Export 113 results:
Author Title [ Type(Desc)] Year
Filters: Author is Björn Ommer  [Clear All Filters]
Journal Article
Lang, S and Ommer, B (2018). Reconstructing Histories: Analyzing Exhibition Photographs with Computational Methods. Arts, Computational Aesthetics. 7, 64PDF icon arts-07-00064.pdf (4.6 MB)
Ommer, B, Mader, T and Buhmann, J M (2009). Seeing the Objects Behind the Dots: Recognition in Videos from a Moving Camera. International Journal of Computer Vision. Springer. 83 57--71PDF icon Technical Report (9.61 MB)
Milbich, T, Roth, K, Brattoli, B and Ommer, B (2020). Sharing Matters for Generalization in Deep Metric Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).
Antic, B and Ommer, B (2015). Spatio-temporal Video Parsing for Abnormality Detection. arXiv. abs/1502.06235. icon Technical Report (4.61 MB)
Bell, P and Ommer, B (2015). Training Argus. Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege. Zentralinstitut für Kunstgeschichte. 68 414--420
Lang, S and Ommer, B (2021). Transforming Information Into Knowledge: How Computational Methods Reshape Art History. Digital Humanities Quaterly (DHQ). 15
Brattoli, B, Büchler, U, Dorkenwald, M, Reiser, P, Filli, L, Helmchen, F, Wahl, A - S and Ommer, B (2021). Unsupervised behaviour analysis and magnification (uBAM) using deep learning. Nature Machine Intelligence.
Milbich, T, Ghori, O and Ommer, B (2020). Unsupervised Representation Learning by Discovering Reliable Image Relations. Pattern Recognition. 102.