All Publications

2017

Ulman, V, Maška, M, Magnusson, K E G, Ronneberger, O, Haubold, C, Harder, N, Matula, P, Matula, P, Svoboda, D, Radojevic, M, Smal, I, Rohr, K, Jaldén, J, Blau, H M, Dzyubachyk, O, Lelieveldt, B, Xiao, P, Li, Y, Cho, S - Y, Dufour, A, Olivo-Marin, J C, Reyes-Aldasoro, C C, Solis-Lemus, J A, Bensch, R, Brox, T, Stegmaier, J, Mikut, R, Wolf, S, Hamprecht, F A, Esteves, T, Quelhas, P, Demirel, Ö, Malström, L, Jug, F, Tomančák, P, Meijering, E, Muñoz-Barrutia, A, Kozubek, M and Ortiz-de-Solorzano, C (2017). An Objective Comparison of Cell Tracking Algorithms. Nature Methods. 14 1141-1152PDF icon Technical Report (4.24 MB)
Wolf, S, Schott, L, Köthe, U and Hamprecht, F A (2017). Learned Watershed: End-to-End Learning of Seeded Segmentation. ICCV. 2030-2038PDF icon Technical Report (3.76 MB)
Pape, C, Beier, T, Li, P, Jain, V, Brock, D D and Kreshuk, A (2017). Solving Large Multicut Problems for Connectomics via Domain Decomposition. Bioimage Computing Workshop. ICCV. 1-10
Neigel, P (2017). Self-Similarity Based Detection Of Temporal Motifs In Multivariate Signals. Heidelberg University
Weiler, M (2017). Learning Steerable Filters For Rotation Equivariant Convolutional Neural Networks. Heidelberg University
Krause, G (2017). Correlation Of Performance And Entropy In Active Learning With Convolutional Neural Networks. Heidelberg University
Kruse, J, Rother, C, Schmidt, U and Dresden, T U (2017). Learning To Push The Limits Of Efficient Fft-Based Image Deconvolution - Supplemental Material
Bodnariuc, E, Petra, S, Schnörr, C and Voorneveld, J (2017). A Local Spatio-Temporal Approach to Plane Wave Ultrasound Particle Image Velocimetry. Proc. GCPR
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017). Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 2593–2602
Vianello, A (2017). Robust 3D Surface Reconstruction from Light Fields. IWR, Univ. Heidelberg. Dissertation
von Schmude, N (2017). Visual Localization with Lines. IWR, Univ. Heidelberg. Dissertation
Behl, A, Hosseini Jafari, O, Mustikovela, S Karthik, Abu Alhaija, H, Rother, C and Geiger, A (2017). Bounding Boxes, Segmentations and Object Coordinates: How Important is Recognition for 3D Scene Flow Estimation in Autonomous Driving Scenarios?. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 2593–2602
Schilling, H, Diebold, M, Gutsche, M and Jähne, B (2017). On the design of a fractal calibration pattern for improved camera calibration. tm - Technisches Messen. 84 440–451
Kruse, J, Rother, C and Schmidt, U (2017). Learning to Push the Limits of Efficient FFT-Based Image Deconvolution. Proceedings of the IEEE International Conference on Computer Vision. 2017-Octob 4596–4604
Holtmann, L Gerhard (2017). Aufbau Eines Aktiven Thermographiesystems Zur Messung Des Geschwindigkeitsgradienten In Der Windgetriebenen Wasserseitigen Viskosen Grenzschicht. Institut für Umweltphysik, Universität Heidelberg, Germany
Hullin, M, Klein, R, Schultz, T, Yao, A, Li, W, Hosseini Jafari, O and Rother, C (2017). Semantic-Aware Image Smoothing. Vision, Modeling, and Visualization. https://hci.iwr.uni-heidelberg.de/vislearn/wp-content/uploads/2014/08/paper1024_CRC.pdf
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2017). Augmented reality meets deep learning for car instance segmentation in urban scenes. British Machine Vision Conference 2017, BMVC 2017
Schlesinger, D, Jug, F, Myers, G, Rother, C and Kainmueller, D (2017). Crowd sourcing image segmentation with iaSTAPLE. Proceedings - International Symposium on Biomedical Imaging. 401–405
Aström, F and Schnörr, C (2017). A Geometric Approach for Color Image Regularization. Comp. Vision Image Understanding. 165 43–59. https://doi.org/10.1016/j.cviu.2017.10.013
Hosseini Jafari, O, Groth, O, Kirillov, A, Yang, M Ying and Rother, C (2017). Analyzing modular CNN architectures for joint depth prediction and semantic segmentation. Proceedings - IEEE International Conference on Robotics and Automation. 4620–4627. http://arxiv.org/abs/1702.08009 http://dx.doi.org/10.1109/ICRA.2017.7989537
Levinkov, E, Uhrig, J, Tang, S, Omran, M, Insafutdinov, E, Kirillov, A, Rother, C, Brox, T, Schiele, B and Andres, B (2017). Joint graph decomposition & node labeling: Problem, algorithms, applications. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 1904–1912
Kirillov, A, Levinkov, E, Andres, B, Savchynskyy, B and Rother, C (2017). InstanceCut: From edges to instances with MultiCut. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 7322–7331
Brachmann, E, Krull, A, Nowozin, S, Shotton, J, Michel, F, Gumhold, S and Rother, C (2017). DSAC - Differentiable RANSAC for camera localization. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 2492–2500. http://arxiv.org/abs/1611.05705
Michel, F, Kirillov, A, Brachmann, E, Krull, A, Gumhold, S, Savchynskyy, B and Rother, C (2017). Global hypothesis generation for 6D object pose estimation. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 115–124. http://arxiv.org/abs/1612.02287
Krull, A, Brachmann, E, Nowozin, S, Michel, F, Shotton, J and Rother, C (2017). PoseAgent: Budget-constrained 6D object pose estimation via reinforcement learning. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017-Janua 2566–2574. http://arxiv.org/abs/1612.03779
Hühnerbein, R, Savarino, F, Aström, F and Schnörr, C (2017). Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment. http://arxiv.org/abs/1710.01493
Zern, A, Rohr, K and Schnörr, C (2017). Geometric Image Labeling with Global Convex Labeling Constraints. Proc. EMMCVPR
Zisler, M, Savarino, F, Petra, S and Schnörr, C (2017). Gradient Flows on a Riemannian Submanifold for Discrete Tomography. Proc. GCPR
Rennebaum, A (2017). Spatio-Temporal Properties Of The Initial Wave Formation Phase At The Aeolotron. Institut für Umweltphysik, Universität Heidelberg, Germany
Massiceti, D, Krull, A, Brachmann, E, Rother, C and Torr, P H S (2017). Random Forests versus Neural Networks − What's best for camera location
Haltebourg, C (2017). Modeling of Heat Exchange Across the Ocean Surface as Measured by Active Thermography. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg. Dissertation
Ramos, S, Gehrig, S, Pinggera, P, Franke, U and Rother, C (2017). Detecting unexpected obstacles for self-driving cars: Fusing deep learning and geometric modeling. IEEE Intelligent Vehicles Symposium, Proceedings. 1025–1032. http://arxiv.org/abs/1612.06573
Kunz, J (2017). Active Thermography as a Tool for the Estimation of Air-Water Transfer Velocities. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg. Dissertation
Flothow, L (2017). Bubble Characteristics From Breaking Waves In Fresh Water And Simulated Seawater. Institut für Umweltphysik, Universität Heidelberg, Germany
Berger, J, Lenzen, F, Becker, F, Neufeld, A and Schnörr, C (2017). {Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE(3) Based on Nonlinear Observations. J. Math. Imag. Vision. 58 102–129
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2017). Image Labeling by Assignment. J. Math. Imag. Vision. 58 211–238. Papers/Astroem2017.pdf
Markowsky, P, Reith, S, Zuber, T E, König, R, Rohr, K and Schnörr, C (2017). Segmentation of cell structure using model-based set covering with iterative reweighting. Proc. ISBI
Dalitz, R, Petra, S and Schnörr, C (2017). Compressed Motion Sensing. Proc. SSVM. Springer. 10302
Rathke, F, Desana, M and Schnörr, C (2017). Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans. Proc. MICCAI
Kirillov, A, Schlesinger, D, Zheng, S, Savchynskyy, B, Torr, P H S and Rother, C (2017). Joint training of generic CNN-CRF models with stochastic optimization. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 10112 LNCS 221–236. http://host.robots.ox.ac.uk:8080/leaderboard

Pages