Publications

Export 180 results:
Author [ Title(Asc)] Type Year
Filters: Author is Schnörr, C.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Wiehler, K, Grigat, R –R, Heers, J, Schnörr, C and Stiehl, H S (1998). Dynamic Circular Cellular Networks for Adaptive Smoothing of Multi–Dimensional Signals. Proc. 5th IEEE Int. Workshop on Cellular Neural Networks and their Applications. London
Aström, F and Schnörr, C (2016). Double-Opponent Vectorial Total Variation. Proc. ECCV
Kohlberger, T, Schnörr, C, Bruhn, A and Weickert, J (2005). Domain decomposition for variational optical flow computation. IEEE Trans. Image Proc. 14 1125-1137
Kohlberger, T, Schnörr, C, Bruhn, A and Weickert, J (2003). Domain Decomposition For Variational Optical Flow Computation. Dept. Math. and Comp. Science, University of Mannheim, Germany
Kohlberger, T, Schnörr, C, Bruhn, A and Weickert, J (2003). Domain Decomposition for Parallel Variational Optical Flow Computation. Pattern Recognition, Proc. 25th DAGM Symposium. Springer. 2781 196–203
Schüle, T, Schnörr, C, Weber, S and Hornegger, J (2005). Discrete Tomography By Convex-Concave Regularization and D.C. Programming. Discr. Appl. Math. 151 229-243
Schüle, T, Schnörr, C, Weber, S and Hornegger, J (2003). Discrete Tomography By Convex-Concave Regularization And D.c. Programming. Dept. Math. and Comp. Science, University of Mannheim, Germany
Yuan, J, Ruhnau, P, Mémin, E and Schnörr, C (2005). Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation. Scale-Space 2005. Springer. 3459 267–278
Schnörr, (1991). Determining Optical Flow for Irregular Domains by Minimizing Quadratic Functionals of a Certain Class. ijcv. 6 25–38
Sprengel, R, Schnörr, C and Neumann, B (1994). Detection of Visual Data Transitions in Nonlinear Parameter Space. Mustererkennung 1994. Technische Universität Wien. 5 315–323
C
Petra, S, Schnörr, C and Schröder, A (2012). Critical Parameter Values and Reconstruction Properties of Discrete Tomography: Application to Experimental Fluid Dynamics. http://arxiv.org/abs/1209.4316
Schnörr, (1996). Convex Variational Segmentation of Multi-Channel Images. Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's. Springer-Verlag, Paris. 219
Yuan, J, Schnörr, C, Kohlberger, T and Ruhnau, P (2004). Convex Set-Based Estimation of Image Flows. ICPR 2004 – 17th Int. Conf. on Pattern Recognition. IEEE, Cambridge, UK. 1 124-127
Keuchel, J, Schellewald, C, Cremers, D and Schnörr, C (2001). Convex Relaxations for Binary Image Partitioning and Perceptual Grouping. Mustererkennung 2001. Springer, Munich, Germany. 2191 353–360
Savarino, F and Schnörr, C (2019). Continuous-Domain Assignment Flows. preprint: arXiv. https://arxiv.org/abs/1910.07287
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. CoRR. abs/1102.5448. http://arxiv.org/abs/1102.5448
Lellmann, J and Schnörr, C (2010). Continuous Multiclass Labeling Approaches And Algorithms. Univ. of Heidelberg. http://www.ub.uni-heidelberg.de/archiv/10460/
Wulf, M, Stiehl, H S and Schnörr, C (2000). On the computational rôle of the primate retina. Proc. 2nd ICSC Symposium on Neural Computation (NC 2000). Berlin, Germany
Schnörr, (1992). Computation of Discontinuous Optical Flow by Domain Decomposition and Shape Optimization. ijcv. 8 153–165
Schnörr, (1990). Computation of Discontinuous Optical Flow by Domain Decomposition and Shape Optimization. Proc. British Machine Vision Conference. Oxford/UK. 109–114
Dalitz, R, Petra, S and Schnörr, C (2017). Compressed Motion Sensing. Proc. SSVM. Springer. 10302
Neumann, J, Schnörr, C and Steidl, G (2005). Combined SVM-based Feature Selection and Classification. Machine Learning. 61 129-150
Heers, J, Schnörr, C and Stiehl, H S (1998). A class of parallel algorithms for nonlinear variational image segmentation. Proc. Noblesse Workshop on Non–Linear Model Based Image Analysis (NMBIA'98). Glasgow, Scotland
A
Bister, D, Rohr, K and Schnörr, C (1990). Automatische Bestimmung der Trajektorien von sich bewegenden Objekten aus einer Grauwertbildfolge. Mustererkennung 1990, 12. DAGM-Symposium. Springer-Verlag, Oberkochen-Aalen. 254 44–51
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2016). The Assignment Manifold: A Smooth Model for Image Labeling. Proc. 2nd Int. Workshop on Differential Geometry in Computer Vision and Machine Learning (DIFF-CVML'16; oral presentation; Grenander best paper award)
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Schnörr, (2020). Assignment Flows. Handbook of Variational Methods for Nonlinear Geometric Data. Springer. 235—260. https://www.springer.com/gp/book/9783030313500

Pages