j
i ) predicted by the forest and ideal object coordinates

yi,c(Hc) derived from a rendered image. The component is defined as

Ecoord
c (Hc) =

∑
i∈ML

c (Hc)

∑|T |
j=1 g(yc(l

j
i ),yi,c(Hc))

|ML
c (Hc)|

. (5)

where ML
c (Hc) is the set of pixels belonging to the object c excluding pixels

with no depth observation di and pixels where pc,i < τpc. The latter is necessary
because we find that pixels with small pc,i do not provide reliable coordinate

predictions yc(l
j
i ). The term yi,c(Hc) denotes the coordinates in object space

at pixel i of our 3D model for object c rendered with pose Hc. We again use a

robust error function g(yc(l
j
i ),yi,c(Hc)) = min

(
||yc(l

j
i )− yi,c(Hc)||

2
, τy

)
/τy.
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Final Energy Function. Since our energy terms are all normalized, stability
can be an issue whenever the number of pixels to be considered becomes very
small. To address the problem we use the following stable formulation:

Ec(Hc) =

{
Êc(Hc), if |ML

c (Hc)| > 100

∞, otherwise
(6)

3.3 Optimization

In order to find the solution to the task in Eq. 6 we use a RANSAC-based al-
gorithm. It samples pose hypotheses based on observed depth values and the
coordinate predictions from the forest. Subsequently, these hypotheses are eval-
uated and refined. A visualization of the process can be found in Fig. 1. We will
now describe the procedure in detail.

Sampling of a Pose Hypothesis. We first draw a single pixel i1 from the
image using a weight proportional to the previously calculated pc,i each pixel
i. We draw two more pixels i2 and i3 from a square window around i1 using
the same method. The width of the window is calculated from the diameter of
the object and the observed depth value di1 of the pixel w = fδc/di where f =
575.816 pixels is the focal length. Sampling is done efficiently using an integral
image of pc,i. We randomly choose a tree index j1, j2 and j3 for each pixel.
Finally, we use the Kabsch algorithm to calculate the pose hypothesis Hc from
the 3D-3D-correspondences (x(i1),yc(l

j1
i1

)), (x(i2),yc(l
j2
i2

)) and (x(i3),yc(l
j3
i3

)).

We map each of the three predicted positions yc(l
j•
i•

) into camera space us-

ing Hc and calculate a transformation error ei•,j•(Hc) = ||x(i•) − Hcyc(l
j•
i•

)||,
which is simply the Euclidean distance to their counterpart. We accept a pose
hypothesis Hc only if none of the three distances is larger than 5% of the object’s
diameter δc. The process is repeated until a fixed number of 210 hypotheses are
accepted. All accepted hypotheses are evaluated according to Eq. 6.

Refinement. We refine the top 25 accepted hypotheses. To refine a pose Hc

we iterate over the set of pixels MD
c (Hc) supposedly belonging to the object c

as done for energy calculation. For every pixel i ∈ MD
c (Hc) we calculate the

error ei,j(Hc) for all trees j. Let ĵ be the tree with the smallest error ei,ĵ(Hc) ≤
ei,j(Hc)|∀j ∈ {1, . . . , |T |} for pixel i. Every pixel i where ei,ĵ(Hc) < 20mm is

considered an inlier. We store the correspondence (x(i1),yc(l
ĵ
i )) for all inlier pix-

els and use them to reestimate the pose with the Kabsch algorithm. The process
is repeated until the energy of the pose according Eq. 6 no longer decreases, the
number of inlier pixels drops below 3, or a total of 100 iterations is reached.

The Final Estimate. The pose hypothesis with the lowest energy after re-
finement is chosen as final estimate. The estimates in Figs. 1 to 3 as well as our
quantitative results in the experiments section were obtained using the exact
algorithm described above. Our formulation of the task as energy optimization
problem, however, allows for the use of any general optimization algorithm to
further increase the precision of the estimate.
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4 Experiments

Several object instance detection datasets have been published in the past [22,
3], many of which deal with 2D poses only. Lai et al. [14] published a large
RGB-D dataset of 300 objects that provides ground truth poses in the form of
approximate rotation angles. Unfortunately, such annotations are to coarse for
the accurate pose estimation task we try to solve. We evaluated our approach
on the recently introduced Hinterstoisser et al. [9] dataset and our own dataset.
The Hinterstoisser dataset provides synthetic training and real test data. Our
dataset provides real training and real test data with realistic noise patterns and
challenging lighting conditions. On both datasets we compare to the template-
based method of [9]. We also tested the scalability of our method and comment
on running times. In the supplementary material we provide additional experi-
mental results for an occlusion dataset, for a detection task, and regarding the
contribution of our individual energy terms. We train our decision forest with
the following parameters. At each node we sample 500 color features and depth
features. In each iteration we choose 1000 random pixels per training image,
collect them in the current leafs and stop splitting if less than 50 pixels arrive.
The tree depth is not restricted. A complete set of parameters can be found in
the supplement.

Dataset of Hinterstoisser et al. Hinterstoisser et al. [9] provide colored 3D
models of 13 texture-less objects4 for training, and 1000+ test images of each
object on a cluttered desk together with ground truth poses. The test images
cover the upper view hemisphere at different scales and a range of ±45◦ in-
plane rotation. The goal is to evaluate the accuracy in pose estimation for one
object per image. It is known which object is present. We follow exactly the test
protocol of [9] by measuring accuracy as the fraction of test images where the
pose of the object was estimated correctly. The tight pose tolerance is defined
in the supplementary material. In [9] the authors achieve a strong baseline of
96.6% correctly estimated poses, on average. We reimplemented their method
and were able to reproduce these numbers. Their pipeline starts with an efficient
template matching schema, followed by two outlier removal steps and iterative
closest point adjustment. The two outlier removal steps are crucial to achieve
the reported results. In essence they comprise of two thresholds on the color
and depth difference, respectively, between the current estimate and the test
image. Unfortunately the correct values differ strongly among objects and have
to be set by hand for each object5. We also compare to [22] who optimize the
Hinterstoisser templates in a discriminative fashion to boost performance and
speed. They also rely on the same two outlier removal checks but learn the object
dependent thresholds discriminatively.

To produce training data for our method we rendered all 13 object models
with the same viewpoint sampling as in [9], but skipped scale variations because

4 We had to omit 2 objects since proper 3D models were missing.
5 We verified this in private communication with the authors. These values are not

given in the article.
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of our depth-invariant features. Since our features may reach outside the object
segmentation during training we need a background model to compute sensible
feature responses. For our color features we use randomly sampled colors from a
set of background images. The background set consists of approx. 1500 RGB-D
images of cluttered office scenes recorded by ourselfs. For our depth features we
use an infinite synthetic ground-plane as background model. In the test scenes
all objects stand on a table but embedded in dense clutter. Hence, we regard the
synthetic plane as an acceptable prior. Additionally, we also show results for a
background model of uniform depth noise, and uniform RGB noise. The decision
forest is trained for all 13 objects and a background class, simultaneously. For the
background class we sample RGB-D patches from our office background set. To
account for variance in appearance between purely synthetic training images and
real test images we add Gaussian noise to the response of the color feature[26].
After optimizing our energy, we deploy no outlier removal steps, in contrast to
[9, 22].

Table 1. Results on the Hinterstoisser et al. dataset with synthetic training data, real
training data and different background models (plane, noise). We see that our approach
is consistently superior to [9, 22].

Synth. Training Real Training

Linemod[9] DTT-3D[22] Our(plane) Our(noise) Our(plane) Our(noise)

Avg. 96.6% 97.2% 98.3% 92.6% 98.1% 97.4%
Med. 97.1% 97.5% 98.9% 92.1% 99.6% 98.8%
Max. 99.9% 99.8% 100.0% 99.7% 100.0% 100%
Min. 91.8% 94.2% 95.8% 84.4% 91.1% 89.2%

Table 1 summarizes the results. We score an average of 98.3% with the syn-
thetic plane background model. Hence we improve on both systems of [9] and
[22]. See Fig. 4 for qualitative results. Using uniform noise as background model,
we still report excellent results with 92.6% correctly estimated poses on average.

To verify that our approach is not restricted to synthetic training data, we
performed an experiment where we trained with real images for each object.
Since the dataset includes only one scene per object, we had to split each se-
quence into training and test. We sampled training images with at least 15◦

angular distance, to have an approximately regular coverage of the upper hemi-
sphere similar to the Hinterstoisser et al. setup. The maximum distance of
training images is ≈ 25◦ making this test slightly harder than in the synthetic
setup. All other images are test images. To remove the background in the train-
ing images we do an intersection test with the 3D object bounding box. We
substitute the background pixels with the two background model variants al-
ready discussed above. We do not add noise to the feature responses. In this
experiment, we observe excellent accuracy which is stable even with the simple
noise background model (compare right two columns in Table 1).
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Fig. 4. Examples for pose estimation with our system (blue bounding box) versus the
ground truth pose (green bounding box). The left test image shows an object from the
Hinterstoisser et al. dataset[9], the right test image shows an object from our dataset.
Next to each test image are the predicted object coordinates y from one tree of the
forest. The inlay figures show the ground truth object coordinates (left) and the best
object coordinates (right), where “best” is the best prediction of all trees with respect
to ground truth (for illustration only).

Our Dataset. We recorded 20 textured and texture-less objects under three
different lighting conditions: bright artificial light (bright), darker natural light
(dark), and directional spot light (spot). For each light setting we recorded each
object on a marker board in a motion that covers its upper view hemisphere.
The distance to the object varied during the recording but the in-plane rotation
was kept fixed. We added in-plane rotation artificially afterwards in the range of
±45◦. We used KinectFusion [18, 13] to record the external camera parameters
for each frame. This serves as pose ground truth and is used to generate the
object coordinates per pixel for training the decision forest. Recordings of the
same object but different lighting conditions were registered using the marker
board. Images that were used for training were segmented with the 3D object
bounding box. An overview over the dataset and details about the recording
procedure can be found in the supplement. We sampled training images with at
least 15◦ angular distance. The maximal angular distance of training images is
≈ 25◦. We did not place our objects on a synthetic plane, because they were
already recorded on a planar board. Depth features reaching outside the object
mask during training will just use the depth in the original training image. For
color features we sampled randomly from another set of office backgrounds that
do not contain our objects.

To evaluate how well our approach generalizes with respect to varying lighting
conditions, we trained our decision forest with the bright and dark training
sets. Again we added Gaussian noise to the response of the color feature for
robustness. In a first run we tested with images of the bright set that were not
used for training. Here, the forest did not need to generalize to new lighting
conditions but only to unseen views, which it does with excellent accuracy (avg.
95%, see Table 2). As before we measured performance as the percentage of
correctly estimated poses of one object per test image which is always present. In
a second run we tested with the complete spot set to demonstrate the capability
of generalization to a difficult new lighting condition. We report an average rate
of correctly estimated poses of 88.2%.
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To demonstrate that the template based approach of Linemod[9] does not
generalize as well with respect to lighting change we used our re-implementation
to extract templates for one object based on the training set described above.
Note, that the training set contains each view only with one scale. This can be
problematic for Linemod if the test-data shows scale variation not covered by the
training data. Hence, we render each training image from 2 larger and 3 smaller
distances in 10cm steps. This gives us 6 different scales for each training image
similar to the setup in [9]. As in [9] we tuned the outlier removal parameters by
hand. However, we found that we had to disable these tests completely to get
any detections under new lighting conditions. In a validation run we extracted
templates from the bright training set and tested on the bright test set. Following
the procedure of [9], we can estimate correct poses in 80.1% of the images. We
account the difference to the performance on the Hinterstoisser dataset[9] to the
fact that the object is textured and that our images are noisy. If we test with the
same templates on the spot set, performance drops to 57.1%. Since our tree has
seen both bright and dark in training we apply the following testing procedure to
Linemod for a fair comparison. We also extract templates from the dark training
set and apply it to the spot test set, observing 55.3%. For the final score, we
consider an image solved by Linemod if one of the template sets, dark or bright,
lead to the correct pose. Then we observe accuracy of 70.2%. So even under
testing conditions in favor of Linemod performance drops by 10%. On the same
object, we report accuracy of 96.9% on the bright test set (included in training
lighting), and 91.8% on the spot test set (not seen in training).

Table 2. Accuracy on our dataset when testing with different lighting conditions.
Bright lighting appeared in the training set, whereas spot lighting did not. We report
average and median accuracy for our 20 objects. We also compare to Linemod [9] on
one object. Details are given in the text.

All Toy(Battle Cat)

Test Condition Avg. Med. Our [9](dark) [9](bright) [9](combined)

bright 95.6% 97.7% 96.9% - 80.1% -

spot 88.2% 93.0% 91.8% 55.3% 57.1% 70.2%

Scalability. We show the potential of our method with respect to scalability
in two different ways: scalability in the object count, and scalability in the space
of poses. The first concerns the number of objects the system is able to identify,
while the latter concerns the range of poses it can recognize. We start with a
forest that was trained for 5 objects, and a set of training images sampled form
dark and bright lighting conditions, with an angular distance of min. 45◦. We
add ±45◦ in-plane rotation to each training image. During test, we consider
images of the spot set which are at maximum 10◦ apart from the closest training
image. This results in the same test difficulty as in the previous experiments.
Performance is measured for one object (Stuffed Cat). We modify this setup in
two ways. Firstly, we increased the object count to 30 by combining our dataset
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with real images of the Hinterstoisser dataset. We sampled the Hinterstoisser
sets to have approximately the same amount of training images for our objects
and the additional Hinterstoisser objects. Secondly, we increased the number of
in-plane rotated training images 4-fold to the full ±180◦. The results are shown
in Fig. 5.

default 6×objects 4×poses

Forest time 102ms 138ms 113ms

Opt. time 443ms 424ms 517ms

Accuracy 95% 94% 95%
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Fig. 5. Left: Running time of our system with increasing object count and pose
range. Accuracy stays stable. Right: Illustration of the sub-linear growth of the
decision forest.

As the number of objects and the range of poses increase, the evaluation time
of the tree does increase slightly, but considerably less than 6× resp. 4×. The
runtime of the energy optimization is effected slightly due to variation in the
forest prediction, and the accuracy of the system stays stable. Below the table
in Fig. 5 we plot the sub-linear growth in the average number of feature tests per
pixel with increasing object number and range of poses. Our proposed pipeline
is linear in the number of objects but we demonstrate that with the forest the
first essential step of our discriminatively trained method behaves sub-linearly
in the number of objects.

Running Times. The complete running time of our pose estimation approach
is the sum of forest prediction time and energy optimization time. Forest pre-
dictions are generated once per frame and the results are reused for every object
in that frame. Our CPU implementation of the random forests takes 160ms avg.
per frame on the dataset of [9]. Based on these predictions, energy optimiza-
tion is done per object. We implemented energy evaluation on the GPU and
report 398ms avg. per object on the dataset of [9] with the parameter settings
suggested above. However, we found that a set of reduced parameters results
in a large speed up while maintaining accuracy. We reduced the number of hy-
potheses from 210 to 42, the number of refinement steps from 100 to 20 and
refined only the best 3 hypotheses. This still achieves 96.4% avg. accuracy on
the dataset of [9] while reducing the average energy optimization time to 61ms.
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