Publications

Export 180 results:
Author [ Title(Desc)] Type Year
Filters: Author is Schnörr, C.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Keuchel, J, Heiler, M and Schnörr, C (2004). Hierarchical Image Segmentation based on Semidefinite Programming. Pattern Recognition, Proc. 26th DAGM Symposium. Springer. 3175 120-128
Kappes, J, Speth, M, Reinelt, G and Schnörr, C (2016). Higher-order Segmentation via Multicuts. Comp. Vision Image Understanding. 143 104–119
I
Schellewald, C, Keuchel, J and Schnörr, C (2001). Image labeling and grouping by minimizing linear functionals over cones. Proc. Third Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'01). Springer, INRIA, Sophia Antipolis, France. 2134 267–282
Hühnerbein, R, Savarino, F, Aström, F and Schnörr, C (2018). Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment. SIAM J. Imaging Science. 11 1317–1362. https://epubs.siam.org/doi/abs/10.1137/17M1150669
Hühnerbein, R, Savarino, F, Aström, F and Schnörr, C (2017). Image Labeling Based on Graphical Models Using Wasserstein Messages and Geometric Assignment. http://arxiv.org/abs/1710.01493
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2017). Image Labeling by Assignment. J. Math. Imag. Vision. 58 211–238. Papers/Astroem2017.pdf
Aström, F, Petra, S, Schmitzer, B and Schnörr, C (2016). Image Labeling by Assignment. http://arxiv.org/abs/1603.05285
Zisler, M, Aström, F, Petra, S and Schnörr, C (2017). Image Reconstruction by Multilabel Propagation. Proc. SSVM. Springer. 10302
Censor, Y, Gibali, A, Lenzen, F and Schnörr, C (2016). The Implicit Convex Feasibility Problem and Its Application to Adaptive Image Denoising. J. Comp. Math. 34 608-623
Heers, J, Schnörr, C and Stiehl, H S (1999). Investigating A Class Of Iterative Schemes And Their Parallel Implementation For Nonlinear Variational Image Smoothing And Segmentation. Comp. Sci. Dept., AB KOGS, University of Hamburg, Germany
Heers, J, Schnörr, C and Stiehl, H –S (1998). Investigation of Parallel and Globally Convergent Iterative Schemes for Nonlinear Variational Image Smoothing and Segmentation. Proc. IEEE Int. Conf. Image Proc. Chicago
L
Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. preprint: arXiv. https://arxiv.org/abs/1910.09976
Hühnerbein, R, Savarino, F, Petra, S and Schnörr, C (2019). Learning Adaptive Regularization for Image Labeling Using Geometric Assignment. Proc. SSVM. Springer
Heiler, M and Schnörr, C (2005). Learning Sparse Image Codes by Convex Programming. Proc. Tenth IEEE Int. Conf. Computer Vision (ICCV'05). Beijing, China. 1667-1674
Heiler, M and Schnörr, C (2006). Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming. J. Mach. Learning Res. 7 1385–1407. http://www.cvgpr.uni-mannheim.de/Publications
Peckar, W, Schnörr, C, Rohr, K, Stiehl, H –S and Spetzger, U (1998). Linear and Incremental Estimation of Elastic Deformations in Medical Registration Using Prescribed Displacements. Machine Graphics & Vision. 7 807–829
Weber, S, Schüle, T, Schnörr, C and Hornegger, J (2004). A Linear Programming Approach to Limited Angle 3D Reconstruction from DSA Projections. Methods of Information in Medicine. 43 320–326
Weber, S, Schüle, T, Schnörr, C and Hornegger, J (2003). A Linear Programming Approach to Limited Angle 3D Reconstruction from DSA Projections. Bildverarbeitung für die Medizin 2003. Springer Verlag. 41–45
Weber, S, Schnörr, C and Hornegger, J (2003). A Linear Programming Relaxation for Binary Tomography with Smoothness Priors. Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA'03). Palermo, Italy
Bodnariuc, E, Petra, S, Schnörr, C and Voorneveld, J (2017). A Local Spatio-Temporal Approach to Plane Wave Ultrasound Particle Image Velocimetry. Proc. GCPR
Rathke, F, Desana, M and Schnörr, C (2017). Locally Adaptive Probabilistic Models for Global Segmentation of Pathological OCT Scans. Proc. MICCAI
M
Aström, F, Hühnerbein, R, Savarino, F, Recknagel, J and Schnörr, C (2017). MAP Image Labeling Using Wasserstein Messages and Geometric Assignment. Proc. SSVM. Springer. 10302
Kappes, J H and Schnörr, C (2008). MAP-Inference for Highly-Connected Graphs with DC-Programming. Pattern Recognition – 30th DAGM Symposium. Springer Verlag. 5096 1–10
Welk, M, Weickert, J, Becker, F, Schnörr, C, Feddern, C and Burgeth, B (2007). Median and related local filters for tensor-valued images. Signal Processing. 87 291-308
Wulf, M, Stiehl, H S and Schnörr, C (1999). A model of spatiotemporal receptive fields in the primate retina. Proc. 1st Göttingen Conf. German Neurosci. Soc.. II
Wulf, M, Stiehl, H S and Schnörr, C (1999). Modeling spatiotemporal receptive fields in the primate retina. Proc. Cognitive Neurosci. Conf. Hanse–Wissenschaftskolleg, Bremen, Germany
Schnörr, C and Peckar, W (1995). Motion-Based Identification of Deformable Templates. Proc. 6th Int. Conf. on Computer Analysis of Images and Patterns (CAIP '95). Springer Verlag, Prague, Czech Republic. 970 122-129
Kappes, J H, Schmidt, S and Schnörr, C (2010). MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation. European Conference on Computer Vision (ECCV). Springer Berlin / Heidelberg. 6313 735–747
Kappes, J H, Swoboda, P, Savchynskyy, B, Hazan, T and Schnörr, C (2016). Multicuts and Perturb & MAP for Probabilistic Graph Clustering. J. Math. Imag. Vision. 56 221–237

Pages