H
M. Heiler and Schnörr, C.,
“Learning Sparse Image Codes by Convex Programming”, in
Proc. Tenth IEEE Int. Conf. Computer Vision (ICCV'05), Beijing, China, 2005, pp. 1667-1674.
M. Heiler and Schnörr, C.,
“Reverse-Convex Programming for Sparse Image Codes”, in
Proc. Int. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR'05), 2005, vol. 3757, pp. 600-616.
M. Heiler and Schnörr, C.,
“Natural Statistics for Natural Image Segmentation”, in
Proc. IEEE Int. Conf. Computer Vision (ICCV 2003), Nice, France, 2003, pp. 1259-1266.
T. Hehn and Hamprecht, F. A.,
“End-to-end Learning of Deterministic Decision Trees”,
German Conference on Pattern Recognition. Proceedings, vol. LNCS 11269. Springer, pp. 612-627, 2018.
Technical Report (1.4 MB) J. Heers, Schnörr, C., and Stiehl, H. S.,
“Investigating a class of iterative schemes and their parallel implementation for nonlinear variational image smoothing and segmentation”, Comp. Sci. Dept., AB KOGS, University of Hamburg, Germany, 283/99, 1999.
J. Heers, Schnörr, C., and Stiehl, H. S.,
“A class of parallel algorithms for nonlinear variational image segmentation”, in
Proc. Noblesse Workshop on Non–Linear Model Based Image Analysis (NMBIA'98), Glasgow, Scotland, 1998.
X. He, Wang, H., Zhang, F., Wang, G., and Zhou, K.,
“Robust Simulation of Small-Scale Thin Features in SPH-based Free Surface Flows”,
Life.Kunzhou.Net, vol. 1, pp. 1–8, 2014.
K. He, Rhemann, C., Rother, C., Tang, X., and Sun, J.,
“A global sampling method for alpha matting”, in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2011, pp. 2049–2056.
M. Hayn, Beirle, S., Hamprecht, F. A., Platt, U., Menze, B. H., and Wagner, T.,
“Analysing spatio-temporal patterns of the global NO2-distribution retrieved frome GOME satellite observations using a generalized additive model”,
Atmospheric Chemistry and Physics, vol. 9, pp. 9367-9398, 2009.
Technical Report (2.52 MB) M. Haußmann, Hamprecht, F. A., and Kandemir, M.,
“Variational Bayesian Multiple Instance Learning with Gaussian Processes”,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6570-6579, 2017.
Technical Report (1.29 MB) M. Haußmann, Gerwinn, S., Look, A., Rakitsch, B., and Kandemir, M.,
“Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes”,
International Conference on Artificial Intelligence and Statistics , vol. PMLR 130. pp. 478-486, 2021.
H. Haußecker, Jähne, B., Geißler, P., and Haußecker, H.,
“Radiation”,
Handbook of Computer Vision and Applications, vol. 1: Sensors and Imaging. Academic Press, p. 7--35, 1999.
H. Haußecker, Jähne, B., Geißler, P., and Haußecker, H.,
“Interaction of radiation with matter”,
Handbook of Computer Vision and Applications, vol. 1: Sensors and Imaging. Academic Press, p. 37--62, 1999.
H. Haußecker, Jähne, B., Geißler, P., and Haußecker, H.,
“Radiometry of imaging”,
Handbook of Computer Vision and Applications, vol. 1: Sensors and Imaging. Academic Press, p. 103--135, 1999.
H. Haußecker, Jähne, B., Geißler, P., and Haußecker, H.,
“Illumination sources and techniques”,
Handbook of Computer Vision and Applications, vol. 1: Sensors and Imaging. Academic Press, p. 137--162, 1999.
H. Haußecker and Jähne, B.,
“Radiation and illumination”,
Computer Vision and Applications - A Guide for Students and Practitioners. Academic Press, p. 11--52, 2000.
H. Haußecker and Jähne, B.,
“Radiometry of imaging”,
Computer Vision and Applications - A Guide for Students and Practitioners. Academic Press, p. 85--109, 2000.