Publications

Export 6 results:
[ Author(Desc)] Title Type Year
Filters: Author is Jancsary, Jeremy  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
J
J. Jancsary, Nowozin, S., and Rother, C., Learning convex QP relaxations for structured prediction, in 30th International Conference on Machine Learning, ICML 2013, 2013, pp. 1952–1960.
J. Jancsary, Nowozin, S., and Rother, C., Loss-specific training of non-parametric image restoration models: A new state of the art, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7578 LNCS, pp. 112–125.
J. Jancsary, Nowozin, S., and Rother, C., Loss-specific training of non-parametric image restoration models: A new state of the art, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7578 LNCS, pp. 112–125.
J. Jancsary, Nowozin, S., and Rother, C., Non-parametric crfs for image labeling, in NIPS Workshop Modern Nonparametric Methods in Machine Learning, 2012, pp. 1–5.
J. Jancsary, Nowozin, S., Sharp, T., and Rother, C., Regression Tree Fields An efficient, non-parametric approach to image labeling problems, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012, pp. 2376–2383.
J. Jancsary, Nowozin, S., Sharp, T., and Rother, C., Regression Tree Fields An efficient, non-parametric approach to image labeling problems, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012, pp. 2376–2383.