All Publications

2018

Rahaman, N, Arpit, D, Baratin, A, Draxler, F, Lin, M, Hamprecht, F A, Bengio, Y and Courville, A (2018). On the spectral bias of deep neural networks. arXiv preprint arXiv:1806.08734
Zern, A, Zisler, M, Aström, F, Petra, S and Schnörr, C (2018). Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment. GCPR. Proceedings. 698-713PDF icon Technical Report (5.23 MB)
Hosseini Jafari, O, Mustikovela, S K, Pertsch, K, Brachmann, E and Rother, C (2018). iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects. ACCV. Proceedings, in pressPDF icon Technical Report (3.28 MB)
Arnab, A, Zheng, S, Jayasumana, S, Romera-paredes, B, Kirillov, A, Savchynskyy, B, Rother, C, Kahl, F and Torr, P (2018). Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation. Cvpr. XX 1–15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.8889&rep=rep1&type=pdf%0Ahttp://dx.doi.org/10.1109/CVPR.2012.6248050
Abu Alhaija, H, Mustikovela, S K, Geiger, A and Rother, C (2018). Geometric Image Synthesis. ACCV. Proceedings, in pressPDF icon Technical Report (1.83 MB)
Vianello, A, Ackermann, J, Diebold, M and Jähne, B (2018). Robust Hough transform based 3D reconstruction from circular light fields. Conference on Computer Vision and Pattern Recognition (CVPR)
Hehn, T and Hamprecht, F A (2018). End-to-end Learning of Deterministic Decision Trees. German Conference on Pattern Recognition. Proceedings. Springer. LNCS 11269 612-627PDF icon Technical Report (1.4 MB)
Shekhovtsov, A, Swoboda, P and Savchynskyy, B (2018). Maximum Persistency via Iterative Relaxed Inference in Graphical Models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40 1668–1682. http://www.icg.tugraz.at/
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2018). Augmented Reality Meets Computer Vision. International Journal of Computer Vision. In press 1–13
Abu Alhaija, H, Mustikovela, S Karthik, Mescheder, L, Geiger, A and Rother, C (2018). Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes. International Journal of Computer Vision. 126 961–972. http://arxiv.org/abs/1708.01566
Haller, S, Swoboda, P and Savchynskyy, B (2018). Exact MAP-Inference by Confining Combinatorial Search With LP Relaxation. Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. AAAI Press. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16379PDF icon 2018-02-02_aaai_dense_combilp.pdf (325.08 KB)
Bell, P and Ommer, B (2018). Computer Vision und Kunstgeschichte — Dialog zweier Bildwissenschaften. Computing Art Reader: Einführung in die digitale Kunstgeschichte, P. Kuroczyński et al. (ed.)PDF icon 413-17-83318-2-10-20181210.pdf (2.98 MB)
Lang, S and Ommer, B (2018). Reflecting on How Artworks Are Processed and Analyzed by Computer Vision. European Conference on Computer Vision (ECCV - VISART). Springer
Lang, S and Ommer, B (2018). Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods. Arts, Computational Aesthetics. 7, 64PDF icon arts-07-00064.pdf (4.6 MB)
Esser, P, Haux, J, Milbich, T and Ommer, B (2018). Towards Learning a Realistic Rendering of Human Behavior. European Conference on Computer Vision (ECCV - HBUGEN)
Blum, O, Brattoli, B and Ommer, B (2018). X-GAN: Improving Generative Adversarial Networks with ConveX Combinations. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, GermanyPDF icon Article (6.65 MB)PDF icon Supplementary material (7.96 MB)PDF icon Oral slides (14.96 MB)
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11208 LNCS 571–587. http://arxiv.org/abs/1904.12654
Hodaň, T, Michel, F, Brachmann, E, Kehl, W, Buch, A Glent, Kraft, D, Drost, B, Vidal, J, Ihrke, S, Zabulis, X, Sahin, C, Manhardt, F, Tombari, F, Kim, T Kyun, Matas, J and Rother, C (2018). BOP: Benchmark for 6D object pose estimation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11214 LNCS 19–35. http://arxiv.org/abs/1808.08319
Sayed, N, Brattoli, B and Ommer, B (2018). Cross and Learn: Cross-Modal Self-Supervision. German Conference on Pattern Recognition (GCPR) (Oral). Stuttgart, Germany. https://arxiv.org/abs/1811.03879v1PDF icon Article (891.47 KB)PDF icon Oral slides (9.17 MB)
Sanakoyeu, A, Kotovenko, D, Lang, S and Ommer, B (2018). A Style-Aware Content Loss for Real-time HD Style Transfer. Proceedings of the European Conference on Computer Vision (ECCV) (Oral)
Büchler, U, Brattoli, B and Ommer, B (2018). Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning. Proceedings of the European Conference on Computer Vision (ECCV). (UB and BB contributed equally), Munich, GermanyPDF icon Article (5.34 MB)PDF icon buechler_eccv18_poster.pdf (1.65 MB)
Wolf, S, Pape, C, Bailoni, A, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2018). The Mutex Watershed: Efficient, Parameter-Free Image Partitioning. ECCV. Proceedings. Springer. 571-587
Draxler, F (2018). The Energy Landscape Of Deep Neural Networks. Heidelberg University
Cerrone, L (2018). Deep End-To-End Learning Of A Diffusion Process For Seeded Image Segmentation. Heidelberg University
Draxler, F, Veschgini, K, Salmhofer, M and Hamprecht, F A (2018). Essentially No Barriers in Neural Network Energy Landscape. ICML. Proceedings. 80 1308--1317PDF icon Technical Report (685.93 KB)
Rathke, F and Schnörr, C (2018). Fast Multivariate Log-Concave Density Estimation. preprint: ArXiv. https://arxiv.org/pdf/1805.07272.pdfPDF icon Technical Report (3.54 MB)
Tourani, S, Shekhovtsov, A, Rother, C and Savchynskyy, B (2018). MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 11208 LNCS 264–281
Abu Alhaija, H, Mustikovela, S K, Mescheder, A, Geiger, C and Rother, C (2018). Augmented Reality Meets Computer Vision Efficient Data Generation for Urban Driving Scenes. IJCV. 1-12PDF icon Technical Report (3.83 MB)
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018). Trust your Model: Light Field Depth Estimation with inline Occlusion Handling. CVPR. ProceedingsPDF icon Technical Report (5.46 MB)
Fortun, D, Storath, M, Rickert, D, Weinmann, A and Unser, M (2018). Fast Piecewise-Affine Motion Estimation Without Segmentation. IEEE Transactions on Image Processing. 27 5612 - 5624
Beier, T (2018). Multicut Algorithms for Neurite Segmentation. Heidelberg University
Wahl, A - S, Erlebach, E, Brattoli, B, Büchler, U, Kaiser, J, Ineichen, V B, Mosberger, A C, Schneeberger, S, Imobersteg, S, Wieckhorst, M, Stirn, M, Schroeter, A, Ommer, B and Schwab, M E (2018). Early reduced behavioral activity induced by large strokes affects the efficiency of enriched environment in rats. Sage Journals. Journal of Cerebral Blood Flow & Metabolism. http://journals.sagepub.com/doi/abs/10.1177/0271678X18777661PDF icon 0271678x18777661.pdf (770.87 KB)
Weilbach, C (2018). Dictionary Learning With Bayesian Gans For Few-Shot Classification. Heidelberg University
Rathke, F and Schnörr, C (2018). Fast Multivariate Log-Concave Density Estimation. preprint: arXiv. https://arxiv.org/pdf/1805.07272.pdf
Kiechle, M, Storath, M, Weinmann, A and Kleinsteuber, M (2018). Model-based learning of local image features for unsupervised texture segmentation. IEEE Transactions on Image Processing. 27 1994-2007
Schilling, H, Diebold, M, Rother, C and Jähne, B (2018). Trust your Model: Light Field Depth Estimation with Inline Occlusion Handling. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 4530–4538
Kostrykin, L, Schnörr, C and Rohr, K (2018). Segmentation of Cell Nuclei Using Intensity-Based Model Fitting and Sequential Convex Programming. Proc. ISBI
Zern, A, Rohr, K and Schnörr, C (2018). Geometric Image Labeling with Global Convex Labeling Constraints. EMMCVPR. 10746 533–547
Zern, A, Zisler, M, Aström, F, Petra, S and Schnörr, C (2018). Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment. GCPR
Storath, M and Weinmann, A (2018). Fast median filtering for phase or orientation data. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40 639–652PDF icon Technical Report (7.32 MB)

Pages