All Publications

2016

Stefanoiu, A, Weinmann, A, Storath, M, Navab, N and Baust, M (2016). Joint Segmentation and Shape Regularization with a Generalized Forward Backward Algorithm. IEEE Transactions on Image Processing. 25 3384 - 3394PDF icon Technical Report (3.55 MB)
Diego, F and Hamprecht, F A (2016). Structured Regression Gradient Boosting. CVPR. Proceedings. 1459-1467PDF icon Technical Report (3.97 MB)
Berger, J and Schnörr, C (2016). Joint Recursive Monocular Filtering of Camera Motion and Disparity Map. 38th German Conference on Pattern Recognition. Springer, Hannover. https://arxiv.org/abs/1606.02092PDF icon Technical Report (2.34 MB)
Kiem, A (2016). Structured Learning On Calcium Imaging Data. University of Heidelberg
Pape, C (2016). Automatic Segmentation Of Neurites From Anisotropic Em-Imaging. University of Heidelberg
Krasowski, N (2016). Automated Segmentation for Connectomics Utilizing Higher-Order Biological Priors. University of Heidelberg
Haubold, C, Ales, J, Wolf, S and Hamprecht, F A (2016). A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets. ECCV. Proceedings. Springer. LNCS 9911 566-582PDF icon Technical Report (1.18 MB)
Beier, T, Andres, B, Köthe, U and Hamprecht, F A (2016). An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem. ECCV. Proceedings. Springer. LNCS 9906 715-730PDF icon Technical Report (4.89 MB)
Kandemir, M, Haußmann, M, Diego, F, Rajamani, K, van der Laak, J and Hamprecht, F A (2016). Variational weakly-supervised Gaussian processes. BMVC. ProceedingsPDF icon Technical Report (3.28 MB)
von Borstel, M, Kandemir, M, Schmidt, P, Rao, M, Rajamani, K and Hamprecht, F A (2016). Gaussian process density counting from weak supervision. ECCV. Proceedings. Springer. LNCS 9905 365-380 PDF icon Technical Report (1.71 MB)
Schiegg, M, Diego, F and Hamprecht, F A (2016). Learning Diverse Models: The Coulomb Structured Support Vector Machine. ECCV. Proceedings. Springer. LNCS 9907 585-599PDF icon Technical Report (2.54 MB)
Baust, M, Weinmann, A, Wieczorek, M, Lasser, T, Storath, M and Navab, N (2016). Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging based on a Riemannian Manifold Approach. IEEE Transactions on Medical Imaging. 35 1972–1989PDF icon Technical Report (8.65 MB)
Wolf, S (2016). Cell Tracking With Graphical Model Using Higher Order Features On Track Segments. University of Heidelberg
Bautista, M, Sanakoyeu, A, Sutter, E and Ommer, B (2016). CliqueCNN: Deep Unsupervised Exemplar Learning. Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS). MIT Press, Barcelona. https://arxiv.org/abs/1608.08792PDF icon Article (5.79 MB)
Bell, P and Ommer, B (2016). Digital Connoisseur? How Computer Vision Supports Art History. Connoisseurship nel XXI secolo. Approcci, Limiti, Prospettive, A. Aggujaro & S. Albl (ed.). Artemide, Rome
Bodnariuc, E, Schiffner, M F, Petra, S and Schnörr, C (2016). Plane Wave Acoustic Superposition for Fast Ultrasound Imaging. International Ultrasonics Symposium
Meijering, E, Carpenter, A E, Peng, H, Hamprecht, F A and Olivo-Marin, J (2016). Imagining the future of bioimage analysis. Nature Biotechnology. 34 1250-1255PDF icon Technical Report (924.57 KB)
Haußmann, (2016). Weakly Supervised Detection With Gaussian Processes. University of Heidelberg
Schmidt, P (2016). Deep Learning For Bioimage Analysis. University of Heidelberg
Rathore, D (2016). Semantic Segmentation Using Deep Learning. University of Heidelberg
Balles, L (2016). Deep Learning For Diabetic Retinopathy Diagnostics. University of Heidelberg
Swoboda, P, Kuske, J and Savchynskyy, B (2016). A Dual Ascent Framework for Lagrangean Decomposition of Combinatorial Problems. arXiv, preprint. https://arxiv.org/pdf/1612.05460.pdf
Kondermann, D, Nair, R, Honauer, K, Krispin, K, Andrulis, J, Brock, A, Güssefeld, B, Rahimimoghaddam, M, Hofmann, S, Brenner, C and Jähne, B (2016). The HCI Benchmark Suite: Stereo and Flow Ground Truth With Uncertainties for Urban Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Diebold, M, Gatto, A and Jähne, B (2016). Heterogeneous Light Fields. 2016 {IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2016, Las Vegas, NV, USA, June 27-30, 2016. http://dx.doi.org/10.1109/CVPR.2016.193
Vianello, A, Manfredi, G, Diebold, M and Jähne, B (2016). 3D Reconstruction by a Combined Structure Tensor and Hough Transform Light-Field Approach. Forum Bildverarbeitung. https://doi.org/10.5445/KSP/1000059899
Honauer, K, Johannsen, O, Kondermann, D and Goldlücke, B (2016). A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields. Computer Vision - ACCV 2016 : 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part III. Springer, Cham
Güssefeld, B, Honauer, K and Kondermann, D (2016). Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets. Advances in Visual Computing - 12th International Symposium, {ISVC} 2016, Las Vegas, NV, USA, December 12-14, 2016, Proceedings, Part {I}
Schilling, H, Diebold, M, Gutsche, M, Aziz-Ahmad, H and Jähne, B (2016). A fractal calibration pattern for improved camera calibration. Forum Bildverarbeitung. https://doi.org/10.5445/KSP/1000059899
Jähne, B and Schwarzbauer, M (2016). Noise equalisation and quasi loss-less image data compression – or how many bits needs an image sensor?. tm – Technisches Messen. 83 16–24
Silvestri, F, Reinelt, G and Schnörr, C (2016). Symmetry-free SDP Relaxations for Affine Subspace Clustering. http://arxiv.org/abs/1607.07387
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2016). A Geometric Approach to Image Labeling. Proc. ECCV
Aström, F and Schnörr, C (2016). Double-Opponent Vectorial Total Variation. Proc. ECCV
Bodnariuc, E, Petra, S, Poelma, C and Schnörr, C (2016). Parametric Dictionary-Based Velocimetry for Echo PIV. Proc. CGPR
Zisler, M, Petra, S, Schnörr, C and Schnörr, C (2016). Discrete Tomography by Continuous Multilabeling Subject to Projection Constraints. Proc. GCPR
Berger, J and Schnörr, C (2016). Joint Recursive Monocular Filtering of Camera Motion and Disparity Map. 38th German Conference on Pattern Recognition
Aström, F and Schnörr, C (2016). A Geometric Approach to Color Image Regularization. https://arxiv.org/abs/1605.05977
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2016). The Assignment Manifold: A Smooth Model for Image Labeling. Proc. 2nd Int. Workshop on Differential Geometry in Computer Vision and Machine Learning (DIFF-CVML'16; oral presentation; Grenander best paper award)
Desana, M and Schnörr, C (2016). Expectation Maximization for Sum-Product Networks as Exponential Family Mixture Models. http://arxiv.org/abs/1604.07243
Kappes, J H, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2016). Multicuts and Perturb & MAP for Probabilistic Graph Clustering. J. Math. Imag. Vision. 56 221–237
Swoboda, P, Shekhovtsov, A, Kappes, J H, Schnörr, C and Savchynskyy, B (2016). Partial Optimality by Pruning for MAP-Inference with General Graphical Models. IEEE Trans. Patt. Anal. Mach. Intell. 38 1370–1382

Pages