Publications

Export 180 results:
Author [ Title(Desc)] Type Year
Filters: Author is Schnörr, C.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Lauer, F and Schnörr, C (2009). Spectral Clustering of Linear Subspaces for Motion Segmentation. Proc. IEEE Int. Conf. Computer Vision (ICCV'09). Kyoto, Japan
Schmidt, S, Kappes, J H, Bergtholdt, M, Pekar, V, Dries, S, Bystrov, D and Schnörr, C (2007). Spine Detection and Labeling Using a Parts-Based Graphical Model. Proc. 20th International Conference on Information Processing in Medical Imaging (IPMI 2007). Springer. 4584 122-133
Schnörr, (1998). A Study of a Convex Variational Diffusion Approach for Image Segmentation and Feature Extraction. J. of Math. Imag. and Vision. 8 271–292
Savchynskyy, B, Kappes, J H, Schmidt, S and Schnörr, C (2011). A Study of Nesterov's Scheme for Lagrangian Decomposition and MAP Labeling. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)
Schellewald, C and Schnörr, C (2003). Subgraph Matching with Semidefinite Programming. Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA'03). Palermo, Italy
Desana, M and Schnörr, C (2020). Sum-Product Graphical Models. Machine Learning. 109 135–173
Desana, M and Schnörr, C (2019). Sum-Product Graphical Models. Machine Learning. https://doi.org/10.1007/s10994-019-05813-2
Censor, Y, Petra, S and Schnörr, C (2020). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. J. Appl. Numer. Optimization (in press; arXiv:1911.05498). 2 15-62. http://jano.biemdas.com/archives/1060
Censor, Y, Petra, S and Schnörr, C (2019). Superiorization vs. Accelerated Convex Optimization: The Superiorized/Regularized Least Squares Case. preprint: arXiv. https://arxiv.org/abs/1911.05498
Neumann, J, Schnörr, C and Steidl, G (2004). SVM-based Feature Selection by Direct Objective Minimisation. Pattern Recognition, Proc. 26th DAGM Symposium. Springer. 3175 212-219
Silvestri, F, Reinelt, G and Schnörr, C (2016). Symmetry-free SDP Relaxations for Affine Subspace Clustering. http://arxiv.org/abs/1607.07387
V
Schnörr, (2000). Variational Adaptive Smoothing and Segmentation. Computer Vision and Applications: A Guide for Students and Practitioners. Academic Press, San Diego. 459–482
Ruhnau, P, Gütter, C, Putze, T and Schnörr, C (2005). A variational approach for particle tracking velocimetry. Meas. Science and Techn. 16 1449-1458
Schnörr, C, Sprengel, R and Neumann, B (1996). A Variational Approach to the Design of Early Vision Algorithms. Computing Suppl. 11 149-165
Vlasenko, A and Schnörr, C (2009). Variational Approaches for Model-Based PIV and Visual Fluid Analysis. Imaging Measurement Methods for Flow Analysis. Springer. 106 247-256
Schnörr, (1998). Variational approaches to Image Segmentation and Feature Extraction. University of Hamburg, Comp. Sci. Dept., Hamburg, Germany
Kohlberger, T, Mémin, E and Schnörr, C (2003). Variational Dense Motion Estimation Using the Helmholtz Decomposition. Scale Space Methods in Computer Vision. Springer. 2695 432–448
Ruhnau, P, Stahl, A and Schnörr, C (2007). Variational Estimation of Experimental Fluid Flows with Physics-Based Spatio-Temporal Regularization. Measurement Science and Technology. 18 755-763
Heitz, D, Mémin, E and Schnörr, C (2010). Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids. 48 369-393
(2005). Variational, Geometric and Level Sets in Computer Vision (VLSM'05). lncs. Springer, Beijing, China. 3752
Schnörr, C and Weickert, J (2000). Variational Image Motion Computation: Theoretical Framework, Problems and Perspectives. Mustererkennung 2000. Springer, Kiel, Germany
Schnörr, (1999). Variational Methods for Adaptive Image Smoothing and Segmentation. Handbook on Computer Vision and Applications: Signal Processing and Pattern Recognition. Academic Press, San Diego. 2 451–484
Weickert, J and Schnörr, C (2001). Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint. J. Math. Imaging and Vision. 14 245–255

Pages