All Publications

2019

Savarino, F and Schnörr, C (2019). Continuous-Domain Assignment Flows. preprint: arXiv. https://arxiv.org/abs/1910.07287
Schnörr, (2019). Assignment Flows. Variational Methods for Nonlinear Geometric Data and Applications. Springer
Kostrykin, L, Schnörr, C and Rohr, K (2019). Globally Optimal Segmentation of Cell Nuclei in Fluoroscence Microscopy Images using Shape and Intensity Information. Medical Image Analysis. https://doi.org/10.1016/j.media.2019.101536
Desana, M and Schnörr, C (2019). Sum-Product Graphical Models. Machine Learning. https://doi.org/10.1007/s10994-019-05813-2
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2019). Geometric Numerical Integration of the Assignment Flow. Inverse Problems. https://doi.org/10.1088/1361-6420/ab2772
Rathke, F and Schnörr, C (2019). Fast Multivariate Log-Concave Density Estimation. Comp. Statistics & Data Analysis. 140 41–58
Zern, A, Zisler, M, Petra, S and Schnörr, C (2019). Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment. preprint: arXiv. https://arxiv.org/abs/1904.10863
Savarino, F and Schnörr, C (2019). A Variational Perspective on the Assignment Flow. Proc. SSVM. Springer
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment. Proc. SSVM. Springer
Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. Proc. SSVM. Springer
Kirchhöfer, D M, Holst, G A, Wouters, F S, Hock, S and Jähne, B (2019). Extended noise equalisation for image compression in microscopical applications. tm - Technisches Messen. 86 422–432
Krall, K E, Smith, A W, Takagaki, N and Jähne, B (2019). Air–sea gas exchange at wind speeds up to 85 m/s. Ocean Science. 15 1783-–1799
Papst, M (2019). Development Of A Method For Quantitative Imaging Of Air-Water Gas Exchange. Institut für Umweltphysik, Universität Heidelberg, Germany
Lu, G -hung, Tsai, W -ting and Jähne, B (2019). Decomposing infrared images of wind waves for quantitative separation into characteristic flow processes. IEEE Transactions on Geoscience and Remote Sensing. 57 8304–8316
Friman, S I and Jähne, B (2019). Investigating SO2 transfer across the air–water interface via LIF. Exp. Fluids. 60 65
Nagel, L, Krall, K E and Jähne, B (2019). Measurement of air-sea gas transfer velocities in the Baltic Sea. Ocean Science. 15 235–247
Voigt, P (2019). Simulation And Measurement Of The Water-Sided Viscous Shear Stress Without Waves. Institut für Umweltphysik, Universität Heidelberg, Germany
Jähne, (2019). Air-Sea Gas Exchange. Encyclopedia of Ocean Sciences. Academic Press. 6 1–13
Klein, A (2019). The Fetch Dependency of Small-Scale Air-Sea Interaction Processes at Low to Moderate Wind Speeds. Institut für Umweltphysik, Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg. Dissertation
Xiao, S (2019). Tracking Dividing Cells Using Spatio-Temporal Embeddings. Heidelberg University
Ravindran, A (2019). Novel Deep Learning-Based Instance Segmentation Using Mutex Watershed For Microscopy Cell Images. Heidelberg University
Kleesiek, J, Morshuis, J Nikolas, Isensee, F, Deike-Hofmann, K, Paech, D, Kickingereder, P, Köthe, U, Rother, C, Forsting, M, Wick, W, Bendszus, M, Schlemmer, H Peter and Radbruch, A (2019). Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. Investigative Radiology. 54 653–660
E Sanmartin, F, Damrich, S and Hamprecht, F A (2019). Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning. Advances in Neural Information Processing Systems
Peter, S (2019). Machine learning under test-time budget constraints. Heidelberg University

2018

Fortun, D, Storath, M, Rickert, D, Weinmann, A and Unser, M (2018). Fast Piecewise-Affine Motion Estimation Without Segmentation. IEEE Transactions on Image Processing. 27 5612 - 5624
Blum, O, Brattoli, B and Ommer, B (2018). X-GAN: Improving Generative Adversarial Networks with ConveX Combinations. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, GermanyPDF icon Article (6.65 MB)PDF icon Supplementary material (7.96 MB)PDF icon Oral slides (14.96 MB)
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11208 LNCS 571–587. http://arxiv.org/abs/1904.12654
Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018). BOP: Benchmark for 6D object pose estimation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11214 LNCS 19–35. http://arxiv.org/abs/1808.08319
Sayed, N, Brattoli, B and Ommer, B (2018). Cross and Learn: Cross-Modal Self-Supervision. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, Germany. https://arxiv.org/abs/1811.03879v1PDF icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
Sanakoyeu, A, Kotovenko, D, Lang, S and Ommer, B (2018). A Style-Aware Content Loss for Real-time HD Style Transfer. Proceedings of the European Conference on Computer Vision (ECCV) (Oral)
Büchler, U, Brattoli, B and Ommer, B (2018). Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning. Proceedings of the European Conference on Computer Vision (ECCV). (UB and BB contributed equally), Munich, GermanyPDF icon Article (5.34 MB)PDF icon buechler_eccv18_poster.pdf (1.65 MB)
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. ECCV. Proceedings. Springer. 571-587
Draxler, F (2018). The Energy Landscape Of Deep Neural Networks. Heidelberg University
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018). Trust your Model: Light Field Depth Estimation with inline Occlusion Handling. CVPR. ProceedingsPDF icon Technical Report (5.46 MB)
Weilbach, C (2018). Dictionary Learning With Bayesian Gans For Few-Shot Classification. Heidelberg University
Wahl, A - S, Erlebach, E, Brattoli, B, Büchler, U, Kaiser, J, Ineichen, V B, Mosberger, A C, Schneeberger, S, Imobersteg, S, Wieckhorst, M, Stirn, M, Schroeter, A, Ommer, B and Schwab, M E (2018). Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. Sage Journals. Journal of Cerebral Blood Flow & Metabolism. http://journals.sagepub.com/doi/abs/10.1177/0271678X18777661PDF icon 0271678x18777661.pdf (770.87 KB)
Beier, T (2018). Multicut Algorithms for Neurite Segmentation. Heidelberg University
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2018). Augmented Reality Meets Computer Vision. International Journal of Computer Vision. In press 1–13
Tourani, S, Shekhovtsov, A, Rother, C and Savchynskyy, B (2018). MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11208 LNCS 264–281
Draxler, F, Veschgini, K, Salmhofer, M and Hamprecht, F A (2018). Essentially No Barriers in Neural Network Energy Landscape. ICML. Proceedings. 80 1308--1317PDF icon Technical Report (685.93 KB)

Pages