All Publications

2021

Sitenko, D, Boll, B and Schnörr, C (2021). Assignment Flow For Order-Constrained OCT Segmentation. Int J Computer Vision. 129
Afifi, M, Derpanis, K G, Ommer, B and Brown, M S (2021). Learning Multi-Scale Photo Exposure Correction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2003.11596
Esser, P, Rombach, R and Ommer, B (2021). Taming Transformers for High-Resolution Image Synthesis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2012.09841
Islam, M Amirul, Kowal, M, Esser, P, Jia, S, Ommer, B, Derpanis, K G and Bruce, N (2021). Shape or Texture: Understanding Discriminative Features in CNNs. International Conference on Learning Representations (ICLR)
Vijayan, A, Tofanelli, R, Strauss, S, Cerrone, L, Wolny, A, Strohmeier, J, Kreshuk, A, Hamprecht, F A, Smith, R S and Schneitz, K (2021). A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis ovule. eLife
Walter, F C, Damrich, S and Hamprecht, F A (2021). MultiStar: Instance Segmentation of Overlapping Objects with Star-Convex Polygons. ISBI. 295-298
Kotovenko, D, Wright, M, Heimbrecht, A and Ommer, B (2021). Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://compvis.github.io/brushstroke-parameterized-style-transfer/
Blattmann, A, Milbich, T, Dorkenwald, M and Ommer, B (2021). Behavior-Driven Synthesis of Human Dynamics. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2103.04677
Brattoli, B, Büchler, U, Dorkenwald, M, Reiser, P, Filli, L, Helmchen, F, Wahl, A - S and Ommer, B (2021). Unsupervised behaviour analysis and magnification (uBAM) using deep learning. Nature Machine Intelligence. https://rdcu.be/ch6pL
Damrich, S and Hamprecht, F H (2021). UMAP does not reproduce high-dimensional similarities due to negative sampling. arXiv preprint
Garrido, Q, Damrich, S, Jäger, A, Cerletti, D, Claassen, M, Najman, L and Hamprecht, F A (2021). Visualizing Hierarchies In Scrna-Seq Data Using A Density Tree-Biased Autoencoder. arXiv preprint
Andersson, A, Diego, F, Hamprecht, F A and Wählby, C (2021). Istdeco: In Situ Transcriptomics Decoding By Deconvolution. bioRxiv
Roth, K, Milbich, T, Ommer, B, Cohen, J Paul and Ghassemi, M (2021). S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning. Proceedings of International Conference on Machine Learning (ICML). https://arxiv.org/abs/2009.08348
Dorkenwald, M, Milbich, T, Blattmann, A, Rombach, R, Derpanis, K G and Ommer, B (2021). Stochastic Image-to-Video Synthesis usin cINNs. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Jahn, M, Rombach, R and Ommer, B (2021). High-Resolution Complex Scene Synthesis with Transformers. CVPR 2021, AI for Content Creation Workshop
Haußmann, M, Gerwinn, S, Look, A, Rakitsch, B and Kandemir, M (2021). Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes. International Conference on Artificial Intelligence and Statistics . PMLR 130 478-486
Kandemir, M, Agkül, A, Haußmann, M and Ünal, G (2021). Evidential Turing Processes. arXiv preprint. https://arxiv.org/abs/2106.01216
Blattmann, A, Milbich, T, Dorkenwald, M and Ommer, B (2021). Understanding Object Dynamics for Interactive Image-to-Video Synthesis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://arxiv.org/abs/2106.11303v1
Bellagente, M, Haußmann, M, Luchmann, M and Plehn, T (2021). Understanding Event-Generation Networks via Uncertainties. arXiv preprint. https://arxiv.org/abs/2104.04543v1
Pape, C (2021). Scalable Instance Segmentation for Microscopy. Heidelberg University
Bailoni, A (2021). Deep Learning for Graph-Based Image Instance Segmentation. Heidelberg University
Rombach, R, Esser, P and Ommer, B (2021). Geometry-Free View Synthesis: Transformers and no 3D Priors. Proceedings of the Intl. Conf. on Computer Vision (ICCV). https://arxiv.org/abs/2104.07652
Blattmann, A, Milbich, T, Dorkenwald, M and Ommer, B (2021). iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis. Proceedings of the International Conference on Computer Vision (ICCV). https://arxiv.org/abs/2107.02790
Esser, P, Rombach, R, Blattmann, A and Ommer, B (2021). ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis. https://arxiv.org/abs/2108.08827
Milbich, T, Roth, K, Sinha, S, Schmidt, L, Ghassemi, M and Ommer, B (2021). Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning. https://arxiv.org/abs/2107.09562
Lang, S and Ommer, B (2021). Transforming Information Into Knowledge: How Computational Methods Reshape Art History. Digital Humanities Quaterly (DHQ). 15
Sanakoyeu, A, Ma, P, Tschernezki, V and Ommer, B (2021). Improving Deep Metric Learning by Divide and Conquer. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). https://arxiv.org/abs/2109.04003
Haußmann, (2021). Bayesian Neural Networks for Probabilistic Machine Learning. Heidelberg University
Ruiz, A (2021). Deep K-Segments: A Generalization Of K-Means. Heidelberg University
Lang, S and Ommer, B (2021). Transforming Information Into Knowledge: How Computational Methods Reshape Art History. Digital Humanities Quaterly (DHQ). 15. http://digitalhumanities.org/dhq/vol/15/3/000560/000560.html
Sitenko, D, Boll, B and Schnörr, C (2021). Assignment Flows and Nonlocal PDEs on Graphs. GCPR, in press
Gonzalez-Alvarado, D, Zeilmann, A and Schnörr, C (2021). Assignment Flows and Nonlocal PDEs on Graphs. GCPR, in press

2020

Milbich, T, Ghori, O and Ommer, B (2020). Unsupervised Representation Learning by Discovering Reliable Image Relations. Pattern Recognition. 102. http://arxiv.org/abs/1911.07808
Friman, S (2020). Laboratory investigations of concentration and wind profiles close to the wind-driven wavy water surface. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg. Dissertation
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2020). Deep-Learning Jets with Uncertainties and More. SciPost Phys. 8. https://scipost.org/10.21468/SciPostPhys.8.1.006PDF icon Technical Report (1.65 MB)
Schilling, H, Gutsche, M, Brock, A, Späth, D, Rother, C and Krispin, K (2020). Mind the Gap – A Benchmark for Dense Depth Prediction beyond Lidar. 2nd Workshop on Safe Artificial Intelligence for Automated Driving, in conjunction with CVPR 2020
Wolf, S, Bailoni, A, Pape, C, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2020). The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning. IEEE Transactions on Pattern Analysis and Machine IntelligencePDF icon Technical Report (2.58 MB)
Sorrenson, P, Rother, C and Köthe, U (2020). Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN). Intl. Conf. Learning Representations (ICLR). http://arxiv.org/abs/2001.04872PDF icon PDF (2.43 MB)
Radev, S T, Mertens, U K, Voss, A, Ardizzone, L and Köthe, U (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. http://arxiv.org/abs/2003.06281PDF icon PDF (5.36 MB)
Wolf, S (2020). Machine Learning for Instance Segmentation. Heidelberg University

Pages