
6D Object Pose Estimation Binaries

March 20, 2018

All data regarding our ECCV 14 paper can be downloaded from our project
page: https://hci.iwr.uni-heidelberg.de/vislearn/research/

scene-understanding/pose-estimation/#ECCV14. If you run into problems
contact: eric <dot> brachmann <at> tu-dresden.de.

1 Overview

We provide Linux1 executables for 6D pose estimation on RGB-D images. The
implementation adheres to our ECCV 14 paper[1]. See the paper for details
on the underlying algorithm and the evaluation procedure. You can use the
binaries to reproduce the results reported in our paper, or to test our algorithm
on your own data. This documentation describes the layout of training and
test data assumed by the executables. We list command line arguments to set
certain parameters, we describe the output generated, and give an example on
how to use the binaries on our own 20 objects dataset.

We provide the following elements:

train trees Executable that trains a random forest from the training set.

test pose estimation Executable that loads a trained forest and performs
pose estimation on the test set.

create split full.py A python script used to split our 20 objects dataset into
training and test sets.

create split small.py A python script used to split data of 5 of our 20 objects
into training and test sets. It is used in the example at the end of this
document.

create split util.py Utility functions for the python script mentioned above.

render lib Rendering library used by test pose estimation.

shaders Shaders needed by the rendering library.

In order to run the executables OpenCV 2.4.2 and CUDA 5.5 has to be
installed on your system.

1Compiled under Ubuntu 12.04. 64bit

1

2 Data

The executables rely on the following layout of the working directory:

training

object1_data_folder

object2_data_folder

...

test

object1_data_folder

object2_data_folder

...

background

bg_data_folder

obj1.obj

obj2.obj

...

pc1.xyz

pc2.xyz

...

The working directory contains 3 folders: test, training and background.
The first two folders contain one data folder per object. Each data folder has the
following sub-folders: rgb noseg, depth noseg, mask and info. You find more
information about these sub-folders and the files they contain in the documen-
tation of our 20 objects dataset. The alphabetical order of the object folders
determine the objects IDs. Hence, it is vital that folder names in training and
test are mirrored. The folder background contains one data folder with the
sub-folders rgb noseg, depth noseg. These images are used as negative class
during the training of the random forest.

The working directory also contains one 3D mesh file (objX.obj) and one
point cloud file (pcX.xyz) per object. The number X of these files is determined
by the alphabetical order of the object folders within training/test. You can
find more information on these files in our 20 objects dataset.

3 Training

In order to estimate poses on your test images you have to train a random
forest first. To do so, you execute train trees in your working directory. The
program will access training and background. Table 1 lists possible command
line arguments.

3.1 Output

The executable stores a binary random forest file (*.rf) in the working directory.
The file name encodes some of the training parameters.

2

4 Test

Execute test pose estimation in your working directory. You specify an ob-
ject to test via command line argument, and the program cycles through all
test images of that object and compares the estimated pose with ground truth.
After each image, the program will show you some qualitative results (in mul-
tiple windows). These include the estimated pose (blue bounding box), the
ground truth pose (green bounding box), the probability map for this object,
the object coordinate prediction of one tree, and the object coordinate ground
truth. You continue with the next image by pressing any button. You can also
switch to batch mode via command line argument. After processing all images,
it will give you the ratio of correctly estimated poses. The program assumes
that a random forest has been trained before. It will derive the file name from
the parameters you specify. If you changed any parameters for training, you
have to specify the same parameters for test pose estimation. Table 2 lists
additional parameters that are specific to the test phase.

4.1 Output

The executable test pose estimation produces multiple output files that en-
able you to access the estimated poses or apply your own evaluation metric.
After each completed run of the program a file objX bg1.txt is created where X
is the object ID. This file contains one line per test run. Each line is composed
of 6 numbers:

1 Test object: ID of the object that has been tested.

2 Rotation object: 1/0 depending on whether the object was specified to be
rotational symmetric or not.

3 Test images: Number of images processed.

4 Estimated poses: Ratio of images where the pose was estimated correctly (in
percent).

5 Avg. forest time: Average time the forest evaluation took per image (in ms).

6 Avg. RANSAC time: Average time the energy minimization took per image
(in ms).

The program will also create a new folder in the working directory, that has
the same name as the random forest used. This folder contains one *.txt file per
object (indicated by the ID after tO in the file name). Every time an images is
processed by test pose estimation one new line is appended to the file of the
specified object. Each line consists of 25 numbers:

1 Test image number.

2 Distance of the test image to the closest training image. This can be seen as
an indication of difficulty.

3 Pose error between estimation and ground truth. Details about this measure
can be found in the supplement of our ECCV 14 paper[1].

3

4-12 Rotation matrix of the estimated pose in row first order. Our definition of
object pose can be found in the documentation of our 20 object dataset.

13-15 Translation vector (xyz) of the estimated pose (in meters).

16 Energy value associated with the estimated pose. It can be used for evalu-
ating the detection performance of the system.

17-20 Estimated 2D bounding box of the object to detect. The 4 numbers are:
x and y coordinates of the top left corner of the bounding box (in px),
and width and height (also in px).

21-24 Ground truth 2D bounding box.

25 Indication (0/1) whether the estimated bounding box overlaps sufficiently
with the ground truth bounding box (70% intersection over union). This
can be used for evaluating the detection performance of the system.

5 Example

In order to follow this example you need to download our 20 object dataset
(20objects.zip) and our background set (bgs.zip). Copy the contents of
those 2 archives in a folder named data. This folder should then have 62 sub-
folders. Copy all contents of the executable archive (eccv14bin.zip) into the
same folder data resides in. This should leave you with the following file layout:

<your_base_folder>

data

BG_Rooms

BG_Rooms_Objs

Kinfu_Audiobox1_dark

...

render_lib

shaders

create_split_small.py

create_split_full.py

create_split_util.py

test_pose_estimation

train_trees

Execute create split.py by typing:

> python create_split.py

The script will create a new working directory (split 5objects...) with
background, training and test folders linking to the appropriate images in
the data folder. Before you run our executables you have to add the renderer
library to you LD LIBRARY PATH:

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<your_base_folder>/render_lib

After this is done, change into the new working directory and execute:

4

> ../train_trees

This will train a random forest. Once training is finished, execute

> ../test_pose_estimation -tO 1 -nD

This will process all test images of the first object. Finally, it should report
approximately 70% poses estimated correctly. Note that this setup is different
than the setup in our paper, where we processed all 20 objects, added in-plane
rotation, and depth features were allowed to learn context. If you want to
reproduce this experiment use create split full.py, and add the following
flags to train trees and test pose estimation: -amin -45 -amax 45 -as

15 -bgs 1.

References

[1] Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother,
C.: Learning 6d object pose estimation using 3d object coordinates. In
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., eds.: Computer Vision –
ECCV 2014. Volume 8690 of Lecture Notes in Computer Science. Springer
International Publishing (2014) 536–551

5

Table 1: Command line arguments for train trees

Command Line Flag Std. Val. Description
-tc <val> 3 Tree count: Determines how many trees

to train for the forest.
-fc <val> 1000 Feature count: Determines the size of

the feature pool generated at each tree
depth layer.

-wd <val> 1 Depth feature weight: Determines the
ratio of depth features in the feature
pool.

-wc <val> 1 Color feature weight: Determines the
ration of color features in the feature
pool.

-g <val> 20 Color noise: Adds Gaussian noise with
the specified standard deviation to the
color channels of the training images.

-mo <val> 20 Maximum offset: Determines the max-
imum size of color resp. depth features
in the feature pool. It is measured in
pixel meters.

-tp <val> 1000 Training pixels: Determines the num-
ber of samples drawn from each train-
ing image when learning the structure
of the trees.

-tfr <val> 5 Training pixel factor for regression: De-
termines the number of samples drawn
from each training image when learn-
ing the leaf distributions. The number
of samples is < tfr > × < tp >.

-ms <val> 50 Minimum samples: A node is only split
further if at least this many samples ar-
rive at this node (stopping criterion).

-md <val> 64 Maximum depth: Limits the maximum
depth of a tree (stopping criterion).

-bgs <val> 0 Background strategy: If set to 1, depth
features are allowed to look at the depth
map outside the object mask during
training. This way, they can learn ob-
ject context.

-amin <val> 0 Minimum in-plane angle: -amin, -amax
and -as allow you to add in-plane ro-
tation to your training images. Each
training image is rotated from -amin
to -amax in -as steps. This increases
the amount of training images. In the
standard setting, no in-plane rotation is
added.

-amax <val> 0 Maximum in-plane angle: See -amin.
-as <val> 1 In-plane angle step: See -amin.

6

Table 2: Command line arguments for test pose estimation. Note that all
training parameters are valid, too.

Command Line Flag Std. Val. Description
-tO <val> 1 Test object: ID of the object you want

to test. The ID is determined by the al-
phabetical order of the object data fold-
ers in training.

-rO - Rotation object: Attach this flag if the
object specified is rotational symmetric.
It will change the calculation of the pose
error.

-nD - No display: Switches to batch mode. It
will process all test images of the object
specified non-stop.

-rI <val> 210 RANSAC iterations: Numbers of hy-
pothesis drawn for each test image.

-rB <val> 25 Refine best: Number of best hypothesis
that undergo local refinement.

-rRI <val> 100 RANSAC refinement iterations: Maxi-
mum number of local refinement steps
done for each hypothesis.

7

