BOP Challenge 2022 on Detection, Segmentation
and Pose Estimation of Specific Rigid Objects

Martin Sundermeyer!+?
Eric Brachmann®

!German Aerospace Center 2TU Munich 3Reality Labs at Meta “INRIA Paris

6Niantic “MVTec

Abstract

We present the evaluation methodology, datasets and re-
sults of the BOP Challenge 2022, the fourth in a series of
public competitions organized with the goal to capture the
status quo in the field of 6D object pose estimation from
an RGB/RGB-D image. In 2022, we witnessed another sig-
nificant improvement in the pose estimation accuracy — the
state of the art, which was 56.9 AR¢ in 2019 (Vidal et al.)
and 69.8 AR¢ in 2020 (CosyPose), moved to new heights
of 83.7 ARc (GDRNPP). Out of 49 pose estimation meth-
ods evaluated since 2019, the top 18 are from 2022. Meth-
ods based on point pair features, which were introduced in
2010 and achieved competitive results even in 2020, are
now clearly outperformed by deep learning methods. The
synthetic-to-real domain gap was again significantly re-
duced, with 82.7 AR¢c achieved by GDRNPP trained only
on synthetic images from BlenderProc. The fastest variant
of GDRNPP reached 80.5 ARc with an average time per
image of 0.23s. Since most of the recent methods for 6D ob-
Jject pose estimation begin by detecting/segmenting objects,
we also started evaluating 2D object detection and segmen-
tation performance based on the COCO metrics. Compared
to the Mask R-CNN results from CosyPose in 2020, detec-
tion improved from 60.3 to 77.3 AP¢ and segmentation from
40.5 to 58.7 AP¢. The online evaluation system stays open
and is available at: bop. felk.cvut.cz.

1. Introduction

Estimating the 6D pose, i.e., the 3D translation and 3D
rotation, of specific rigid objects from a single input im-
age is a crucial task for numerous application fields such
as robotic manipulation, augmented reality, or autonomous
driving. The BOP' Challenge 2022 is the fourth in a series
of public challenges that are part of the BOP project aiming

IBOP stands for Benchmark for 6D Object Pose Estimation [20].
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to continuously report the state of the art in 6D object pose
estimation. The first challenge was organized in 2017 [21]
and the results were published in [20]. The second chal-
lenge from 2019 [17], the third from 2020 [23], and the
fourth from 2022 share the same evaluation methodology
and leaderboard of the pose estimation task.

Participating methods are evaluated on the 6D object lo-
calization task [19], where the methods report their predic-
tions on the basis of two sources of information. Firstly,
at training time, a method is given 3D object models and
training images showing the objects in known 6D poses.
Secondly, at test time, the method is provided with a test
image and a list of object instances visible in the image,
and the goal of the method is to estimate 6D poses of the
listed object instances. The training and test images con-
sist of RGB-D (aligned color and depth) channels and the
intrinsic camera parameters are known.

Starting in 2022, we additionally evaluate methods on
the 2D object detection and 2D object segmentation tasks,
using metrics from the COCO challenge [32]. These
tasks were introduced to address the design of many re-
cent methods for 6D object pose estimation, which start
by detecting/segmenting objects and then estimate the ob-
ject poses from the predicted regions. Evaluating the detec-
tion/segmentation stage and the pose estimation stage sep-
arately enables to better understand advances in the two
stages and allows researchers to focus on only one of the
stages. Participants of the challenge were provided detec-
tion and segmentation predictions from Mask R-CNN [12]
trained for the first stage of CosyPose [30], the winning
method from 2020. These predictions not only serve as
baseline results but also as a starting point for participants
who want to focus only on the pose estimation stage and,
finally, as an opportunity for a direct comparison of pose es-
timation methods that rely on 2D detections/segmentations.

The challenge primarily focuses on the practical scenario
where no real images are available at training time, only the
3D object models and images synthesized using the models.
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Figure 1. 2D object detection followed by 6D pose estimation from the detected regions is a strategy used by the majority of recent 6D
object pose estimation methods. This figure shows detections (top) and 3D object models rendered in estimated poses (bottom) produced
by the 2022 top-performing method, GDRNPP [35,51], on challenging images from YCB-V [55], HB [26], ITODD [5], and T-LESS [18].

While capturing real images of objects under various con-
ditions and annotating the images with 6D object poses re-
quires a significant human effort [18], the 3D models are ei-
ther available before the physical objects, which is often the
case for manufactured objects, or can be reconstructed at an
admissible cost. Approaches for reconstructing 3D models
of opaque, matte and moderately specular objects are well
established [38] and promising approaches for transparent
and highly specular objects are emerging [10,37,53].

In the BOP Challenge 2019, methods using the depth
image channel, which were mostly based on the point pair
features (PPF’s) [6], clearly outperformed methods rely-
ing only on the RGB channels, all of which were based
on deep neural networks (DNN’s). DNN-based methods
require large amounts of annotated training images, which
had been typically obtained by OpenGL rendering of the 3D
object models on top of random backgrounds [7, 14,27,40].
However, as suggested in [24], the evident domain gap be-
tween these “render & paste” training images and real test
images presumably limits the potential of the DNN-based
methods. To reduce the gap between the synthetic and real
domains and thus to bring fresh air to the DNN-based meth-
ods, we joined the development of BlenderProc? [2, 3], an
open-source, physically-based renderer (PBR). In 2020, we
provided participants with 350K pre-rendered PBR train-
ing images for the seven core datasets (see [23] for exam-
ples). As a result, DNN-based methods achieved notice-
ably higher accuracy scores when trained on PBR train-
ing images than when trained on “render & paste” images.
The DNN-based methods finally caught up with the PPF-
based methods and the single-view variant of CosyPose [30]

2github.com/DLR-RM/BlenderProc

reached the best overall performance. However, Konig and
Drost [28], a hybrid method using a DNN for object de-
tection and PPF for pose estimation was still awarded the
best method below one second inference time and also per-
formed best on the industrial ITODD dataset [5].

A major goal of the BOP challenge 2022 was therefore
to find out whether the gains of DNN-based pose estimation
are significant enough to justify their increased deployment
complexity. Specifically, are DNN-based methods able to
achieve a competitive accuracy also in difficult industrial
settings, while training only on synthetic data and while sat-
isfying strict constraints on the inference speed? Do DNN-
based methods scale with an increasing number of objects?

Sec. 2 of this paper defines the evaluation methodology,
Sec. 3 introduces datasets, Sec. 4 describes the experimental
setup and analyzes the results, Sec. 5 presents the awards of
the BOP Challenge 2022, and Sec. 6 concludes the paper.

2. Evaluation Methodology

Methods are evaluated on the task of 6D object localiza-
tion, as in 2019 and 2020 [23], and additionally on the tasks
of 2D object detection and 2D object segmentation. The
tasks are defined below together with accuracy scores on
which the participating methods are compared. Participants
could submit their results to any of the three tasks. Note that
although all BOP datasets currently include RGB-D images
(Sec. 3), a method may use any of the image channels.

2.1. 2D Object Detection and Segmentation Tasks

Training input: At training time, a detection/segmentation
method is provided a set of training images showing ob-
jects annotated with ground-truth 2D bounding boxes (for
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the detection task) and binary masks (for the segmentation
task). The boxes are amodal (covering the whole object sil-
houette, including the occluded parts) while the masks are
modal (covering only the visible object part). The method
can also use 3D mesh models that are available for the ob-
jects (e.g., to synthesize extra training images).

Test input: At test time, the method is given an image
showing an arbitrary number of instances of an arbitrary
number of objects from a considered dataset. No prior in-
formation about the visible object instances is provided.

Test output: The method produces a list of an arbitrary
number of amodal 2D bounding boxes (for detection) and
modal binary masks (for segmentation) with confidences.

Metrics: Following the the evaluation methodology from
the COCO 2020 Object Detection Challenge [32], the de-
tection/segmentation accuracy is measured by the Average
Precision (AP). Specifically, a per-object APy score is cal-
culated by averaging the precision at multiple Intersection
over Union (IoU) thresholds ([0.5,0.55, ... ,0.95]). The ac-
curacy of a method on a dataset D is measured by APp cal-
culated by averaging per-object AP scores, and the overall
accuracy on the core datasets (Sec. 3) is measured by AP¢
defined as the average of the per-dataset APp scores.
Analagous to the 6D localization task, only object in-
stances for which at least 10% of the projected surface area
is visible need to be detected/segmented. Correct predic-
tions for objects that are visible from less than 10% are fil-
tered out and not counted as false positives. Up to 100 pre-
dictions with the highest scores per image are considered.

2.2. 6D Object Localization Task

As in the 2019 and 2020 editions of the challenge, meth-
ods are evaluated on the task of 6D localization of a varying
number of instances of a varying number of objects from a
single image. This variant of the 6D object localization task
is referred to as ViVo and defined as follows.’

Training input: A method is provided a set of training
images showing objects annotated with 6D poses, and 3D
mesh models of the objects (typically with a color texture).
A 6D pose is defined by a matrix P = [R | t], where R is
a 3D rotation matrix, and t is a 3D translation vector. The
matrix P defines a rigid transformation from the 3D space
of the object model to the 3D space of the camera.

Test input: The method is given an image unseen during
training and a list L = [(01,71), - ., (Om, 7m)], Where n;
is the number of instances of object o; visible in the image.

3See Sec. A.1 in [23] for a discussion on why the methods are evaluated
on 6D object localization instead of 6D object detection, where no prior
information about the visible object instances is provided.

Test output: The method outputs a list E = [Ey,...,E,],
where F; is a list of n; pose estimates with confidences for
instances of object 0;.

Metrics: The 6D object localization task is evaluated as
in the BOP Challenge 2020 [23]. In short, the error of
an estimated pose w.r.t. the ground-truth pose is calculated
by three pose-error functions: Visible Surface Discrep-
ancy (VSD) which treats indistinguishable poses as equiv-
alent by considering only the visible object part, Maxi-
mum Symmetry-Aware Surface Distance (MSSD) which
considers a set of pre-identified global object symmetries
and measures the surface deviation in 3D, and Maximum
Symmetry-Aware Projection Distance (MSPD) which con-
siders the object symmetries and measures the perceiv-
able deviation. An estimated pose is considered correct
w.r.t. a pose-error function e, if e < 6., where e €
{VSD,MSSD, MSPD} and 6. is the threshold of correct-
ness. The fraction of annotated object instances for which
a correct pose is estimated is referred to as Recall. The
Average Recall w.r.t. a function e, denoted as AR, is de-
fined as the average of the Recall rates calculated for multi-
ple settings of the threshold 6. and also for multiple set-
tings of a misalignment tolerance 7 in the case of VSD.
The accuracy of a method on a dataset D is measured by:
ARp = (ARVSD + ARmssp + ARMSPD) /3, which is cal-
culated over estimated poses of all objects from D. The
overall accuracy on the core datasets is measured by AR¢
defined as the average of the per-dataset AR scores.*

3. Datasets

BOP currently includes twelve datasets in a unified for-
mat — sample test images are in Fig. 2 and dataset parame-
ters in Tab. 1. Seven from the twelve were selected as core
datasets: LM-O, T-LESS, ITODD, HB, YCB-V, TUD-L,
IC-BIN. A method had to be evaluated on all core datasets
to be considered for the main challenge awards (Sec. 5).

Each dataset includes 3D object models and training and
test RGB-D images annotated with ground-truth 6D object
poses. The object models are provided in the from of 3D
meshes (in most cases with a color texture) which were cre-
ated manually or using KinectFusion-like systems for 3D
surface reconstruction [38]. While all test images are real,
training images may be real and/or synthetic. The seven
core datasets include a total of 350K photorealistic PBR
(physically-based rendered) training images generated and
automatically annotated using BlenderProc [2, 3]. Exam-
ple images are shown in [23] and a detailed description of
the generation process and an analysis of the importance of
PBR training images is provided in Sec. 3.2 and 4.3 of the

4When calculating AR, scores are not averaged over objects before av-
eraging over datasets, which is done when calculating AP (Sec. 2.1) to
comply with the original COCO evaluation [32].
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Figure 2. An overview of the BOP datasets. The core datasets
are marked with a star. Shown are RGB channels of sample test
images which were darkened and overlaid with colored 3D object
models in the ground-truth 6D poses.

Train. im.  Valim.  Test im. Test inst.
Dataset Obj. Real PBR Real All Used All Used
LM-O [1] 8 - 50K - 1214 200 9038 1445
T-LESS [18] 30 37584 50K — 10080 1000 67308 6423
ITODD [5] 28 - 50K 54 721 721 3041 3041
HB [26] 33 — 50K 4420 13000 300 67542 1630
YCB-V [55] 21113198 50K — 20738 900 98547 4123
TUD-L [20] 3 38288 50K - 23914 600 23914 600
IC-BIN [4] 2 - 50K - 177 150 2176 1786
LM [13] 15 - 50K — 18273 3000 18273 3000
RU-APC [42] 14 - - — 5964 1380 5964 1380
IC-MI [47] 6 - - - 2067 300 5318 800
TYO-L [20] 21 - - - 1670 1670 1670 1670
HOPE [49] 28 - - 50 188 188 3472 2898

Table 1. Parameters of the BOP datasets. The core datasets are
listed in the upper part. PBR training images rendered by Blender-
Proc [2,3] are provided for all core datasets. Most datasets include
also OpenGL-rendered training images of 3D object models on a
black background (not shown in the table). If a dataset includes
both validation and test images, ground-truth annotations are pub-
lic only for the validation images. All test images are real. Column
“Test inst./AlIl” shows the number of annotated object instances for
which at least 10% of the projected surface area is visible in the
test image. Columns “Used” show the number of test images and
object instances used in the BOP Challenge 2019, 2020, and 2022.

BOP Challenge 2020 paper [23]. Datasets T-LESS, TUD-
L, and YCB-V include also real training images, and most
datasets additionally include training images obtained by
OpenGL rendering of the 3D object models on a black back-
ground. Test images were captured in scenes with graded
complexity, often with clutter and occlusion. The HB and
ITODD datasets include also real validation images — in this
case, the ground-truth poses are publicly available only for
the validation images, not for the test images. The datasets

can be downloaded from the BOP website and more details
about the datasets can be found in Chapter 7 of [15].

4. Results and Discussion

This section presents results of the BOP Challenge 2022,
compares them with results from 2019 and 2020 challenge
editions, and summarizes the main messages for our field.

In total, 49 methods were evaluated on the ViVo variant
of the 6D object localization task on all seven core datasets
— 11 methods in 2019, 15 in 2020, and 23 in 2022. Ad-
ditionally, 8 methods were evaluated on the new detection
task and 8 methods on the new segmentation task.

4.1. Experimental Setup

Participants of the BOP Challenge 2022 were submitting
results of their methods to the online evaluation system at
bop.felk.cvut.cz from May 1, 2022 until the dead-
line on October 16, 2022. The methods were evaluated on
the ViVo variant of the 6D object localization task as de-
scribed in Sec. 2.2 and on the object detection and segmen-
tation tasks as described in Sec. 2.1. The evaluation scripts
are publicly available in the BOP toolkit [22].

A method had to use a fixed set of hyper-parameters
across all objects and datasets. For training, a method may
have used the provided object models and training images,
and rendered extra training images using the object mod-
els. However, not a single pixel of test images may have
been used for training, nor the individual ground-truth poses
or object masks provided for the test images. Ranges of
the azimuth and elevation camera angles, and a range of
the camera-object distances determined by the ground-truth
poses from test images is the only information about the test
set that may have been used for training.

Only subsets of test images were used to remove redun-
dancies and speed up the evaluation, and only object in-
stances for which at least 10% of the projected surface area
is visible were considered in the evaluation.

4.2. 6D Object Localization Results

An overview of the 6D object localization results is in
Tab. 2 and properties of the evaluated methods in Tab. 3.
In 2022, all 23 of the new submissions rely on DNN’s in
their pipelines, and 18 of them outperform CosyPose [30],
the top-performing method from the 2020 challenge edi-
tion. The best method from 2022, GDRNPP [51], is
purely learning-based and achieves 83.7 AR, outperform-
ing CosyPose by substantial 13.9 points in AR (#1—#19
in Tab. 2). Gains in accuracy are most notable on the indus-
trial ITODD dataset [S] where GDRNPP reaches 67.9 AR
(+36.6 AR¢ w.r.t. CosyPose). This result is significant as
ITODD reflects a challenging industrial scenario and was
previously dominated by PPF-based approaches, the best of
which, KoenigHybrid [28] (#24), achieved 48.3 AR¢.
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# Method LM-O TLESS TUD-L IC-BIN ITODD HB YCB-V AR Time
1 GDRNPP-PBRReal-RGBD-MModel [35,51] 717.5 87.4 96.6 722 67.9 92.6 92.1 83.7 6.26
2 GDRNPP-PBR-RGBD-MModel [35,51] 71.5 85.2 92.9 72.2 67.9 92.6 90.6 82.7 6.26
3 GDRNPP-PBRReal-RGBD-MModel-Fast [35,51] 79.2 87.2 93.6 70.2 58.8 90.9 83.4 80.5 0.23
4 GDRNPP-PBRReal-RGBD-MModel-Offi. [35,51] 75.8 82.4 96.6 70.8 54.3 89.0 89.6 79.8 6.41
5 Extended_.FCOS+PFA-MixPBR-RGBD [25] 79.7 85.0 96.0 67.6 46.9 86.9 88.8 78.7 2.32
6 Extended _FCOS+PFA-MixPBR-RGBD-Fast [25] 79.2 77.9 95.8 67.1 46.0 86.0 88.0 77.1 0.64
7 RCVPose3D-SingleModel-VIVO-PBR [54] 72.9 70.8 96.6 73.3 53.6 86.3 84.3 76.8 1.34
8 ZebraPoseSAT-EffnetB4+ICP(DefaultDet) [44] 75.2 72.7 94.8 65.2 52.7 88.3 86.6 76.5 0.50
9 Extended_FCOS+PFA-PBR-RGBD [25] 79.7 80.2 89.3 67.6 46.9 86.9 82.6 76.2 2.63
10 SurfEmb-PBR-RGBD [11] 76.0 82.8 85.4 65.9 53.8 86.6 79.9 75.8 9.05
11 GDRNPP-PBRReal-RGBD-SModel [35,51] 75.7 85.6 90.6 68.0 35.6 86.4 81.7 74.8 0.56
12 Coupled Iterative Refinement (CIR) [33] 734 77.6 96.8 67.6 38.1 75.7 89.3 74.1 -
13 GDRNPP-PBRReal-RGB-MModel [35,51] 71.3 78.6 83.1 62.3 44.8 86.9 82.5 72.8 0.23
14 ZebraPoseS AT-EffnetB4 [44] 72.1 80.6 85.0 54.5 41.0 88.2 83.0 72.0 0.25
15 ZebraPoseS AT-EffnetB4(DefaultDet) [44] 70.7 76.8 84.9 59.7 41.7 88.7 81.6 72.0 0.25
16 ZebraPose-SAT [44] 72.1 78.7 86.1 54.9 37.9 84.7 82.8 71.0 -
17 Extended_FCOS+PFA-MixPBR-RGB [25] 74.5 77.8 83.9 60.0 35.3 84.1 80.6 70.9 3.02
18 GDRNPP-PBR-RGB-MModel [35,51] 71.3 79.6 75.2 62.3 44.8 86.9 71.3 70.2 0.28
19 CosyPose-ECCV20-SYNT+REAL-ICP [30] 71.4 70.1 93.9 64.7 31.3 71.2 86.1 69.8 13.74
20 ZebraPoseSAT-EffnetB4 (PBR_Only) [44] 72.1 72.3 71.7 54.5 41.0 88.2 69.1 67.0 -
21 PFA-cosypose [25,30] 71.4 73.8 83.7 59.6 24.6 71.2 80.7 66.4 -
22 Extended_FCOS+PFA-PBR-RGB [25] 74.5 71.9 73.2 60.0 35.3 84.1 64.8 66.3 3.50
23 SurfEmb-PBR-RGB [11] 66.3 73.5 71.5 58.8 41.3 79.1 64.7 65.0 8.89
24 Koenig-Hybrid-DL-PointPairs [28] 63.1 65.5 92.0 43.0 48.3 65.1 70.1 63.9 0.63
25 CosyPose-ECCV20-SYNT+REAL-1VIEW [30] 63.3 72.8 82.3 58.3 21.6 65.6 82.1 63.7 0.45
26 CRT-6D 66.0 64.4 78.9 53.7 20.8 60.3 75.2 59.9 0.06
27 Pix2Pose-BOP20_w/ICP-ICCV19 [39] 58.8 51.2 82.0 39.0 35.1 69.5 78.0 59.1 4.84
28 ZTE_PPF 66.3 37.4 90.4 39.6 47.0 73.5 50.2 57.8 0.90
29 CosyPose-ECCV20-PBR-1VIEW [30] 63.3 64.0 68.5 58.3 21.6 65.6 57.4 57.0 0.48
30 Vidal-Sensors18 [50] 58.2 53.8 87.6 39.3 435 70.6 45.0 56.9 3.22
31 CDPNv2_BOP20 (RGB-only & ICP) [31] 63.0 46.4 91.3 45.0 18.6 71.2 61.9 56.8 1.46
32 Drost-CVPR10-Edges [6] 51.5 50.0 85.1 36.8 57.0 67.1 37.5 55.0 87.57
33 CDPNv2_BOP20 (PBR-only & ICP) [31] 63.0 43.5 79.1 45.0 18.6 71.2 53.2 53.4 1.49
34 CDPNv2_BOP20 (RGB-only) [31] 62.4 47.8 77.2 47.3 10.2 72.2 53.2 52.9 0.94
35 Drost-CVPR10-3D-Edges [6] 46.9 40.4 85.2 37.3 46.2 62.3 31.6 50.0 80.06
36 Drost-CVPR10-3D-Only [6] 52.7 44 .4 717.5 38.8 31.6 61.5 34.4 48.7 7.70
37 CDPN_BOPI19 (RGB-only) [31] 56.9 49.0 76.9 32.7 6.7 67.2 45.7 47.9 0.48
38 CDPNv2_BOP20 (PBR-only & RGB-only) [31] 62.4 40.7 58.8 473 10.2 722 39.0 472 0.98
39 leaping from 2D to 6D [34] 52.5 40.3 75.1 342 7.7 65.8 54.3 47.1 043
40 EPOS-BOP20-PBR [16] 54.7 46.7 55.8 36.3 18.6 58.0 49.9 45.7 1.87
41 Drost-CVPR10-3D-Only-Faster [6] 49.2 40.5 69.6 37.7 27.4 60.3 33.0 45.4 1.38
42 Félix&Neves-ICRA2017-IET2019 [41,43] 394 21.2 85.1 32.3 6.9 52.9 51.0 41.2 55.78
43 Sundermeyer-IJCV19+ICP [46] 23.7 48.7 61.4 28.1 15.8 50.6 50.5 39.8 0.86
44 Zhigang-CDPN-ICCV19 [31] 374 12.4 75.7 25.7 7.0 47.0 422 35.3 0.51
45 PointVoteNet2 [9] 65.3 0.4 67.3 26.4 0.1 55.6 30.8 35.1 -
46 Pix2Pose-BOP20-ICCV19 [39] 36.3 34.4 42.0 22.6 13.4 44.6 45.7 34.2 1.22
47 Sundermeyer-1IJCV19 [46] 14.6 30.4 40.1 21.7 10.1 34.6 44.6 28.0 0.20
48 SingleMultiPathEncoder-CVPR20 [45] 21.7 31.0 334 17.5 6.7 29.3 28.9 24.1 0.19
49 DPOD (synthetic) [57] 16.9 8.1 24.2 13.0 0.0 28.6 22.2 16.1 0.23

Table 2. 6D object localization results on the seven core datasets. The methods are ranked by the AR¢ score which is the average of the
per-dataset AR p scores defined in Sec. 2.2. The last column shows the average image processing time (in seconds).

GDRNPP dominates in 2022: The GDRNPP method was
evaluated in seven variants, four of which are on top of the
leaderboard. The variants were tailored towards different
BOP 2022 awards (Sec. 5) by relying on different data do-
mains and modalities and on different detection and pose
refinement methods. Having results of these variants is
crucial for understanding the importance of individual as-
pects of the complete pipeline. The common ground is the
Geometrically-Guided Direct Regression Network (GDR-

Net) [51], which takes an RGB object crop as input and
densely predicts 2D-3D correspondences, identities of sur-
face fragments [16], and a mask of the visible object part.
Then, instead of applying PnP-RANSAC [16], the predic-
tions are concatenated and fed into a small CNN with a
fully connected head that regresses a scale-invariant trans-
lation [31] and 3D rotation using the allocentric 6D rep-
resentation [29]. The 3D rotation loss takes into account
object symmetries that are provided in the BOP datasets.



# Method Year Type DNN per Det./seg. Refinement  Train im. ...type Test im.
1 GDRNPP-PBRReal-RGBD-MModel [35,51] 2022 DNN Object  YOLOX ~CIR RGB-D PBR+real RGB-D
2 GDRNPP-PBR-RGBD-MModel [35,51] 2022 DNN Object  YOLOX ~CIR RGB-D PBR RGB-D
3 GDRNPP-PBRReal-RGBD-MModel-Fast [35,51] 2022 DNN Object  YOLOX Depth adjust. RGB PBR+real RGB-D
4 GDRNPP-PBRReal-RGBD-MModel-Offi. [35,51] 2022 DNN Object  Default (synt+real) ~CIR RGB-D PBR+real RGB-D
5 Extended_FCOS+PFA-MixPBR-RGBD [25] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB-D
6 Extended _FCOS+PFA-MixPBR-RGBD-Fast [25] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB-D
7 RCVPose3D-SingleModel-VIVO-PBR [54] 2022 DNN Dataset RCVPose3D ICP RGB-D PBR+real RGB-D
8 ZebraPoseSAT-EffnetB4+ICP(DefaultDet) [44] 2022 DNN Object  Default (synt+real) ICP RGB PBR+real RGB-D
9 Extended_FCOS+PFA-PBR-RGBD [25] 2022 DNN Dataset Extended FCOS PFA RGB PBR RGB-D
10 SurfEmb-PBR-RGBD [11] 2022 DNN Dataset Default (synt+real) Custom RGB-D PBR RGB-D
11 GDRNPP-PBRReal-RGBD-SModel [35,51] 2022 DNN Dataset YOLOX Depth adjust. RGB PBR+real RGB-D
12 Coupled Iterative Refinement (CIR) [33] 2022 DNN Object  Default (synt+real) CIR RGB-D PBR+real RGB-D
13 GDRNPP-PBRReal-RGB-MModel [35,51] 2022 DNN Object  YOLOX - RGB PBR+real RGB
14 ZebraPoseSAT-EffnetB4 [44] 2022 DNN Object  FCOS - RGB PBR+real RGB
15 ZebraPoseS AT-EffnetB4(DefaultDet) [44] 2022 DNN Object  Default (synt+real) — RGB PBR+real RGB
16 ZebraPose-SAT [44] 2022 DNN Object FCOS - RGB PBR+real RGB
17 Extended FCOS+PFA-MixPBR-RGB [25] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB
18 GDRNPP-PBR-RGB-MModel [35,51] 2022 DNN Object  YOLOX - RGB PBR RGB
19 CosyPose-ECCV20-SYNT+REAL-ICP [30] 2020 DNN Dataset Default (synt+real) DeepIM+ICP RGB PBR+real RGB-D
20 ZebraPoseSAT-EffnetB4 (PBR_Only) [44] 2022 DNN Object  FCOS - RGB PBR RGB
21 PFA-cosypose [25,30] 2022 DNN Dataset MaskRCNN PFA RGB-D PBR+real RGB
22 Extended_FCOS+PFA-PBR-RGB [25] 2022 DNN Dataset Extended FCOS PFA RGB PBR RGB
23 SurfEmb-PBR-RGB [11] 2022 DNN Dataset Default (synt+real) Custom RGB PBR RGB
24 Koenig-Hybrid-DL-PointPairs [28] 2020 DNN/PPF Dataset Retina/MaskRCNN ICP RGB Synt+real RGB-D
25 CosyPose-ECCV20-SYNT+REAL-1VIEW [30] 2020 DNN Dataset Default (synt+real) ~DeepIM RGB PBR+real RGB
26 CRT-6D 2022 DNN Dataset Default (synt+real) Custom RGB PBR+real RGB
27 Pix2Pose-BOP20_w/ICP-ICCV19 [39] 2020 DNN Object  MaskRCNN ICP RGB PBR+real RGB-D
28 ZTE_PPF 2022 DNN/PPF Dataset Default (synt+real) ICP RGB PBR+real RGB-D
29 CosyPose-ECCV20-PBR-1VIEW [30] 2020 DNN Dataset Default (pbr) ~DeepIM RGB PBR RGB
30 Vidal-Sensors18 [50] 2019 PPF - - ICP - - D

31 CDPNv2_BOP20 (RGB-only & ICP) [31] 2020 DNN Object  FCOS ICP RGB Synt+real RGB-D
32 Drost-CVPR10-Edges [6] 2019 PPF - - ICP - - RGB-D
33 CDPNv2_BOP20 (PBR-only & ICP) [31] 2020 DNN Object  FCOS ICP RGB PBR RGB-D
34 CDPNv2_BOP20 (RGB-only) [31] 2020 DNN Object  FCOS - RGB Synt+real RGB
35 Drost-CVPR10-3D-Edges [6] 2019 PPF - - ICP - - D

36 Drost-CVPR10-3D-Only [6] 2019 PPF - - ICP - - D

37 CDPN_BOP19 (RGB-only) [31] 2020 DNN Object  RetinaNet - RGB Synt+real RGB
38 CDPNv2_BOP20 (PBR-only & RGB-only) [31] 2020 DNN Object  FCOS - RGB PBR RGB
39 leaping from 2D to 6D [34] 2020 DNN Object  Unknown - RGB Synt+real RGB
40 EPOS-BOP20-PBR [16] 2020 DNN Dataset — - RGB PBR RGB
41 Drost-CVPR10-3D-Only-Faster [6] 2019 PPF - - ICP - - D
42 Félix&Neves-ICRA2017-IET2019 [41,43] 2019 DNN/PPF Dataset MaskRCNN ICP RGB-D Synt+real RGB-D
43 Sundermeyer-IJCV19+ICP [46] 2019 DNN Object  RetinaNet ICP RGB Synt+real RGB-D
44 Zhigang-CDPN-ICCV19 [31] 2019 DNN Object  RetinaNet - RGB Synt+real RGB
45 PointVoteNet2 [9] 2020 DNN Object — ICP RGB-D PBR RGB-D
46 Pix2Pose-BOP20-ICCV19 [39] 2020 DNN Object  MaskRCNN - RGB PBR+real RGB
47 Sundermeyer-1IJCV19 [46] 2019 DNN Object  RetinaNet - RGB Synt+real RGB
48 SingleMultiPathEncoder-CVPR20 [45] 2020 DNN All MaskRCNN - RGB Synt+real RGB
49 DPOD (synthetic) [57] 2019 DNN Dataset — - RGB Synt RGB

Table 3. Properties of evaluated 6D object localization methods. Column Year is the year of submission, Type indicates whether the
method relies on deep neural networks (DNN’s) or point pair features (PPF’s), DNN per ... shows how many DNN models were trained,
Det./seg. is the object detection or segmentation method, Refinement is the pose refinement method, Train im. and Test im. show image
channels used at training and test time respectively, and Train im. type is the domain of training images. All test images are real.

For BOP 2022, GDR-Net [51] was modified by exchang-
ing the ResNet34 backbone with ConvNext [36], predicting
both modal and amodal masks as intermediate representa-
tions, and applying stronger domain randomization. The
winning GDRNPP variant trains YOLOX [8] for object de-
tection and GDR-Net for pose estimation on the provided
PBR and real RGB images, and refines the pose estimates

by a multi-hypotheses refinement method inspired by Cou-
pled Iterative Refinement (CIR) [33] which is trained on
PBR and real RGB-D images.

Training on depth: In 2022, pose estimation [54] (#7) and
refinement methods [33] (#12) started learning on the depth
image channel in addition to the color channels, and out-



perform traditional depth-based refinement methods such
as ICP. On the flip side, especially the multi-hypotheses re-
finement methods can be time-intensive — the CIR-inspired
approach [33] increases the inference time of GDRNPP by
6.03s per image on average (#1—#3).

Increased accuracy & speed: The third GDRNPP entry
replaces the CIR-based refinement [33], which is used in the
top two entries, by a fast and simple depth-based adjustment
of the 3D translation and still achieves impressive 80.5 AR
in just 0.23s per image. In comparison, the best method in
2020 that took less than 1s per image is KoenigHybrid [28]
(#24) with 63.9 AR and 0.63s per image.

RGB-only from 2022 beats RGB-D from 2020: The best
method that relies only on RGB image channels at both
training and test time is a variant of GDRNPP (#13). With-
out any pose refinement, this method achieves 72.8 AR¢
which is +-9.1 w.r.t. CosyPose that applies RGB-based pose
refinement (#25) and +3.0 w.r.t. to the overall best method
from 2020, i.e., CosyPose with a depth-based ICP (#19).

Synthetic-to-real gap shrinks further: Another important
result was achieved by the GDRNPP variant that is trained
only on the provided synthetic PBR images rendered with
BlenderProc [2, 3]. With 82.7 AR, this variant achieves
the second highest accuracy. On datasets with real training
images (T-LESS, YCB-V, TUD-L), the synthetically trained
variant is only —2.5 AR¢ behind the winning method that
was trained on both the PBR synthetic and the provided real
training images. In the RGB-only setting, the synthetic-to-
real gap has been reduced on the three datasets from A15.8
AR( (observed on CosyPose in 2020; #25—#29) to A6.2
AR( (observed on GDRNPP in 2022; #13—#18). BOP
2020 results [23] demonstrated the importance of training
on PBR images over training on rasterized images with ran-
dom backgrounds. BOP 2022 results confirm this observa-
tion and also suggest that the synthetic-to-real gap mono-
tonically shrinks as the accuracy of methods increases (see,
e.g., #25—#29; #14—#20; #5—#9; #1 —#2 in Tab. 2).

Scalability in the number of objects: The advancement
in the synthetic-to-real transfer is crucial for increasing
the scope of applications. In addition, real world applica-
tions require methods whose computational and memory re-
sources scale gracefully with the amount of target objects.
The top four GDRNPP entries are all trained with at least
one pose network per object. This means that the training
time and inference memory increase linearly with the num-
ber of objects. When GDRNPP is trained with one pose
network per BOP dataset containing 2-33 objects (Tab. 1),
it achieves only 74.8 AR¢ (#11) and is outperformed by,
e.g., Extended_FCOS+PFA [25] (#5) that reaches 78.7 AR~
with one pose network per dataset. This raises the question
how the results would change if [25] was trained per object.

2D detection followed by 6D pose estimation: Almost all
6D object localization methods evaluated in 2022 start by
detecting the object instances in RGB images by predicting
their 2D bounding boxes. Some methods also predict 2D
object masks in the detected regions at training time for loss
calculation [25] or extra supervision [12], and some predict
2D masks at both training and inference time and use it to
establish correspondences [11,44]. The only exception is
RCVPose3D [54] which segments the object instances in
3D point clouds calculated from the depth image channel.

Detector-agnostic results: Ten methods use the default
2D object detections that were provided to the participants
of BOP 2022 (see Default (synt+real) in column Det./seg.
in Tab. 3). These detections were produced by Mask R-
CNN [12] trained for the first stage of CosyPose in 2020.
Among the ten methods, GDRNPP is once again at the top
with 79.8 ARc (#4). We can therefore conclude that the
pose estimation performance of the GDRNPP pipeline is
performing best independent of the used detection method.
However, with the default detections the accuracy gap to
other methods shrinks to +3.3 AR w.r.t. ZebraPose [44]
(#4—#8) and +4.0 AR¢ w.r.t. SurfEmb [11] (#4—#10),
where the latter was trained per dataset and not per ob-
ject. When GDRNPP uses YOLOX [8] detections it gains
+3.9 in AR¢ (#1—#4) and the accuracy gap increases to
+7.2 AR w.r.t. ZebraPose [44] (#1—#8) and +7.9 AR
w.r.t. SurfEmb [11] (#1—#10) respectively.

4.3. 2D Object Detection Results

As shown in Tab. 4, GDRNPP reaches the best detec-
tion performance of 77.3 AP¢c using the YOLOX [8] de-
tector with a ConvNext [36] backbone, strong data aug-
mentation, and the ranger optimizer [52]. In comparison,
the Mask R-CNN [12] detector from CosyPose only yields
60.5 AP¢c (—16.8 AP¢), which explains the +3.9 AR gain
in the pose estimation accuracy (#1—#4 in Tab. 2). The
YOLOX [8] detector trained for GDRNPP is relatively in-
sensitive to the image domain, improving only +3.5 AP¢
(#1—#2 in Tab. 4) when trained also on real training im-
ages. Mask R-CNN [12] yields +4.8 AP~ (#6—#7) and
FCOS [48] yields +5.4 AP¢ (#3—#4) in this setup.

Although all 2D object detection methods rely only on
RGB and ignore the depth channel, they work remarkably
well even on the texture-less objects from T-LESS [18].
However, the YOLOX detections on YCB-V [55] in Fig. 1
reveal a limitation of the RGB-only detection that fails to
distinguish the two differently sized clamps. This detec-
tion failure can cause severely wrong pose estimates even
though the rendered scene seems perfectly plausible. Depth
data could help to disambiguate the object scale in this case.



# Method

1 GDRNPPDet
2 GDRNPPDet

...based on Year Data ...type AP Time

YOLOX 2022 RGB PBR+real 77.3 .081
YOLOX 2022 RGB PBR 73.8 .081

3 Extended_.FCOS FCOS 2022 RGB PBR+real 72.1 .030
4 Extended_FCOS FCOS 2022 RGB PBR 66.7 .030
5 DLZDet DLZDet 2022 RGB PBR 65.6 -

6 CosyPose Mask R-CNN 2020 RGB PBR+real 60.5 .054
7 CosyPose Mask R-CNN 2020 RGB PBR 55.7 .055
8 FCOS-CDPN FCOS 2022 RGB PBR 50.7 .047

Table 4. 2D object detection results. The methods are ranked
by the AP score defined in Sec. 2.1. The last column shows the
average image processing time (in seconds).

# Method ...based on Year Data ...type APc Time
1 ZebraPoseSAT CosyPose+Zebra 2022 RGB PBR+real 58.7 .080
2 ZebraPoseSAT CDPNv2+Zebra 2022 RGB PBR+real 57.8 .080
3 ZebraPoseSAT CosyPose+Zebra 2022 RGB PBR 53.8 .080
4 ZebraPoseSAT CDPNv2+Zebra 2022 RGB PBR 52.3 .080
5 DLZDet DLZDet 2022 RGB PBR+real 49.6 -

6 DLZDet DLZDet 2022 RGB PBR 429 -

7 CosyPose Mask R-CNN 2020 RGB PBR+real 40.5 .054
8 CosyPose Mask R-CNN 2020 RGB PBR 36.2 .055

Table 5. 2D object segmentation results. Details as in Tab. 4.

4.4. 2D Object Segmentation Results

We see an improvement from 40.5 AP¢ of the default
Mask R-CNN segmentations from CosyPose to 58.7 AP¢
of the ZebraPoseSAT [44] method (+A18.2 APq; #1—#7
in Tab. 5). Interestingly, ZebraPoseSAT predicts the high-
quality masks in regions detected by Mask R-CNN from
CosyPose, and would likely achieve even higher segmenta-
tion accuracy if relying on the GDRNPP’s YOLOX detec-
tions instead. As mentioned in Sec. 4.2, most 6D object lo-
calization methods evaluated in 2022 start by 2D object de-
tection. Leveraging object segmentation instead could yield
better results on objects with irregular shapes [56], some of
which are present in the ITODD dataset [5].

5. Awards

The following BOP Challenge 2022 awards were pre-
sented at the 7th Workshop on Recovering 6D Object Pose’
organized in at the ECCV 2022 conference. The awards are
based on the 6D object localization results in Tab. 2, method
properties in Tab. 3, the 2D object detection results in Tab. 4
and the 2D object segmentation results in Tab. 5.

The GDRNPP [35, 51] submissions where prepared by
Xingyu Liu, Ruida Zhang, Chenyangguang Zhang, Bowen
Fu, Jiwen Tang, Xiquan Liang, Jingyi Tang, Xiaotian
Cheng, Yukang Zhang, Gu Wang, and Xiangyang Ji, Ex-
tended_FCOS+PFA [25] by Yang Hai, Rui Song, Zhigiang
Liu, Jiaojiao Li, Mathieu Salzmann, Pascal Fua, Yinlin

5cmp .felk.cvut.cz/sixd/workshop-2022

Hu, ZebraPoseSAT [44] by Yongzhi Su, Praveen Nathan,
Torben Fetzer, Jason Rambach, Didier Stricker, Mahdi
Saleh, Yan Di, Nassir Navab, Benjamin Busam, Federico
Tombari, Yongliang Lin, Yu Zhang, Coupled Iterative Re-
finement [33] by Lahav Lipson, Zachary Teed, Ankit Goyal,
Jia Deng, and RCVPose3D [54] by Yangzheng Wu, Alireza
Javaheri, Mohsen Zand, Michael Greenspan.

Awards for 6D object localization methods:

¢ The Overall Best Method:
GDRNPP-PBRReal-RGBD-MModel

¢ The Best RGB-Only Method:
GDRNPP-PBRReal-RGB-MModel

e The Best Fast Method (less than 1s per image):
GDRNPP-PBRReal-RGBD-MModel-Fast

* The Best BlenderProc-Trained Method:
GDRNPP-PBR-RGBD-MMaodel

¢ The Best Single-Model Method (trained per dataset):
Extended FCOS+PFA-MixPBR-RGBD

¢ The Best Open-Source Method:
GDRNPP-PBRReal-RGBD-MModel

¢ The Best Method On Default Detections/Segment.:
GDRNPP-PBRReal-RGBD-MModel-OfficialDet

¢ The Best Method on T-LESS, ITODD, YCB-V, HB:
GDRNPP-PBRReal-RGBD-MModel

¢ The Best Method on LM-O:
Extended_FCOS+PFA-MixPBR-RGBD

* The Best Method on TUD-L:
Coupled Iterative Refinement (CIR)

¢ The Best Method on IC-BIN:
RCVPose3D_SingleModel VIVO_PBR

Awards for 2D object detection/segmentation methods:

* The Overall Best Detection Method:
GDRNPPDet_PBRReal

* The Best BlenderProc-Trained Detection Method:
GDRNPPDet_PBR

¢ The Overall Best Segmentation Method:
ZebraPoseSAT-EffnetB4 (DefaultDetection)

e The Best BlenderProc-Trained Segment. Method:
ZebraPoseSAT-EffnetB4 (DefaultDet+PBR_Only)

6. Conclusions

In the BOP Challenge 2022, we witnessed another break-
through in the 6D pose estimation accuracy, efficiency and
synthetic-to-real transfer. Methods based on deep neural
networks now clearly surpass the traditional methods based
on point pair features in both accuracy and speed. Vari-
ations of the winning GDRNPP method [35, 51] allowed
us to analyze the importance of different aspects related to


https://cmp.felk.cvut.cz/sixd/workshop_2022/

training domains, modalities and run-time efficiency. Be-
sides, we individually measured 2D detection and segmen-
tation performance and could thereby determine the source
of gains in the multi-stage pose estimation pipelines. De-
spite the progress, the scores have not been saturated on
most BOP datasets and we are already looking forward to
insights from the next challenge. The online evaluation sys-
tem at bop. felk.cvut.cz stays open.
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