A. Bruhn, Weickert, J., and Schnörr, C.,
“Combining the Advantages of Local and Global Optic Flow Methods”, in
Pattern Recognition, Proc. 24th DAGM Symposium, Zürich, Switzerland, 2002, vol. 2449, pp. 454–462.
S. Petra, Schnörr, C., Becker, F., and Lenzen, F.,
“B-SMART: Bregman-Based First-Order Algorithms for Non-Negative Compressed Sensing Problems”, in
Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM) 2013, 2013, vol. 7893, pp. 110-124.
Technical Report (1.15 MB) S. Weber, Schüle, T., Schnörr, C., and Kuba, A.,
“Binary Tomography with Deblurring”, in
Combinatorial Image Analysis, 2006, vol. 4040, pp. 375-388.
Technical Report (803.63 KB) S. Weber, Nagy, A., Schüle, T., Schnörr, C., and Kuba, A.,
“A Benchmark Evaluation of Large-Scale Optimization Approaches to Binary Tomography”, in
Discrete Geometry for Computer Imagery (DGCI 2006), 2006, vol. 4245, pp. 146-156.
Technical Report (301.1 KB) E. Bodnariuc, Gurung, A., Petra, S., and Schnörr, C.,
“Adaptive Dictionary-Based Spatio-temporal Flow Estimation for Echo PIV”, in
Proc.~EMMCVPR, 2015, vol. 8932, p. 378--391.
Technical Report (951.37 KB) C. Kondermann, Kondermann, D., Jähne, B., Garbe, C. S., Schnörr, C., and Jähne, B.,
“An adaptive confidence measure for optical flows based on linear subspace projections”, in
Proceedings of the 29th DAGM Symposium on Pattern Recognition, 2007, vol. 4713, p. 132--141.