| Title | LSTM Self-Supervision for Detailed Behavior Analysis |
| Publication Type | Conference Paper |
| Year of Publication | 2017 |
| Authors | Brattoli, B, Büchler, U, Wahl, A-S, Schwab, ME, Ommer, B |
| Conference Name | Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
| Publisher | (BB and UB contributed equally) |
| Abstract | Behavior analysis provides a crucial non-invasive and
easily accessible diagnostic tool for biomedical research.
A detailed analysis of posture changes during skilled mo-
tor tasks can reveal distinct functional deficits and their
restoration during recovery. Our specific scenario is based
on a neuroscientific study of rodents recovering from a large
sensorimotor cortex stroke and skilled forelimb grasping is
being recorded. Given large amounts of unlabeled videos
that are recorded during such long-term studies, we seek
an approach that captures fine-grained details of posture
and its change during rehabilitation without costly manual
supervision. Therefore, we utilize self-supervision to au-
tomatically learn accurate posture and behavior represen-
tations for analyzing motor function. Learning our model
depends on the following fundamental elements: (i) limb
detection based on a fully convolutional network is ini-
tialized solely using motion information, (ii) a novel self-
supervised training of LSTMs using only temporal permu-
tation yields a detailed representation of behavior, and (iii)
back-propagation of this sequence representation also im-
proves the description of individual postures. We establish a
novel test dataset with expert annotations for evaluation of
fine-grained behavior analysis. Moreover, we demonstrate
the generality of our approach by successfully applying it to
self-supervised learning of human posture on two standard
benchmark datasets. |
| Citation Key | buechler:CVPR:2017 |