HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference

Density Estimation

Given a sample of data points \mathbf{x} that all stem from the same, unknown source distribution $p^*(\mathbf{x})$,

^[1] Rezende and Mohamed. Variational inference with normalizing flows. ICML 2015. [2] Dinh et al. NICE: Non-linear Independent Components Estimation. ICLR 2015. [3] Dinh et al. **Density estimation using Real NVP.** ICLR 2017.

¹Heidelberg University

Bayesian Inference

Given a sample of data points \mathbf{x} with potentially ambiguous and uncertain attributes \mathbf{y} , in this example their color,

<u>-0000-000-000</u>-000

model the posterior density $p(\mathbf{x} | \mathbf{y})$ of data \mathbf{x} given a partial observation \mathbf{y} , in this example $p(\mathbf{x} | \mathbf{y} = \text{orange})$:

Fourier Curve Data Set

We can parameterize a closed 2d curve in terms of 2M + 1complex, 2d Fourier coefficients \mathbf{a}_m , based on a set of points \mathbf{p}_n :

flexible number of dimensions and **easy to scale up**

complicated correlation structure between dimensions

▶ exact ground truth and **quantitative metrics** for samples

 \blacktriangleright natural **representation in 2d** enables visual inspection

Cross shapes with random angles, bar lengths/widths/shifts and positions; parameterized by vectors $\mathbf{a} \in \mathbb{C}^{25 \times 2} \to \mathbf{x} \in \mathbb{R}^{100}$

<CODE> github.com/VLL-HD/HINT <DATA SETS> github.com/VLL-HD/inn_toy_data

Jakob Kruse¹, Gianluca Detommaso²³, Robert Scheichl¹², Ullrich Köthe¹

²University of Bath ³ amazon.com Contact: jakob.kruse@iwr.uni-heidelberg.de

Recursive Coupling

- We extend the split coupling design by making it recursive:
- **Recursion** one sub-block for each lane in a block

Stopping Criterion when no further splits are possible

$$f_{\mathrm{R},k}(\mathbf{x}) = \begin{cases} f_{\mathrm{C}}(\mathbf{x}), & \text{if } N_k \leq 3, \\ \begin{bmatrix} f_{\mathrm{R},k-1}(\mathbf{x}_1) \\ C_k \left(f_{\mathrm{R},k-1}(\mathbf{x}_2) \mid \mathbf{x}_1 \right) \end{bmatrix} & \text{otherwise} \end{cases}$$

- **Jacobian Matrix** becomes **dense lower triangular**
- ▶ Train Loss no change, $\log |\mathbf{J}_T(\mathbf{x})| = \sum$ all diagonal entries
- **Complexity** number of OPs decreases with recursion depth, all subnetworks within one block can be evaluated in parallel
- **Results On UCI Benchmarks** [4] normal REAL-NVP [3] versus our RECURSIVE model at equal parameter budget, in terms of *log-likelihood* on test set (higher is better)

Blocks		Dim	REAL-NVP [3]	RECURSIVE
4	Power Gas Miniboone	$6\\8\\42$	-0.054 ± 0.017 7.620 ± 0.136 -19.296 ± 0.395	$egin{array}{c} -0.027 \pm 0.018 \ 7.662 \pm 0.094 \ -14.547 \pm 0.164 \end{array}$
8	Power Gas Miniboone	$6\\8\\42$	$\begin{array}{c} \textbf{0.093} \pm \textbf{0.002} \\ 8.062 \pm 0.177 \\ -16.625 \pm 0.119 \end{array}$	$\begin{array}{c} 0.080 \pm 0.007 \\ \textbf{8.137} \pm \textbf{0.055} \\ -\textbf{14.117} \pm \textbf{0.163} \end{array}$

 \rightarrow positive effect of recursion **increases with higher** DIM

Results On Fourier Curve Data Set generated samples and error in \mathbf{x} correlation matrices (more white is better):

Quantitative results in terms of *log-likelihood*, *intersection*over-union and average Hausdorff distance:

BLOCKS	4× RNVP [3]	$4 \times \text{ Rec}$	8× RNVP [3]	$8 \times \text{ Rec}$
$\begin{array}{c} \text{LL} \uparrow \\ \text{IoU} \uparrow \\ \text{H-DIST} \downarrow \end{array}$	$3.419 \\ 0.594 \\ 0.134$	$3.627 \\ 0.823 \\ 0.077$	$3.329 \\ 0.588 \\ 0.138$	$3.637 \\ 0.823 \\ 0.073$

 \rightarrow Recursive design works better in all 3 metrics

This project has received funding from the **European Research Council** (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 647769). J. Kruse was supported by **Informatics for Life** funded by the Klaus Tschira Foundation. G. Detommaso was supported by the **EPSRC Centre** for Doctoral Training in Statistical Applied Mathematics at Bath (EP/L015684/1).

Hierarchical Architecture – HINT

For paired data \mathbf{x} and observations \mathbf{y} , the top level split in the recursion can represent their separation:

Dependency of **x**-lane on **y**-lane, but not vice versa

Quantitative results in terms of *log-likelihood*, *intersection*over-union and average Hausdorff distance:

BLOCKS	4× cINN [6]	$4 \times \text{HINT}$	8× cINN [6]	$8 \times HINT$
LL \uparrow	3.625	3.724	3.609	3.766
IoU \uparrow	0.654	0.843	0.590	0.859
H-dist \downarrow	0.116	0.073	0.119	0.066

 \rightarrow Hierarchical transport better in all 3 metrics

^[4] Dua and Graff. UCI Machine Learning Repository. 2017. http://archive.ics.uci.edu/ml.

^[5] McGarva and Mullineux. Harmonic representation of closed curves. Appl. Math. Model. 1993 [6] Ardizzone et al. Conditional Invertible Neural Networks for Diverse Image-to-Image Translation. GCPR 2020.