All Publications

2021

Lang, S and Ommer, B (2021). Transforming Information Into Knowledge: How Computational Methods Reshape Art History. Digital Humanities Quaterly (DHQ). 15. http://digitalhumanities.org/dhq/vol/15/3/000560/000560.html
Afifi, M, Derpanis, K G, Ommer, B and Brown, M S (2021). Learning Multi-Scale Photo Exposure Correction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2003.11596
Esser, P, Rombach, R and Ommer, B (2021). Taming Transformers for High-Resolution Image Synthesis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2012.09841
Islam, M Amirul, Kowal, M, Esser, P, Jia, S, Ommer, B, Derpanis, K G and Bruce, N (2021). Shape or Texture: Understanding Discriminative Features in CNNs. International Conference on Learning Representations (ICLR)
Vijayan, A, Tofanelli, R, Strauss, S, Cerrone, L, Wolny, A, Strohmeier, J, Kreshuk, A, Hamprecht, F A, Smith, R S and Schneitz, K (2021). A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis ovule. eLife
Walter, F C, Damrich, S and Hamprecht, F A (2021). MultiStar: Instance Segmentation of Overlapping Objects with Star-Convex Polygons . ISBI, in press
Kotovenko, D, Wright, M, Heimbrecht, A and Ommer, B (2021). Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://compvis.github.io/brushstroke-parameterized-style-transfer/
Blattmann, A, Milbich, T, Dorkenwald, M and Ommer, B (2021). Behavior-Driven Synthesis of Human Dynamics. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2103.04677
Brattoli, B, Büchler, U, Dorkenwald, M, Reiser, P, Filli, L, Helmchen, F, Wahl, A - S and Ommer, B (2021). Unsupervised behaviour analysis and magnification (uBAM) using deep learning. Nature Machine Intelligence. https://rdcu.be/ch6pL
Damrich, S and Hamprecht, F H (2021). UMAP does not reproduce high-dimensional similarities due to negative sampling. arXiv preprint
Garrido, Q, Damrich, S, Jäger, A, Cerletti, D, Claassen, M, Najman, L and Hamprecht, F A (2021). Visualizing Hierarchies In Scrna-Seq Data Using A Density Tree-Biased Autoencoder. arXiv preprint
Andersson, A, Diego, F, Hamprecht, F A and Wählby, C (2021). Istdeco: In Situ Transcriptomics Decoding By Deconvolution. bioRxiv
Roth, K, Milbich, T, Ommer, B, Cohen, J Paul and Ghassemi, M (2021). S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning. Proceedings of International Conference on Machine Learning (ICML). https://arxiv.org/abs/2009.08348
Dorkenwald, M, Milbich, T, Blattmann, A, Rombach, R, Derpanis, K G and Ommer, B (2021). Stochastic Image-to-Video Synthesis usin cINNs. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Jahn, M, Rombach, R and Ommer, B (2021). High-Resolution Complex Scene Synthesis with Transformers. CVPR 2021, AI for Content Creation Workshop
Haußmann, M, Gerwinn, S, Look, A, Rakitsch, B and Kandemir, M (2021). Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes. International Conference on Artificial Intelligence and Statistics . PMLR 130 478-486
Kandemir, M, Agkül, A, Haußmann, M and Ünal, G (2021). Evidential Turing Processes. arXiv preprint. https://arxiv.org/abs/2106.01216
Bellagente, M, Haußmann, M, Luchmann, M and Plehn, T (2021). Understanding Event-Generation Networks via Uncertainties. arXiv preprint. https://arxiv.org/abs/2104.04543v1
Blattmann, A, Milbich, T, Dorkenwald, M and Ommer, B (2021). Understanding Object Dynamics for Interactive Image-to-Video Synthesis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2106.11303v1
Pape, C (2021). Scalable Instance Segmentation for Microscopy. Heidelberg University
Bailoni, A (2021). Deep Learning for Graph-Based Image Instance Segmentation. Heidelberg University
Rombach, R, Esser, P and Ommer, B (2021). Geometry-Free View Synthesis: Transformers and no 3D Priors. Proceedings of the Intl. Conf. on Computer Vision (ICCV). https://arxiv.org/abs/2104.07652
Blattmann, A, Milbich, T, Dorkenwald, M and Ommer, B (2021). iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis. Proceedings of the International Conference on Computer Vision (ICCV). https://arxiv.org/abs/2107.02790
Esser, P, Rombach, R, Blattmann, A and Ommer, B (2021). ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis. https://arxiv.org/abs/2108.08827
Milbich, T, Roth, K, Sinha, S, Schmidt, L, Ghassemi, M and Ommer, B (2021). Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning. https://arxiv.org/abs/2107.09562
Lang, S and Ommer, B (2021). Transforming Information Into Knowledge: How Computational Methods Reshape Art History. Digital Humanities Quaterly (DHQ). 15
Sanakoyeu, A, Ma, P, Tschernezki, V and Ommer, B (2021). Improving Deep Metric Learning by Divide and Conquer. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). https://arxiv.org/abs/2109.04003
Haußmann, (2021). Bayesian Neural Networks for Probabilistic Machine Learning. Heidelberg University
Ruiz, A (2021). Deep K-Segments: A Generalization Of K-Means. Heidelberg University

2020

Haller, S, Prakash, M, Hutschenreiter, L, Pietzsch, T, Rother, C, Jug, F, Swoboda, P and Savchynskyy, B (2020). A Primal-Dual Solver for Large-Scale Tracking-by-Assignment. AISTATS 2020PDF icon PDF (1.04 MB)
Roth, K, Milbich, T, Sinha, S, Gupta, P, Ommer, B and Cohen, J Paul (2020). Revisiting Training Strategies and Generalization Performance in Deep Metric Learning. International Conference on Machine Learning (ICML). https://arxiv.org/pdf/2002.08473.pdf
Milbich, T, Roth, K, Brattoli, B and Ommer, B (2020). Sharing Matters for Generalization in Deep Metric Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). https://arxiv.org/abs/2004.05582
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2020). Deep-Learning Jets with Uncertainties and More. SciPost Phys. 8. https://scipost.org/10.21468/SciPostPhys.8.1.006PDF icon Technical Report (1.65 MB)
Milbich, T, Roth, K and Ommer, B (2020). PADS: Policy-Adapted Sampling for Visual Similarity Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1. https://arxiv.org/abs/2003.11113
Ardizzone, L, Mackowiak, R, Rother, C and Köthe, U (2020). Exact Information Bottleneck with Invertible Neural Networks: Getting the Best of Discriminative and Generative Modeling. http://arxiv.org/abs/2001.06448PDF icon PDF (2.87 MB)
Milbich, T, Ghori, O and Ommer, B (2020). Unsupervised Representation Learning by Discovering Reliable Image Relations. Pattern Recognition. 102. http://arxiv.org/abs/1911.07808
Radev, S T, Mertens, U K, Voss, A, Ardizzone, L and Köthe, U (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. http://arxiv.org/abs/2003.06281PDF icon PDF (5.36 MB)
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2020). Geometric Numerical Integration of the Assignment Flow. Inverse Problems. 36 034004 (33pp)
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Desana, M and Schnörr, C (2020). Sum-Product Graphical Models. Machine Learning. 109 135–173

Pages