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Density Estimation

Given a sample of data points x that all stem from the same,
unknown source distribution p*(x),
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model the underlying density p(x) to gain insights into the data
X or generate new samples:

Transport and Normalizing Flow

» Transport bijective mapping between probability densities
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» Normalizing Flow transport from p(x) to standard normal
latent distribution A (z; 0, 1) as a sequence of neural steps 1]

L(x) = 3|Tx)|; — log |J7(x)|

» Split Coupling fast inversion and Jacobian determinant (2]
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» Affine Coupling take C=xy ® exp(nny(x;))+nn.(x;) €31
» Varying Splits ensured by orthogonal matrices, Q' = Q"'

» Jacobian Matrix lower triangular (3,
but high sparsity means reduced ex- »
pressive power because many variable “'%
interactions are not modelled >

Bayesian Inference

Given a sample of data points x with potentially ambiguous and
uncertain attributes y, in this example their color,
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model the posterior density p(X 'y) of data x given a partial
observation y, in this example p(x |y = orange):
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Fourier Curve Data Set

We can parameterize a closed 2d curve in terms of 2M + 1
complex, 2d Fourier coefficients a,,, based on a set of points p,,:
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» flexible number of dimensions and easy to scale up
» complicated correlation structure between dimensions
» exact ground truth and quantitative metrics for samples

» natural representation in 2d enables visual inspection
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Cross shapes with random angles, bar lengths/widths/shifts
and positions; parameterized by vectors a € C**? — x € R!W
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Recursive Coupling

We extend the split coupling design by making it recursive:

» Recursion one sub-block for each lane in a block

« @<

» Stopping Criterion when no further splits are possible

fC(X)7 if Nk‘ggv

Fron(x) = frk-1(x1) } rwi
{Ck (fR’k—l(X2) ‘X1) otherwise

» Jacobian Matrix becomes dense lower triangular
» Train Loss no change, log |J7(x)| = ) all diagonal entries

» Complexity number of OPs decreases with recursion depth,
all subnetworks within one block can be evaluated in parallel

» Results On UCI Benchmarks 41 normal REAL-NVP [3]

versus our RECURSIVE model at equal parameter budget, in
terms of log-likelihood on test set (higher is better)

BLOCKS DiMm REAL-NVP [3] RECURSIVE
POWER §) —0.054 £ 0.017 —0.027 + 0.018

4 GAS 8 7.620 +=0.136 7.662 + 0.094
MINIBOONE 42 —19.296 + 0.395 —14.547 1+ 0.164
POWER §) 0.093 4+ 0.002 0.080 + 0.007

8 GAS 8 8.002 +=0.177 8.137 4 0.055

MINIBOONE 42  —16.625£0.119 —14.117 £ 0.163

— positive effect of recursion increases with higher Div

» Results On Fourier Curve Data Set generated samples
and error in x correlation matrices (more white is better):
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Quantitative results in terms of log-likelihood, intersection-
over-uniton and average Hausdorff distance:
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RECURSIVE REAL-NVP [3]

BLOCKS 4x RNVP [3] 4X REC 8X RNVP [3] 8X REC
LL 1 3.419 3.627 3.329 3.637
IoU ¢ 0.594 0.823 0.5&88 0.823
H-DiIsT | 0.134 0.077 0.138 0.073

— Recursive design works better in all 3 metrics
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Hierarchical Architecture — HINT

For paired data x and observations y. the top level split in the
recursion can represent their separation:

» Dependency of x-lane on y-lane, but not vice versa
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:QX | fH,X(X ‘ Y)

— ensured by keeping shuffling matrices Q separate
» Training same as before, as one joint network T'(y, x)
Yy
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T(y,x)

Zx

L(y,x)=3|T(y,x)||5 — log |Ir(y,x)]

» Sampling by first running only y-lane to get z,

» Results On Fourier Curve Data Set samples x conditioned
ony = (angle, center, thickness ratio); and corr. matrix errors:
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Quantitative results in terms of log-likelthood, intersection-
over-union and average Hausdorff distance:
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Brocks 4x cINN [6] 4x HINT 8x CINN[6] &x HINT

LL 7 3.625 3.724 3.609 3.766
IoU 1 0.654 0.843 0.590 0.859
H-pisT | 0.116 0.073 0.119 0.066

— Hierarchical transport better in all 3 metrics
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