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Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses
Eric Brachmann and Carsten Rother - Heidelberg University (HCI/IWR)
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Problem Statement

Fit a parametric model to data points with many outliers using RANSAC.
For example, fit essential matrix to SIFT correspondences.

2000 SIFT correspondences, outlier ratio: 88%
RANSAC would need: > 185.000 iterations

Result after 1000 iterations (OpenCV)
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Outlier Ratio w

—> Removing just enough outliers makes the problem exponentially easier.
—> We let a neural network predict weights that guide RANSAC sampling.

239 correspondences get 90% probability mass,
outlier ratio: 33%

NG-RANSAC result after 1000 iterations
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Contributions

* NG-RANSAC: A general, robust * Training with non-differentiable
estimator based on RANSAC with minimal solver, refinement, loss
learned guidance of hypotheses etc., also training self-supervised
sampling * Applied to estimation of essential

* Principled learning formulation that  matrices, fundamental matrices,
directly optimizes model quality horizon lines, and camera poses
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Brackground: RANSAC
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Neural-Guided RANSAC
Guided Sampling:
p(h) = HP(YL') with |p(y) = g(Y; w) /
= learned weights

neural guidance hypotheses h € ' fitted model h
Training Objective: 9(Y;w)
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expected loss gradients approximate via sampling

Application: Epipolar Geometry

Essential matrix from SIFT correspondences:  without side information with side information and Lowe’s ratio filter
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Fundamental matrix from SIFT correspondences:

Training % Inliers F-score Mean Median

O Objective

S RANSAC - 21.85 13.84 0.35 0.32

<Z,: USAC [Ragl3] - 2143 1390 0.35 0.32

o« Deep F-Mat [Ran18] Mean 2461 1465 0.32 0.29
NG-RANSAC Mean 25.05 14.76 0.32 0.29
NG-RANSAC F-score 24.13 14.72 0.33 0.31
NG-RANSAC %lnliers 25.12 1474 0.32 0.29

Neural-Guided DSAC

Let a network predict not only sampling weights but data points themselves.

Background: DSAC [Bral7]
O e exp(s(h;Y)
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Application: Horizon Line Estimation

on [Worl6] AUC (%)
Simon et al. 54.4
Kluger et al. 57.3
Zhai et al. 58.2
Workman et al. 71.2
DSAC 74.1
NG-DSAC 75.2
SLNet 82.3

observation [

NG-DSAC

on [Ken15] PoseNet Active Search DSAC++ [Bral8] NG-DSAC++ °
Great Court 700cm - 40.3cm 35.0cm §
Kings College  99cm 42cm 13.0cm 12.6cm 0'%7
Old Hospital 217cm 44cm 22.4cm 21.9cm £
Shop Facade  107cm 12cm 5.7cm 5.6cm T
St M. Church 149cm 19cm 9.9cm 9.8cm .

o) = —s(h v)

Self-Supervised!

NG-RANSAC
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