H
H. Haußecker, Tizhoosh, H. R., Jähne, B., Geißler, P., and Haußecker, H.,
“Fuzzy image processing”,
Handbook of Computer Vision and Applications, vol. 2: Signal Processing and Pattern Recognition. Academic Press, p. 683--727, 1999.
H. Haußecker, Tizhoosh, H. R., and Jähne, B.,
“Fuzzy image processing”,
Computer Vision and Applications - A Guide for Students and Practitioners. Academic Press, p. 541--576, 2000.
M. Haußmann, Gerwinn, S., Look, A., Rakitsch, B., and Kandemir, M.,
“Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes”,
International Conference on Artificial Intelligence and Statistics , vol. PMLR 130. pp. 478-486, 2021.
M. Haußmann, Hamprecht, F. A., and Kandemir, M.,
“Variational Bayesian Multiple Instance Learning with Gaussian Processes”,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6570-6579, 2017.
Technical Report (1.29 MB) M. Hayn, Beirle, S., Hamprecht, F. A., Platt, U., Menze, B. H., and Wagner, T.,
“Analysing spatio-temporal patterns of the global NO2-distribution retrieved frome GOME satellite observations using a generalized additive model”,
Atmospheric Chemistry and Physics, vol. 9, pp. 9367-9398, 2009.
Technical Report (2.52 MB) X. He, Wang, H., Zhang, F., Wang, G., and Zhou, K.,
“Robust Simulation of Small-Scale Thin Features in SPH-based Free Surface Flows”,
Life.Kunzhou.Net, vol. 1, pp. 1–8, 2014.
K. He, Rhemann, C., Rother, C., Tang, X., and Sun, J.,
“A global sampling method for alpha matting”, in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2011, pp. 2049–2056.
J. Heers, Schnörr, C., and Stiehl, H. S.,
“Investigating a class of iterative schemes and their parallel implementation for nonlinear variational image smoothing and segmentation”, Comp. Sci. Dept., AB KOGS, University of Hamburg, Germany, 283/99, 1999.
J. Heers, Schnörr, C., and Stiehl, H. S.,
“A class of parallel algorithms for nonlinear variational image segmentation”, in
Proc. Noblesse Workshop on Non–Linear Model Based Image Analysis (NMBIA'98), Glasgow, Scotland, 1998.
T. Hehn and Hamprecht, F. A.,
“End-to-end Learning of Deterministic Decision Trees”,
German Conference on Pattern Recognition. Proceedings, vol. LNCS 11269. Springer, pp. 612-627, 2018.
Technical Report (1.4 MB) M. Heiler, Cremers, D., and Schnörr, C.,
“Efficient Feature Subset Selection for Support Vector Machines”, Dept. Math. and Comp. Science, University of Mannheim, Germany, 21/2001, 2001.
M. Heiler, Keuchel, J., and Schnörr, C.,
“Semidefinite Clustering for Image Segmentation with A-priori Knowledge”,
Pattern Recognition, Proc. 27th DAGM Symposium, vol. 3663. Springer, pp. 309–317, 2005.
M. Heiler and Schnörr, C.,
“Learning Sparse Image Codes by Convex Programming”, in
Proc. Tenth IEEE Int. Conf. Computer Vision (ICCV'05), Beijing, China, 2005, pp. 1667-1674.
M. Heiler and Schnörr, C.,
“Reverse-Convex Programming for Sparse Image Codes”, in
Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 600-616.
M. Heiler and Schnörr, C.,
“Natural Statistics for Natural Image Segmentation”, in
Proc. IEEE Int. Conf. Computer Vision (ICCV 2003), Nice, France, 2003, pp. 1259-1266.