Jähne, B and Schwarzbauer, M (2016). Noise equalisation and quasi loss-less image data compression – or how many bits needs an image sensor?. tm – Technisches Messen. 83 16–24 |
Censor, Y, Gibali, A, Lenzen, F and Schnörr, C (2016). The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising. J. Comp. Math. 34 608-623 |
Kappes, J H, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2016). Multicuts and Perturb & MAP for Probabilistic Graph Clustering. J. Math. Imag. Vision. 56 221–237 |
Kleesiek, J, Urban, G, Hubert, A, Schwarz, D, Maier-Hein, K, Bendszus, M and Biller, A (2016). Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.. NeuroImage. 129 460-469 Technical Report (1.14 MB) |
Biller, A, Badde, S, Nagel, A, Neumann, J O, Wick, W, Hertenstein, A, Bendszus, M, Sahm, F, Benkhedah, N and Kleesiek, J (2016). Improved Brain Tumor Classification by Sodium MR Imaging: Prediction of IDH Mutation Status and Tumor Progression. American Journal of Neuroradiology. 37 66-73 |
von Borstel, M (2016). Learning To Count From Weak Supervision. University of Heidelberg |
Desana, M and Schnörr, C (2016). Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models. http://arxiv.org/abs/1604.07243 |
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2016). The Assignment Manifold: A Smooth Model for Image Labeling. Proc. 2nd Int. Workshop on Differential Geometry in Computer Vision and Machine Learning (DIFF-CVML'16; oral presentation; Grenander best paper award) |
Aström, F and Schnörr, C (2016). A Geometric Approach to Color Image Regularization. https://arxiv.org/abs/1605.05977 |
Berger, J and Schnörr, C (2016). Joint Recursive Monocular Filtering of Camera Motion and Disparity Map. 38th German Conference on Pattern Recognition |
Zisler, M, Petra, S, Schnörr, C and Schnörr, C (2016). Discrete Tomography by Continuous Multilabeling Subject to Projection Constraints. Proc. GCPR |
Bodnariuc, E, Petra, S, Poelma, C and Schnörr, C (2016). Parametric Dictionary-Based Velocimetry for Echo PIV. Proc. CGPR |
Aström, F and Schnörr, C (2016). Double-Opponent Vectorial Total Variation. Proc. ECCV |
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2016). A Geometric Approach to Image Labeling. Proc. ECCV |
Silvestri, F, Reinelt, G and Schnörr, C (2016). Symmetry-free SDP Relaxations for Affine Subspace Clustering. http://arxiv.org/abs/1607.07387 |
Prange, T (2016). Automatic Segmentation Of Neurons In Electron Microscopy Data With Membrane Defects. University of Heidelberg |
Kleesiek, J, Petersen, J, Döring, M, Maier-Hein, K, Köthe, U, Wick, W, Hamprecht, F A, Bendszus, M and Biller, A (2016). Virtual Raters for Reproducible and Objective Assessments in Radiology. Nature Scientific Reports. 6 Technical Report (2.81 MB) |
von Schmude, N, Lothe, P and Jähne, B (2016). Relative Pose Estimation from Straight Lines using Parallel Line Clustering and its Application to Monocular Visual Odometry. Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
Haubold, C, Schiegg, M, Kreshuk, A, Berg, S, Köthe, U and Hamprecht, F A (2016). Segmenting and Tracking Multiple Dividing Targets Using ilastik. Focus on Bio-Image Informatics. Springer. 219 199-229 Technical Report (4.46 MB) |
Stefanoiu, A, Weinmann, A, Storath, M, Navab, N and Baust, M (2016). Joint Segmentation and Shape Regularization with a Generalized Forward Backward Algorithm. IEEE Transactions on Image Processing. 25 3384 - 3394 Technical Report (3.55 MB) |
Diego, F and Hamprecht, F A (2016). Structured Regression Gradient Boosting. CVPR. Proceedings. 1459-1467 Technical Report (3.97 MB) |
Berger, J and Schnörr, C (2016). Joint Recursive Monocular Filtering of Camera Motion and Disparity Map. 38th German Conference on Pattern Recognition. Springer, Hannover. https://arxiv.org/abs/1606.02092 Technical Report (2.34 MB) |
Kiem, A (2016). Structured Learning On Calcium Imaging Data. University of Heidelberg |
Balles, L (2016). Deep Learning For Diabetic Retinopathy Diagnostics. University of Heidelberg |
Bautista, M, Sanakoyeu, A, Sutter, E and Ommer, B (2016). CliqueCNN: Deep Unsupervised Exemplar Learning. Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS). MIT Press, Barcelona. https://arxiv.org/abs/1608.08792 Article (5.79 MB) |
Bell, P and Ommer, B (2016). Digital Connoisseur? How Computer Vision Supports Art History. Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.). Artemide, Rome |
Bodnariuc, E, Schiffner, M F, Petra, S and Schnörr, C (2016). Plane Wave Acoustic Superposition for Fast Ultrasound Imaging. International Ultrasonics Symposium |
Baust, M, Weinmann, A, Wieczorek, M, Lasser, T, Storath, M and Navab, N (2016). Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach. IEEE Transactions on Medical Imaging. 35 1972–1989 Technical Report (8.65 MB) |
Meijering, E, Carpenter, A E, Peng, H, Hamprecht, F A and Olivo-Marin, J (2016). Imagining the future of bioimage analysis. Nature Biotechnology. 34 1250-1255 Technical Report (924.57 KB) |
Schiegg, M, Diego, F and Hamprecht, F A (2016). Learning Diverse Models: The Coulomb Structured Support Vector Machine. ECCV. Proceedings. Springer. LNCS 9907 585-599 Technical Report (2.54 MB) |
von Borstel, M, Kandemir, M, Schmidt, P, Rao, M, Rajamani, K and Hamprecht, F A (2016). Gaussian process density counting from weak supervision. ECCV. Proceedings. Springer. LNCS 9905 365-380 Technical Report (1.71 MB) |
Kandemir, M, Haußmann, M, Diego, F, Rajamani, K, van der Laak, J and Hamprecht, F A (2016). Variational weakly-supervised Gaussian processes. BMVC. Proceedings Technical Report (3.28 MB) |
Haußmann, (2016). Weakly Supervised Detection With Gaussian Processes. University of Heidelberg |
Schmidt, P (2016). Deep Learning For Bioimage Analysis. University of Heidelberg |
Rathore, D (2016). Semantic Segmentation Using Deep Learning. University of Heidelberg |
Güssefeld, B, Honauer, K and Kondermann, D (2016). Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets. Advances in Visual Computing - 12th International Symposium, {ISVC} 2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings, Part {I} |
Vianello, A, Manfredi, G, Diebold, M and Jähne, B (2016). 3D Reconstruction by a Combined Structure Tensor and Hough Transform Light-Field Approach. Forum Bildverarbeitung. https://doi.org/10.5445/KSP/1000059899 |