Conference Paper
S. Weber, Schüle, T., Schnörr, C., and Hornegger, J.,
“A Linear Programming Approach to Limited Angle 3D Reconstruction from DSA Projections”, in
Bildverarbeitung für die Medizin 2003, 2003, pp. 41–45.
M. Heiler and Schnörr, C.,
“Learning Sparse Image Codes by Convex Programming”, in
Proc. Tenth IEEE Int. Conf. Computer Vision (ICCV'05), Beijing, China, 2005, pp. 1667-1674.
M. Zisler, Aström, F., Petra, S., and Schnörr, C.,
“Image Reconstruction by Multilabel Propagation”, in
Proc. SSVM, 2017, vol. 10302.
C. Schellewald, Keuchel, J., and Schnörr, C.,
“Image labeling and grouping by minimizing linear functionals over cones”, in
Proc. Third Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'01), INRIA, Sophia Antipolis, France, 2001, vol. 2134, pp. 267–282.
J. Keuchel, Heiler, M., and Schnörr, C.,
“Hierarchical Image Segmentation based on Semidefinite Programming”, in
Pattern Recognition, Proc. 26th DAGM Symposium, 2004, vol. 3175, pp. 120-128.
R. Karim, Bergtholdt, M., Kappes, J. H., and Schnörr, C.,
“Greedy-Based Design of Sparse Two-Stage SVMs for Fast Classification”, in
Pattern Recognition – 29th DAGM Symposium, 2007, vol. 4713, pp. 395-404.
C. Schellewald, Roth, S., and Schnörr, C.,
“Evaluation of Convex Optimization Techniques for the Weighted Graph–Matching Problem in Computer Vision”, in
Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 361–368.
K. Wiehler, Grigat, R. –R., Heers, J., Schnörr, C., and Stiehl, H. S.,
“Dynamic Circular Cellular Networks for Adaptive Smoothing of Multi–Dimensional Signals”, in
Proc. 5th IEEE Int. Workshop on Cellular Neural Networks and their Applications, London, 1998.
T. Kohlberger, Schnörr, C., Bruhn, A., and Weickert, J.,
“Domain Decomposition for Parallel Variational Optical Flow Computation”, in
Pattern Recognition, Proc. 25th DAGM Symposium, 2003, vol. 2781, pp. 196–203.
J. Yuan, Ruhnau, P., Mémin, E., and Schnörr, C.,
“Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation”, in
Scale-Space 2005, 2005, vol. 3459, pp. 267–278.
C. Schnörr,
“Convex Variational Segmentation of Multi-Channel Images”, in
Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's, Paris, 1996, vol. 219.
J. Yuan, Schnörr, C., Kohlberger, T., and Ruhnau, P.,
“Convex Set-Based Estimation of Image Flows”, in
ICPR 2004 – 17th Int. Conf. on Pattern Recognition, Cambridge, UK, 2004, vol. 1, pp. 124-127.
J. Keuchel, Schellewald, C., Cremers, D., and Schnörr, C.,
“Convex Relaxations for Binary Image Partitioning and Perceptual Grouping”, in
Mustererkennung 2001, Munich, Germany, 2001, vol. 2191, pp. 353–360.
M. Wulf, Stiehl, H. S., and Schnörr, C.,
“On the computational rôle of the primate retina”, in
Proc. 2nd ICSC Symposium on Neural Computation (NC 2000), Berlin, Germany, 2000.
J. Heers, Schnörr, C., and Stiehl, H. S.,
“A class of parallel algorithms for nonlinear variational image segmentation”, in
Proc. Noblesse Workshop on Non–Linear Model Based Image Analysis (NMBIA'98), Glasgow, Scotland, 1998.
S. Weber, Schüle, T., Hornegger, J., and Schnörr, C.,
“Binary Tomography by Iterating Linear Programs from Noisy Projections”, in
Combinatorial Image Analysis, Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA'04), 2004, vol. 3322, pp. 38–51.