All Publications

2020

Wolf, S, Hamprecht, F A and Funke, J (2020). Inpainting Networks Learn to Separate Cells in Microscopy Images. BMCVPDF icon Technical Report (357.23 KB)
Milbich, T, Roth, K and Ommer, B (2020). PADS: Policy-Adapted Sampling for Visual Similarity Learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1. https://arxiv.org/abs/2003.11113
Sorrenson, P, Rother, C and Köthe, U (2020). Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN). Intl. Conf. Learning Representations (ICLR). http://arxiv.org/abs/2001.04872PDF icon PDF (2.43 MB)
Censor, Y, Petra, S and Schnörr, C (2020). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. J. Appl. Numer. Optimization (in press; arXiv:1911.05498). 2 15-62. http://jano.biemdas.com/archives/1060
Esser, P, Rombach, R and Ommer, B (2020). A Note on Data Biases in Generative Models. NeurIPS 2020 Workshop on Machine Learning for Creativity and Design. https://arxiv.org/abs/2012.02516
Esser, P, Rombach, R and Ommer, B (2020). A Disentangling Invertible Interpretation Network for Explaining Latent Representations. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://compvis.github.io/iin/PDF icon Article (13.07 MB)
Zeilmann, A, Savarino, F, Petra, S and Schnörr, C (2020). Geometric Numerical Integration of the Assignment Flow. Inverse Problems. 36 034004 (33pp)
Tourani, S, Shekhovtsov, A, Rother, C and Savchynskyy, B (2020). Taxonomy of Dual Block-Coordinate Ascent Methods for Discrete Energy Minimization. AISTATS 2020. https://gitlab.com/PDF icon PDF (2.58 MB)
Ufer, N, Lang, S and Ommer, B (2020). Object Retrieval and Localization in Large Art Collections Using Deep Multi-style Feature Fusion and Iterative Voting. IEEE European Conference on Computer Vision (ECCV), VISART Workshop PDF icon Paper (1.03 MB)
Wolf, S, Bailoni, A, Pape, C, Rahaman, N, Kreshuk, A, Köthe, U and Hamprecht, F A (2020). The Mutex Watershed and its Objective: Efficient, Parameter-Free Graph Partitioning. IEEE Transactions on Pattern Analysis and Machine Intelligence. 43 3724-3738PDF icon Technical Report (2.58 MB)
Bhowmik, A, Gumhold, S, Rother, C and Brachmann, E (2020). Reinforced Feature Points: Optimizing Feature Detection and Description for a High-Level Task. CVPR 2020 (oral). http://arxiv.org/abs/1912.00623PDF icon PDF (2.74 MB)
Kamann, C and Rother, C (2020). Benchmarking the Robustness of Semantic Segmentation Models. CVPR 2020. http://arxiv.org/abs/1908.05005PDF icon PDF (3.61 MB)
Kluger, F, Brachmann, E, Ackermann, H, Rother, C, Yang, M Ying and Rosenhahn, B (2020). CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. CVPR 2020. http://arxiv.org/abs/2001.02643PDF icon PDF (9.95 MB)
Zern, A, Zisler, M, Petra, S and Schnörr, C (2020). Unsupervised Assignment Flow: Label Learning on Feature Manifolds by Spatially Regularized Geometric Assignment. Journal of Mathematical Imaging and Vision. https://doi.org/10.1007/s10851-019-00935-7
Haller, S, Prakash, M, Hutschenreiter, L, Pietzsch, T, Rother, C, Jug, F, Swoboda, P and Savchynskyy, B (2020). A Primal-Dual Solver for Large-Scale Tracking-by-Assignment. AISTATS 2020PDF icon PDF (1.04 MB)
Hehn, T M, Kooij, J F P and Hamprecht, F A (2020). End-to-End Learning of Decision Trees and Forests. International Journal of Computer Vision. 128 997-1011
Roth, K, Milbich, T, Sinha, S, Gupta, P, Ommer, B and Cohen, J Paul (2020). Revisiting Training Strategies and Generalization Performance in Deep Metric Learning. International Conference on Machine Learning (ICML). https://arxiv.org/pdf/2002.08473.pdf
Dencker, T, Klinkisch, P, Maul, S M and Ommer, B (2020). Deep learning of cuneiform sign detection with weak supervision using transliteration alignment. PLoS ONE. 15. https://hci.iwr.uni-heidelberg.de/compvis/projects/cuneiform
Rombach, R, Esser, P and Ommer, B (2020). Making Sense of CNNs: Interpreting Deep Representations & Their Invariances with INNs. IEEE European Conference on Computer Vision (ECCV). https://compvis.github.io/invariances/
Rombach, R, Esser, P and Ommer, B (2020). Network Fusion for Content Creation with Conditional INNs. CVPRW 2020 (AI for Content Creation). https://compvis.github.io/network-fusion/
Wolf, S, Li, Y, Pape, C, Bailoni, A, Kreshuk, A and Hamprecht, F A (2020). The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance Segmentation. ECCV. Proceedings. 208-224
Milbich, T, Roth, K, Bharadhwaj, H, Sinha, S, Bengio, Y, Ommer, B and Cohen, J Paul (2020). DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning. IEEE European Conference on Computer Vision (ECCV). https://arxiv.org/abs/2004.13458
Krull, A, Hirsch, P, Rother, C, Schiffrin, A and Krull, C (2020). Artificial-intelligence-driven scanning probe microscopy. Communications Physics. 3
Braun, S, Esser, P and Ommer, B (2020). Unsupervised Part Discovery by Unsupervised Disentanglement. Proceedings of the German Conference on Pattern Recognition (GCPR) (Oral). Tübingen. https://compvis.github.io/unsupervised-part-segmentation/
Wolf, S (2020). Machine Learning for Instance Segmentation. Heidelberg University
Desana, M and Schnörr, C (2020). Sum-Product Graphical Models. Machine Learning. 109 135–173
Schnörr, (2020). Assignment Flows. Handbook of Variational Methods for Nonlinear Geometric Data. Springer. 235—260. https://www.springer.com/gp/book/9783030313500
Milbich, T, Ghori, O and Ommer, B (2020). Unsupervised Representation Learning by Discovering Reliable Image Relations. Pattern Recognition. 102. http://arxiv.org/abs/1911.07808
Jähne, (2020). Struktur und Chaos: Kleinskalige Austauschprozesse zwischen Atmosphäre und Meer. Heidelberger Jahrbücher Online, Entwicklung – Wie aus Prozessen Strukturen werden. 5 133–150
Lang, S and Ommer, B (2020). Das Objekt jenseits der Digitalisierung. Das digitale Objekt. 7. http://www.deutsches-museum.de/fileadmin/Content/010_DM/060_Verlag/studies-7.pdfPDF icon lang_ommer_digitalhumanities_2020_.pdf (599.56 KB)
Milbich, T, Roth, K, Brattoli, B and Ommer, B (2020). Sharing Matters for Generalization in Deep Metric Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). https://arxiv.org/abs/2004.05582
Bailoni, A, Pape, C, Wolf, S, Kreshuk, A and Hamprecht, F A (2020). Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks. GCPR. Springer. 12544 331-344
Dorkenwald, M, Büchler, U and Ommer, B (2020). Unsupervised Magnification of Posture Deviations Across Subjects. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)PDF icon article.pdf (1.15 MB)
Jähne, (2020). What controls air-sea gas exchange at extreme wind speeds? Evidence from laboratory experiments. Recent Advances in the Study of Oceanic Whitecaps. Springer. 133–150
Haußmann, M, Gerwinn, S and Kandemir, M (2020). Bayesian Evidential Deep Learning with PAC Regularization . 3rd Symposium on Advances in Approximate Bayesian Inference
Radev, S T, Mertens, U K, Voss, A, Ardizzone, L and Köthe, U (2020). BayesFlow: Learning complex stochastic models with invertible neural networks. http://arxiv.org/abs/2003.06281PDF icon PDF (5.36 MB)
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Mustikovela, S K, Jampani, V, De Mello, S, Liu, S, Iqbal, U, Rother, C and Kautz, J (2020). Self-Supervised Viewpoint Learning From Image Collections. CONSAC. https://github.com/NVlabs/SSVPDF icon PDF (8.77 MB)
Bollweg, S, Haußmann, M, Kasieczka, G, Luchmann, M, Plehn, T and Thompson, J (2020). Deep-Learning Jets with Uncertainties and More. SciPost Phys. 8. https://scipost.org/10.21468/SciPostPhys.8.1.006PDF icon Technical Report (1.65 MB)
Schilling, H, Gutsche, M, Brock, A, Späth, D, Rother, C and Krispin, K (2020). Mind the Gap – A Benchmark for Dense Depth Prediction beyond Lidar. 2nd Workshop on Safe Artificial Intelligence for Automated Driving, in conjunction with CVPR 2020

Pages