Conference Paper
C. Schnörr, Niemann, H., and Kopecz, J.,
“Architekturkonzepte zur Bildauswertung”, in
Grundlagen und Anwendungen der Künstlichen Intelligenz, 17. Fachtagung für Künstliche Intelligenz, Berlin, 1993, pp. 268–274.
F. Aström, Petra, S., Schmitzer, B., and Schnörr, C.,
“The Assignment Manifold: A Smooth Model for Image Labeling”, in
Proc. 2nd Int. Workshop on Differential Geometry in Computer Vision and Machine Learning (DIFF-CVML'16; oral presentation; Grenander best paper award), 2016.
D. Bister, Rohr, K., and Schnörr, C.,
“Automatische Bestimmung der Trajektorien von sich bewegenden Objekten aus einer Grauwertbildfolge”, in
Mustererkennung 1990, 12. DAGM-Symposium, Oberkochen-Aalen, 1990, vol. 254, pp. 44–51.
S. Weber, Schüle, T., Hornegger, J., and Schnörr, C.,
“Binary Tomography by Iterating Linear Programs from Noisy Projections”, in
Combinatorial Image Analysis, Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA'04), 2004, vol. 3322, pp. 38–51.
J. Heers, Schnörr, C., and Stiehl, H. S.,
“A class of parallel algorithms for nonlinear variational image segmentation”, in
Proc. Noblesse Workshop on Non–Linear Model Based Image Analysis (NMBIA'98), Glasgow, Scotland, 1998.
M. Wulf, Stiehl, H. S., and Schnörr, C.,
“On the computational rôle of the primate retina”, in
Proc. 2nd ICSC Symposium on Neural Computation (NC 2000), Berlin, Germany, 2000.
J. Keuchel, Schellewald, C., Cremers, D., and Schnörr, C.,
“Convex Relaxations for Binary Image Partitioning and Perceptual Grouping”, in
Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 353–360.
J. Yuan, Schnörr, C., Kohlberger, T., and Ruhnau, P.,
“Convex Set-Based Estimation of Image Flows”, in
ICPR 2004 – 17th Int. Conf. on Pattern Recognition, Cambridge, UK, 2004, vol. 1, pp. 124-127.
C. Schnörr,
“Convex Variational Segmentation of Multi-Channel Images”, in
Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's, Paris, 1996, vol. 219.
J. Yuan, Ruhnau, P., Mémin, E., and Schnörr, C.,
“Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation”, in
Scale-Space 2005, 2005, vol. 3459, pp. 267–278.
T. Kohlberger, Schnörr, C., Bruhn, A., and Weickert, J.,
“Domain Decomposition for Parallel Variational Optical Flow Computation”, in
Pattern Recognition, Proc. 25th DAGM Symposium, 2003, vol. 2781, pp. 196–203.
K. Wiehler, Grigat, R. –R., Heers, J., Schnörr, C., and Stiehl, H. S.,
“Dynamic Circular Cellular Networks for Adaptive Smoothing of Multi–Dimensional Signals”, in
Proc. 5th IEEE Int. Workshop on Cellular Neural Networks and their Applications, London, 1998.
C. Schellewald, Roth, S., and Schnörr, C.,
“Evaluation of Convex Optimization Techniques for the Weighted Graph–Matching Problem in Computer Vision”, in
Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 361–368.
R. Karim, Bergtholdt, M., Kappes, J. H., and Schnörr, C.,
“Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification”, in
Pattern Recognition – 29th DAGM Symposium, 2007, vol. 4713, pp. 395-404.
J. Keuchel, Heiler, M., and Schnörr, C.,
“Hierarchical Image Segmentation based on Semidefinite Programming”, in
Pattern Recognition, Proc. 26th DAGM Symposium, 2004, vol. 3175, pp. 120-128.
C. Schellewald, Keuchel, J., and Schnörr, C.,
“Image labeling and grouping by minimizing linear functionals over cones”, in
Proc. Third Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'01), INRIA, Sophia Antipolis, France, 2001, vol. 2134, pp. 267–282.
M. Zisler, Aström, F., Petra, S., and Schnörr, C.,
“Image Reconstruction by Multilabel Propagation”, in
Proc. SSVM, 2017, vol. 10302.