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Density Estimation

Given a sample of data points x that all stem from the same,
unknown source distribution p∗(x),

model the underlying density p(x) to gain insights into the data
x or generate new samples:

Transport and Normalizing Flow

I Transport bijective mapping between probability densities
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I Normalizing Flow transport from p(x) to standard normal
latent distribution N (z;0, I) as a sequence of neural steps [1]

L(x) = 1
2‖T (x)‖2

2 − log |JT (x)|

I Split Coupling fast inversion and Jacobian determinant [2]
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I Affine Coupling take C=x2 � exp
(
nns(x1)

)
+nnt(x1) [3]

I Varying Splits ensured by orthogonal matrices, Q91 = Q>
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I Jacobian Matrix lower triangular [3],
but high sparsity means reduced ex-
pressive power because many variable
interactions are not modelled
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Bayesian Inference

Given a sample of data points x with potentially ambiguous and
uncertain attributes y, in this example their color,

model the posterior density p(x |y) of data x given a partial
observation y, in this example p(x |y = orange):

Fourier Curve Data Set

We can parameterize a closed 2d curve in terms of 2M + 1
complex, 2d Fourier coefficients am, based on a set of points pn:

M = 3
M = 7
M = 21
M = 41

g(t) =

M∑
m=−M

am · e2π·i·m·t
[5]

I flexible number of dimensions and easy to scale up

I complicated correlation structure between dimensions

I exact ground truth and quantitative metrics for samples

I natural representation in 2d enables visual inspection

Cross shapes with random angles, bar lengths/widths/shifts
and positions; parameterized by vectors a ∈ C25×2 → x ∈ R100

Recursive Coupling

We extend the split coupling design by making it recursive:

I Recursion one sub-block for each lane in a block
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I Stopping Criterion when no further splits are possible

fR,k(x) =


fC(x), if Nk≤3,[

fR,k91(x1)
Ck
(
fR,k91

(
x2

) ∣∣x1

)] otherwise

I Jacobian Matrix becomes dense lower triangular

I Train Loss no change, log |JT (x)| =
∑

all diagonal entries

I Complexity number of OPs decreases with recursion depth,
all subnetworks within one block can be evaluated in parallel

I Results On UCI Benchmarks [4] normal Real-NVP [3]

versus our Recursive model at equal parameter budget, in
terms of log-likelihood on test set (higher is better)

Blocks Dim Real-NVP [3] Recursive

Power 6 −0.054± 0.017 −0.027 ± 0.018
4 Gas 8 7.620± 0.136 7.662 ± 0.094

Miniboone 42 −19.296± 0.395 −14.547 ± 0.164

Power 6 0.093 ± 0.002 0.080± 0.007
8 Gas 8 8.062± 0.177 8.137 ± 0.055

Miniboone 42 −16.625± 0.119 −14.117 ± 0.163

→ positive effect of recursion increases with higher Dim

I Results On Fourier Curve Data Set generated samples
and error in x correlation matrices (more white is better):
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Quantitative results in terms of log-likelihood, intersection-
over-union and average Hausdorff distance:

Blocks 4× rnvp [3] 4× rec 8× rnvp [3] 8× rec

LL ↑ 3.419 3.627 3.329 3.637
IoU ↑ 0.594 0.823 0.588 0.823
H-dist ↓ 0.134 0.077 0.138 0.073

→ Recursive design works better in all 3 metrics

Hierarchical Architecture – HINT

For paired data x and observations y, the top level split in the
recursion can represent their separation:

I Dependency of x-lane on y-lane, but not vice versa
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→ ensured by keeping shuffling matrices Q separate

I Training same as before, as one joint network T (y,x)

y zy

x zx

T (y,x)

L(y,x) = 1
2‖T (y,x)‖2

2 − log |JT (y,x)|

I Sampling by first running only y-lane to get zy

y zy

then holding zy fixed and running inverse with Gaussian zx

zy

x zx ∼ N (zx;0, I)

I Results On Fourier Curve Data Set samples x conditioned
on y = (angle, center, thickness ratio); and corr. matrix errors:
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Quantitative results in terms of log-likelihood, intersection-
over-union and average Hausdorff distance:

Blocks 4× cINN [6] 4×HINT 8× cINN[6] 8×HINT

LL ↑ 3.625 3.724 3.609 3.766
IoU ↑ 0.654 0.843 0.590 0.859
H-dist ↓ 0.116 0.073 0.119 0.066

→ Hierarchical transport better in all 3 metrics
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