Publications

Export 180 results:
Author Title [ Type(Asc)] Year
Filters: Author is Schnörr, C.  [Clear All Filters]
Journal Article
Schnörr, (1993). On Functionals with Greyvalue-Controlled Smoothness Terms for Determining Optical Flow. pami. 15 1074–1079
Weickert, J, Heers, J, Schnörr, C, Zuiderveld, K –J, Scherzer, O and Stiehl, H –S (2001). Fast parallel algorithms for a broad class of nonlinear variational diffusion approaches. Real–Time Imaging. 7 31–45
Rathke, F and Schnörr, C (2019). Fast Multivariate Log-Concave Density Estimation. Comp. Statistics & Data Analysis. 140 41–58
Rathke, F and Schnörr, C (2018). Fast Multivariate Log-Concave Density Estimation. preprint: arXiv. https://arxiv.org/pdf/1805.07272.pdf
Schellewald, C, Roth, S and Schnörr, C (2007). Evaluation of a convex relaxation to a quadratic assignment matching approach for relational object views. Image Vision Comp. 25 1301–1314
Neumann, J, Schnörr, C and Steidl, G (2005). Efficient Wavelet Adaption for Hybrid Wavelet-Large Margin Classifiers. Pattern Recognition. 38 1815-1830
Kohlberger, T, Schnörr, C, Bruhn, A and Weickert, J (2005). Domain decomposition for variational optical flow computation. IEEE Trans. Image Proc. 14 1125-1137
Schüle, T, Schnörr, C, Weber, S and Hornegger, J (2005). Discrete Tomography By Convex-Concave Regularization and D.C. Programming. Discr. Appl. Math. 151 229-243
Schnörr, (1991). Determining Optical Flow for Irregular Domains by Minimizing Quadratic Functionals of a Certain Class. ijcv. 6 25–38
Savarino, F and Schnörr, C (2019). Continuous-Domain Assignment Flows. preprint: arXiv. https://arxiv.org/abs/1910.07287
Lellmann, J and Schnörr, C (2011). Continuous Multiclass Labeling Approaches and Algorithms. CoRR. abs/1102.5448. http://arxiv.org/abs/1102.5448
Schnörr, (1992). Computation of Discontinuous Optical Flow by Domain Decomposition and Shape Optimization. ijcv. 8 153–165
Neumann, J, Schnörr, C and Steidl, G (2005). Combined SVM-based Feature Selection and Classification. Machine Learning. 61 129-150
Keuchel, J, Schnörr, C, Schellewald, C and Cremers, D (2003). Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming. 25 1364–1379
Zern, A, Zeilmann, A and Schnörr, C (2020). Assignment Flows for Data Labeling on Graphs: Convergence and Stability. preprint: arXiv. https://arxiv.org/abs/2002.11571
Schüle, T, Weber, S and Schnörr, C (2005). Adaptive Reconstruction of Discrete-Valued Objects from few Projections. Electr. Notes in Discr. Math. 20 365-384
Wiehler, K, Heers, J, Schnörr, C, Stiehl, H –S and Grigat, R –R (2001). A 1D analog VLSI implementation for non-linear real-time signal preprocessing. Real–Time Imaging. 7 127–142
In Collection
Schnörr, C, Schüle, T and Weber, S (2007). Variational Reconstruction with DC-Programming. Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston
Ruhnau, P, Kohlberger, T, Nobach, H and Schnörr, C (2004). Variational Optical Flow Estimation for Particle Image Velocimetry. Proc. Lasermethoden in der Strömungsmeßtechnik. Deutsche Gesellschaft für Laser-Anemometrie GALA e.V., Karlsruhe
Vlasenko, A and Schnörr, C (2009). Variational Approaches for Model-Based PIV and Visual Fluid Analysis. Imaging Measurement Methods for Flow Analysis. Springer. 106 247-256
Heiler, M, Keuchel, J and Schnörr, C (2005). Semidefinite Clustering for Image Segmentation with A-priori Knowledge. Pattern Recognition, Proc. 27th DAGM Symposium. Springer. 3663 309–317
Weber, S, Schnörr, C, Schüle, T and Hornegger, J (2005). Binary Tomography by Iterating Linear Programs. Geometric Properties from Incomplete Data. Springer
Schnörr, (2020). Assignment Flows. Handbook of Variational Methods for Nonlinear Geometric Data. Springer. 235—260. https://www.springer.com/gp/book/9783030313500
Schnörr, (2019). Assignment Flows. Variational Methods for Nonlinear Geometric Data and Applications. Springer
Conference Paper
Schnörr, (1989). Zur Schätzung von Geschwindigkeitsvektorfeldern in Bildfolgen mit einer richtungsabhängigen Glattheitsforderung. Mustererkennung 1989, 11. DAGM-Symposium. Springer-Verlag, Hamburg. 219 294–301
Savarino, F and Schnörr, C (2019). A Variational Perspective on the Assignment Flow. Proc. SSVM. Springer
Schnörr, (1999). Variational Methods for Adaptive Image Smoothing and Segmentation. Handbook on Computer Vision and Applications: Signal Processing and Pattern Recognition. Academic Press, San Diego. 2 451–484
Schnörr, C and Weickert, J (2000). Variational Image Motion Computation: Theoretical Framework, Problems and Perspectives. Mustererkennung 2000. Springer, Kiel, Germany
Kohlberger, T, Mémin, E and Schnörr, C (2003). Variational Dense Motion Estimation Using the Helmholtz Decomposition. Scale Space Methods in Computer Vision. Springer. 2695 432–448
Schnörr, (2000). Variational Adaptive Smoothing and Segmentation. Computer Vision and Applications: A Guide for Students and Practitioners. Academic Press, San Diego. 459–482
Zisler, M, Zern, A, Petra, S and Schnörr, C (2019). Unsupervised Labeling by Geometric and Spatially Regularized Self-Assignment. Proc. SSVM. Springer
Zern, A, Zisler, M, Aström, F, Petra, S and Schnörr, C (2018). Unsupervised Label Learning on Manifolds by Spatially Regularized Geometric Assignment. GCPR
Keuchel, J, Schnörr, C, Schellewald, C and Cremers, D (2002). Unsupervised Image Partitioning with Semidefinite Programming. Pattern Recognition, Proc. 24th DAGM Symposium. Springer, Zürich, Switzerland. 2449 141–149

Pages